iNP_ESM: Neuropeptide Identification Based on Evolutionary Scale Modeling and Unified Representation Embedding Features
Abstract
:1. Introduction
2. Results
2.1. Identifying the Optimal Baseline Models
2.2. Feature Fusion Optimization
2.3. Feature Selection Optimization and Visualization Analysis
2.4. Comparison with Existing Methods
3. Discussion
4. Materials and Methods
4.1. Dataset
4.2. Feature Extraction Methods
4.2.1. ESM
4.2.2. UniRep
4.2.3. TAPE_BERT
4.2.4. SSA, LM, and BiLSTM
4.3. Machine Learning Methods
4.4. Feature Selection Methods
4.5. Feature Visualization Methods
4.6. Performance Evaluation Metrics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rao, H.B.; Zhu, F.; Yang, G.B.; Li, Z.R.; Chen, Y.Z. Update of PROFEAT: A web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Res. 2011, 39, W385–W390. [Google Scholar] [CrossRef] [PubMed]
- Kupcova, I.; Danisovic, L.; Grgac, I.; Harsanyi, S. Anxiety and Depression: What Do We Know of Neuropeptides? Behav. Sci. 2022, 12, 262. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ganguly, P.; Jin, Y.; Jhatro, M.J.; Shea, J.E.; Buratto, S.K.; Bowers, M.T. Tachykinin Neuropeptides and Amyloid beta (25–35) Assembly: Friend or Foe? J. Am. Chem. Soc. 2022, 144, 14614–14626. [Google Scholar] [CrossRef] [PubMed]
- Casello, S.M.; Flores, R.J.; Yarur, H.E.; Wang, H.; Awanyai, M.; Arenivar, M.A.; Jaime-Lara, R.B.; Bravo-Rivera, H.; Tejeda, H.A. Neuropeptide System Regulation of Prefrontal Cortex Circuitry: Implications for Neuropsychiatric Disorders. Front. Neural Circuits 2022, 16, 796443. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.Z.; Nayer, B.; Singh, S.K.; Alshoubaki, Y.K.; Yuan, E.; Park, A.J.; Maruyama, K.; Akira, S.; Martino, M.M. CGRP sensory neurons promote tissue healing via neutrophils and macrophages. Nature 2024, 628, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, M.A.; Al-Ayadhi, L.; Hassan, W.M.; Bhat, R.S.; Alonazi, M.A.; El-Ansary, A. Bee Pollen and Probiotics May Alter Brain Neuropeptide Levels in a Rodent Model of Autism Spectrum Disorders. Metabolites 2022, 12, 562. [Google Scholar] [CrossRef] [PubMed]
- DeLaney, K.; Buchberger, A.R.; Atkinson, L.; Grunder, S.; Mousley, A.; Li, L. New techniques, applications and perspectives in neuropeptide research. J. Exp. Biol. 2018, 221 Pt 3, jeb151167. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E. Neuropeptidomics: Mass Spectrometry-Based Identification and Quantitation of Neuropeptides. Genom. Inform. 2016, 14, 12–19. [Google Scholar] [CrossRef]
- Secher, A.; Kelstrup, C.D.; Conde-Frieboes, K.W.; Pyke, C.; Raun, K.; Wulff, B.S.; Olsen, J.V. Analytic framework for peptidomics applied to large-scale neuropeptide identification. Nat. Commun. 2016, 7, 11436. [Google Scholar] [CrossRef]
- Agrawal, P.; Kumar, S.; Singh, A.; Raghava, G.P.S.; Singh, I.K. NeuroPIpred: A tool to predict, design and scan insect neuropeptides. Sci. Rep. 2019, 9, 5129. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Yin, S.; Jang, R.; Wang, J.; Xue, Z.; Xu, T. NeuroPep: A comprehensive resource of neuropeptides. Database 2015, 2015, bav038. [Google Scholar] [CrossRef] [PubMed]
- Bin, Y.N.; Zhang, W.; Tang, W.D.; Dai, R.Y.; Li, M.L.; Zhu, Q.Z.; Xia, J.F. Prediction of Neuropeptides from Sequence Information Using Ensemble Classifier and Hybrid Features. J. Proteome Res. 2020, 19, 3732–3740. [Google Scholar] [CrossRef]
- Hasan, M.M.; Alam, M.A.; Shoombuatong, W.; Deng, H.W.; Manavalan, B.; Kurata, H. NeuroPred-FRL: An interpretable prediction model for identifying neuropeptide using feature representation learning. Brief. Bioinform. 2021, 22, bbab167. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Zhao, B.; Luo, S.; Wang, Q.; Chu, Y.; Chen, T.; Mao, X.; Liu, Y.; Wang, Y.; Jiang, X.; et al. NeuroPpred-Fuse: An interpretable stacking model for prediction of neuropeptides by fusing sequence information and feature selection methods. Brief. Bioinform. 2021, 22, bbab310. [Google Scholar] [CrossRef]
- Wang, M.X.; Wang, L.; Xu, W.; Chu, Z.Q.; Wang, H.Z.; Lu, J.X.; Xue, Z.D.; Wang, Y. NeuroPep 2.0: An Updated Database Dedicated to Neuropeptide and Its Receptor Annotations. J. Mol. Biol. 2024, 436, 168416. [Google Scholar] [CrossRef]
- Wang, L.; Huang, C.; Wang, M.; Xue, Z.; Wang, Y. NeuroPred-PLM: An interpretable and robust model for neuropeptide prediction by protein language model. Brief. Bioinform. 2023, 24, bbad077. [Google Scholar]
- Lei, Y.; Li, S.; Liu, Z.; Wan, F.; Tian, T.; Li, S.; Zhao, D.; Zeng, J. A deep-learning framework for multi-level peptide-protein interaction prediction. Nat. Commun. 2021, 12, 5465. [Google Scholar] [CrossRef]
- Liu, D.; Lin, Z.; Jia, C. NeuroCNN_GNB: An ensemble model to predict neuropeptides based on a convolution neural network and Gaussian naive Bayes. Front. Genet. 2023, 14, 1226905. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Jiang, Y.; Jin, J.; Yin, C.; Yu, H.; Wang, F.; Feng, J.; Su, R.; Nakai, K.; Zou, Q. DeepBIO: An automated and interpretable deep-learning platform for high-throughput biological sequence prediction, functional annotation and visualization analysis. Nucleic Acids Res. 2023, 51, 3017–3029. [Google Scholar] [CrossRef]
- Ren, X.; Wei, J.; Luo, X.; Liu, Y.; Li, K.; Zhang, Q.; Gao, X.; Yan, S.; Wu, X.; Jiang, X.; et al. HydrogelFinder: A Foundation Model for Efficient Self-Assembling Peptide Discovery Guided by Non-Peptidal Small Molecules. Adv. Sci. 2024, 2400829. [Google Scholar] [CrossRef]
- Alley, E.C.; Khimulya, G.; Biswas, S.; AlQuraishi, M.; Church, G.M. Unified rational protein engineering with sequence-based deep representation learning. Nat. Methods 2019, 16, 1315–1322. [Google Scholar] [CrossRef] [PubMed]
- Pakhrin, S.C.; Shrestha, B.; Adhikari, B.; Kc, D.B. Deep Learning-Based Advances in Protein Structure Prediction. Int. J. Mol. Sci. 2021, 22, 5553. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.; Bhattacharya, N.; Thomas, N.; Duan, Y.; Chen, X.; Canny, J.; Abbeel, P.; Song, Y.S. Evaluating Protein Transfer Learning with TAPE. Adv. Neural Inf. Process. Syst. 2019, 32, 9689–9701. [Google Scholar] [PubMed]
- Madani, A.; Krause, B.; Greene, E.R.; Subramanian, S.; Mohr, B.P.; Holton, J.M.; Olmos, J.L., Jr.; Xiong, C.; Sun, Z.Z.; Socher, R.; et al. Large language models generate functional protein sequences across diverse families. Nat. Biotechnol. 2023, 41, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Rives, A.; Meier, J.; Sercu, T.; Goyal, S.; Lin, Z.; Liu, J.; Guo, D.; Ott, M.; Zitnick, C.L.; Ma, J.; et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proc. Natl. Acad. Sci. USA 2021, 118, e2016239118. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Pang, Y.; Liu, B. BioSeq-BLM: A platform for analyzing DNA, RNA, and protein sequences based on biological language models. Nucleic Acids Res. 2021, 49, e129. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yu, L.; Gao, L. Potent antibiotic design via guided search from antibacterial activity evaluations. Bioinformatics 2023, 39, btad059. [Google Scholar] [CrossRef] [PubMed]
- Valentini, G.; Malchiodi, D.; Gliozzo, J.; Mesiti, M.; Soto-Gomez, M.; Cabri, A.; Reese, J.; Casiraghi, E.; Robinson, P.N. The promises of large language models for protein design and modeling. Front. Bioinform. 2023, 3, 1304099. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.B.; Cui, F.F.; Zou, Q.; Zhang, L.C.; Xu, L. Anticancer peptides prediction with deep representation learning features. Brief. Bioinform. 2021, 22, bbab008. [Google Scholar] [CrossRef]
- Wang, Y.; Zhai, Y.; Ding, Y.; Zou, Q. SBSM-Pro: Support Bio-sequence Machine for Proteins. arXiv 2023, arXiv:2308.10275. [Google Scholar]
- Cui, F.F.; Li, S.; Zhang, Z.L.; Sui, M.M.; Cao, C.; Hesham, A.; Zou, Q. DeepMC-iNABP: Deep learning for multiclass identification and classification of nucleic acid-binding proteins. Comput. Struct. Biotechnol. J. 2022, 20, 2020–2028. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, B. BioSeq-Diabolo: Biological sequence similarity analysis using Diabolo. PLoS Comput. Biol. 2023, 19, e1011214. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Niu, Z.; Liu, Y.; Song, B.; Lu, W.; Zeng, L.; Zeng, X. Bioinformatics, Modality-DTA: Multimodality fusion strategy for drug–target affinity prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 2023, 20, 1200–1210. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Rao, B.; Liu, L.; Cui, L.; Xiao, G.; Su, R.; Wei, L. PepFormer: End-to-End transformer-based siamese network to predict and enhance peptide detectability based on sequence only. Anal. Chem. 2021, 93, 6481–6490. [Google Scholar] [CrossRef] [PubMed]
- Song, N.; Dong, R.H.; Pu, Y.Q.; Wang, E.R.; Xu, J.H.; Guo, F. Pmf-cpi: Assessing drug selectivity with a pretrained multi-functional model for compound-protein interactions. J. Cheminformatics 2023, 15, 97. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Guo, F.; Tang, J. Improved structure-related prediction for insufficient homologous proteins using MSA enhancement and pre-trained language model. Brief. Bioinform. 2023, 24, bbad217. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Wang, J.H.; Kwok, D.; Cui, F.F.; Zhang, Z.L.; Zhao, D.; Li, M.J.; Zou, Q. webTWAS: A resource for disease candidate susceptibility genes identified by transcriptome-wide association study. Nucleic Acids Res. 2022, 50, D1123–D1130. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.L.; Cui, F.F.; Su, W.; Dou, L.J.; Xu, A.Q.; Cao, C.; Zou, Q. webSCST: An interactive web application for single-cell RNA-sequencing data and spatial transcriptomic data integration. Bioinformatics 2022, 38, 3488–3489. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Shao, M.T.; Zuo, C.M.; Kwok, D.; Liu, L.; Ge, Y.L.; Zhang, Z.L.; Cui, F.F.; Chen, M.S.; Fan, R.; et al. RAVAR: A curated repository for rare variant-trait associations. Nucleic Acids Res. 2024, 52, D990–D997. [Google Scholar] [CrossRef]
- Liu, B.; Gao, X.; Zhang, H. BioSeq-Analysis2.0: An updated platform for analyzing DNA, RNA and protein sequences at sequence level and residue level based on machine learning approaches. Nucleic Acids Res. 2019, 47, e127. [Google Scholar] [CrossRef]
- Zhu, H.; Hao, H.; Yu, L. Identifying disease-related microbes based on multi-scale variational graph autoencoder embedding Wasserstein distance. BMC Biol. 2023, 21, 294. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef]
- UniProt, C. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar]
- Bepler, T.; Berger, B. Learning protein sequence embeddings using information from structure. arXiv 2019, arXiv:1902.08661. [Google Scholar]
- Suzek, B.E.; Huang, H.; McGarvey, P.; Mazumder, R.; Wu, C.H. UniRef: Comprehensive and non-redundant UniProt reference clusters. Bioinformatics 2007, 23, 1282–1288. [Google Scholar] [CrossRef]
- Wang, H.M.; Guo, F.; Du, M.Y.; Wang, G.S.; Cao, C. A novel method for drug-target interaction prediction based on graph transformers model. BMC Bioinform. 2022, 23, 459. [Google Scholar] [CrossRef]
- El-Gebali, S.; Mistry, J.; Bateman, A.; Eddy, S.R.; Luciani, A.; Potter, S.C.; Qureshi, M.; Richardson, L.J.; Salazar, G.A.; Smart, A.; et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019, 47, D427–D432. [Google Scholar] [CrossRef]
- Uddin, S.; Haque, I.; Lu, H.; Moni, M.A.; Gide, E. Comparative performance analysis of K-nearest neighbour (KNN) algorithm and its different variants for disease prediction. Sci. Rep. 2022, 12, 6256. [Google Scholar] [CrossRef]
- Chao, W.; Quan, Z. A Machine Learning Method for Differentiating and Predicting Human-Infective Coronavirus Based on Physicochemical Features and Composition of the Spike Protein. Chin. J. Electron. 2021, 30, 815–823. [Google Scholar] [CrossRef]
- Zhu, W.; Yuan, S.S.; Li, J.; Huang, C.B.; Lin, H.; Liao, B. A First Computational Frame for Recognizing Heparin-Binding Protein. Diagnostics 2023, 13, 2465. [Google Scholar] [CrossRef]
- Nusinovici, S.; Tham, Y.C.; Yan, M.Y.C.; Ting, D.S.W.; Li, J.; Sabanayagam, C.; Wong, T.Y.; Cheng, C.Y. Logistic regression was as good as machine learning for predicting major chronic diseases. J. Clin. Epidemiol. 2020, 122, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Collin, F.-D.; Durif, G.; Raynal, L.; Lombaert, E.; Gautier, M.; Vitalis, R.; Marin, J.-M.; Estoup, A. Extending approximate Bayesian computation with supervised machine learning to infer demographic history from genetic polymorphisms using DIYABC Random Forest. Mol. Ecol. Resour. 2020, 21, 2598–2613. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Xu, Y.; Cheng, Q.; Jiang, S.; Wang, Q.; Xiao, Y.; Ma, C.; Yan, J.; Wang, X. LightGBM: Accelerated genomically designed crop breeding through ensemble learning. Genome Biol. 2021, 22, 271. [Google Scholar] [CrossRef] [PubMed]
- Andreev, A.V.; Kurkin, S.A.; Stoyanov, D.; Badarin, A.A.; Paunova, R.; Hramov, A.E. Toward interpretability of machine learning methods for the classification of patients with major depressive disorder based on functional network measures. Chaos 2023, 33, 063140. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.M.; Liang, L.; Liu, L.; Tang, M.J. Graph Neural Networks and Their Current Applications in Bioinformatics. Front. Genet. 2021, 12, 690049. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Wang, H.; Pu, B.; Tao, L.; Chen, J.; Yu, P.S. A Hybrid Two-Stage Teaching-Learning-Based Optimization Algorithm for Feature Selection in Bioinformatics. IEEE/ACM Trans. Comput. Biol. Bioinform. 2023, 20, 1746–1760. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Fu, Y.; Wu, L.; Li, X.; Aggarwal, C.; Xiong, H. Automated Feature Selection: A Reinforcement Learning Perspective. IEEE Trans. Knowl. Data Eng. 2022, 35, 2272–2284. [Google Scholar] [CrossRef]
- Tang, Y.; Pang, Y.; Liu, B. IDP-Seq2Seq: Identification of intrinsically disordered regions based on sequence to sequence learning. Bioinformatics 2021, 36, 5177–5186. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Ren, L.; Cai, P.; Zhang, Y.; Ding, H.; Deng, K.; Yu, X.; Lin, H.; Huang, C. Accurately identifying hemagglutinin using sequence information and machine learning methods. Front. Med. 2023, 10, 1281880. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, W.; Wang, X. A Robust Linear Regression Feature Selection Method for Data Sets with Unknown Noise. IEEE Trans. Knowl. Data Eng. 2021, 35, 31–44. [Google Scholar] [CrossRef]
- Speiser, J.L. A random forest method with feature selection for developing medical prediction models with clustered and longitudinal data. J. Biomed. Inform. 2021, 117, 103763. [Google Scholar] [CrossRef] [PubMed]
- Baldomero-Naranjo, M.; Martínez-Merino, L.I.; Rodríguez-Chía, A.M. A robust SVM-based approach with feature selection and outliers detection for classification problems. Expert. Syst. Appl. 2021, 178, 115017. [Google Scholar] [CrossRef]
- Jiang, Y.; Luo, Q.; Wei, Y.; Abualigah, L.; Zhou, Y. An efficient binary Gradient-based optimizer for feature selection. Math. Biosci. Eng. 2021, 18, 3813–3854. [Google Scholar] [CrossRef] [PubMed]
- He, S.D.; Ye, X.C.; Sakurai, T.; Zou, Q. MRMD3.0: A Python Tool and Webserver for Dimensionality Reduction and Data Visualization via an Ensemble Strategy. J. Mol. Biol. 2023, 435, 168116. [Google Scholar] [CrossRef] [PubMed]
- Abdelhafez, O.H.; Othman, E.M.; Fahim, J.R.; Desoukey, S.Y.; Pimentel-Elardo, S.M.; Nodwell, J.R.; Schirmeister, T.; Tawfike, A.; Abdelmohsen, U.R. Metabolomics analysis and biological investigation of three Malvaceae plants. Phytochem. Anal. PCA 2020, 31, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Chun, H. Similarity-assisted variational autoencoder for nonlinear dimension reduction with application to single-cell RNA sequencing data. BMC Bioinform. 2023, 24, 432. [Google Scholar] [CrossRef] [PubMed]
- Ujas, T.A.; Obregon-Perko, V.; Stowe, A.M. A Guide on Analyzing Flow Cytometry Data Using Clustering Methods and Nonlinear Dimensionality Reduction (tSNE or UMAP). Methods Mol. Biol. 2023, 2616, 231–249. [Google Scholar] [PubMed]
- Ehiro, T. Feature importance-based interpretation of UMAP-visualized polymer space. Mol. Inform. 2023, 42, e2300061. [Google Scholar] [CrossRef] [PubMed]
- Alhatemi, R.A.J.; Savaş, S. A Weighted Ensemble Approach with Multiple Pre-trained Deep Learning Models for Classification of Stroke. Medinformatics 2023, 1, 10–19. [Google Scholar] [CrossRef]
- Zhang, H.Q.; Liu, S.H.; Li, R.; Yu, J.W.; Ye, D.X.; Yuan, S.S.; Lin, H.; Huang, C.B.; Tang, H. MIBPred: Ensemble Learning-Based Metal Ion-Binding Protein Classifier. ACS Omega 2024, 9, 8439–8447. [Google Scholar] [CrossRef]
Metrics | 10-Fold Cross-Validation_ACC | ||||||
---|---|---|---|---|---|---|---|
Features/Algorithms | GNB 1 | KNN 2 | LDA 3 | LGBM 4 | LR 5 | RF 6 | SVM 7 |
UniRep | 0.729 | 0.895 | 0.894 | 0.918 | 0.906 | 0.908 | 0.920 |
ESM | 0.764 8 | 0.889 | 0.906 | 0.920 | 0.916 | 0.901 | 0.924 |
SSA | 0.615 | 0.826 | 0.822 | 0.881 | 0.826 | 0.858 | 0.871 |
LM | 0.757 | 0.840 | 0.876 | 0.909 | 0.872 | 0.890 | 0.910 |
BiLSTM | 0.733 | 0.850 | 0.848 | 0.908 | 0.885 | 0.888 | 0.917 |
TAPE_BERT | 0.751 | 0.871 | 0.888 | 0.890 | 0.878 | 0.874 | 0.912 |
Algorithm = SVM | 10-Fold Cross-Validation | Independent Test | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Features/Metrics | ACC | MCC | Sn | Sp | Pre | F1 | AUC | ACC | MCC | Sn | Sp | Pre | F1 | AUC |
UniRep 1 | 0.932 | 0.864 | 0.937 | 0.927 | 0.928 | 0.932 | 0.980 | 0.920 | 0.840 | 0.917 | 0.923 | 0.923 | 0.920 | 0.975 |
ESM 2 | 0.928 | 0.857 | 0.932 | 0.924 | 0.925 | 0.929 | 0.978 | 0.919 | 0.838 | 0.912 | 0.926 | 0.925 | 0.918 | 0.975 |
UniRep+ESM_F3180 3 | 0.933 | 0.867 | 0.942 | 0.925 | 0.927 | 0.934 | 0.981 | 0.928 | 0.856 | 0.930 | 0.926 | 0.926 | 0.928 | 0.979 |
UniRep+ESM_F120 4 | 0.937 5 | 0.873 | 0.940 | 0.933 | 0.980 | 0.934 | 0.937 | 0.922 | 0.845 | 0.917 | 0.928 | 0.966 | 0.927 | 0.922 |
Methods | ACC | MCC | Rec | Pre | F1 | AUC |
---|---|---|---|---|---|---|
iNP_ESM_F3180 | 0.928 1 | 0.856 | 0.930 | 0.926 | 0.928 | 0.981 |
iNP_ESM_F120 | 0.922 | 0.845 | 0.917 | 0.966 | 0.927 | 0.937 |
PredNeuroP | 0.864 | 0.738 | 0.782 | 0.935 | 0.852 | - |
NeuroPred-FRL | 0.861 | 0.740 | 0.757 | 0.960 | 0.847 | - |
NeuroPpred-Fuse | 0.905 | 0.813 | 0.908 | 0.906 | 0.907 | - |
NeuroPred-PLM | 0.922 | 0.845 | 0.941 | 0.907 | 0.924 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Jiang, L.; Yang, K.; Shang, S.; Li, M.; Lv, Z. iNP_ESM: Neuropeptide Identification Based on Evolutionary Scale Modeling and Unified Representation Embedding Features. Int. J. Mol. Sci. 2024, 25, 7049. https://doi.org/10.3390/ijms25137049
Li H, Jiang L, Yang K, Shang S, Li M, Lv Z. iNP_ESM: Neuropeptide Identification Based on Evolutionary Scale Modeling and Unified Representation Embedding Features. International Journal of Molecular Sciences. 2024; 25(13):7049. https://doi.org/10.3390/ijms25137049
Chicago/Turabian StyleLi, Honghao, Liangzhen Jiang, Kaixiang Yang, Shulin Shang, Mingxin Li, and Zhibin Lv. 2024. "iNP_ESM: Neuropeptide Identification Based on Evolutionary Scale Modeling and Unified Representation Embedding Features" International Journal of Molecular Sciences 25, no. 13: 7049. https://doi.org/10.3390/ijms25137049
APA StyleLi, H., Jiang, L., Yang, K., Shang, S., Li, M., & Lv, Z. (2024). iNP_ESM: Neuropeptide Identification Based on Evolutionary Scale Modeling and Unified Representation Embedding Features. International Journal of Molecular Sciences, 25(13), 7049. https://doi.org/10.3390/ijms25137049