Response Plasticity of Drosophila Olfactory Sensory Neurons
Abstract
:1. Introduction
2. Results
2.1. Differential Response Characteristics between OSN Types
2.2. Functional Differences between Or56a and Or22a Expressing OSNs
2.3. Morphological Differences between Or56a- and Or22a-Expressing OSNs
2.4. Sensitization and Mitochondria
2.4.1. Mitochondria Are Important for Sensitization in Or22a-Expressing Neurons
2.4.2. Or56a-Expressing Neurons Show No Sensitization
3. Discussion
4. Materials and Methods
4.1. Fly Rearing and Fly Lines
4.2. Single Sensillum Recordings (SSRs)
4.3. Confocal Imaging
4.4. Antennal Preparation
4.5. Calcium Imaging
4.6. Chemicals
4.7. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laughlin, S. A Simple Coding Procedure Enhances a Neuron’s Information Capacity. Z. Fur Naturforschung Sect. C 1981, 36, 910–912. [Google Scholar] [CrossRef]
- Młynarski, W.F.; Hermundstad, A.M.; Massachusetts Institute of Technology; Howard Hughes Medical Institute. Adaptive coding for dynamic sensory inference. eLife 2018, 7, e32055. [Google Scholar] [CrossRef] [PubMed]
- Carew, T.J.; Castellucci, V.F.; Kandel, E.R. An Analysis of Dishabituation and Sensitization of the Gill-Withdrawal Reflex in Aplysia. Int. J. Neurosci. 1971, 2, 79–98. [Google Scholar] [CrossRef]
- Hawkins, R.D.; Cohen, T.E.; Kandel, E.R. Dishabituation in Aplysia can involve either reversal of habituation or superimposed sensitization. Learn. Mem. 2006, 13, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Pinsker, H.M.; Hening, W.A.; Carew, T.J.; Kandel, E.R. Long-Term Sensitization of a Defensive Withdrawal Reflex in Aplysia. Science 1973, 182, 1039–1042. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, R.D.; Cohen, T.E.; Greene, W.; Kandel, E.R. Relationship between dishabituation, sensitization, and inhibition of the gill- and siphon-withdrawal reflex in Aplysia californica: Effects of response measure, test time, and training stimulus. Behav. Neurosci. 1998, 112, 24–38. [Google Scholar] [CrossRef]
- Castellucci, V.; Kandel, E.R. Presynaptic Facilitation as a Mechanism for Behavioral Sensitization in Aplysia. Science 1976, 194, 1176–1178. [Google Scholar] [CrossRef]
- Klein, M.; Kandel, E.R. Presynaptic modulation of voltage-dependent Ca2+ current: Mechanism for behavioral sensitization in Aplysia californica. Proc. Natl. Acad. Sci. USA 1978, 75, 3512–3516. [Google Scholar] [CrossRef]
- Klein, M.; Kandel, E.R. Mechanism of calcium current modulation underlying presynaptic facilitation and behavioral sensitization in Aplysia. Proc. Natl. Acad. Sci. USA 1980, 77, 6912–6916. [Google Scholar] [CrossRef]
- Getahun, M.N.; Olsson, S.B.; Lavista-Llanos, S.; Hansson, B.S.; Wicher, D. Insect Odorant Response Sensitivity Is Tuned by Metabotropically Autoregulated Olfactory Receptors. PLoS ONE 2013, 8, e58889. [Google Scholar] [CrossRef]
- Murlis, J.; Elkinton, J.S.; Carde, R.T. Odor plumes and how insects ude them. Annu. Rev. Entomol. 1992, 37, 505–532. [Google Scholar] [CrossRef]
- Couto, A.; Alenius, M.; Dickson, B.J. Molecular, Anatomical, and Functional Organization of the Drosophila Olfactory System. Curr. Biol. 2005, 15, 1535–1547. [Google Scholar] [CrossRef]
- Bhandawat, V.; Maimon, G.; Dickinson, M.H.; Wilson, R.I. Olfactory modulation of flight in Drosophila is sensitive, selective and rapid. J. Exp. Biol. 2010, 213, 3625–3635. [Google Scholar] [CrossRef] [PubMed]
- Getahun, M.N.; Wicher, D.; Hansson, B.S.; Olsson, S.B. Temporal response dynamics of Drosophila olfactory sensory neurons depends on receptor type and response polarity. Front. Cell. Neurosci. 2012, 6, 54. [Google Scholar] [CrossRef]
- Szyszka, P.; Gerkin, R.C.; Galizia, C.G.; Smith, B.H. High-speed odor transduction and pulse tracking by insect olfactory receptor neurons. Proc. Natl. Acad. Sci. USA 2014, 111, 16925–16930. [Google Scholar] [CrossRef] [PubMed]
- I Nagel, K.; I Wilson, R. Biophysical mechanisms underlying olfactory receptor neuron dynamics. Nat. Neurosci. 2011, 14, 208–216. [Google Scholar] [CrossRef]
- Benton, R. On the ORigin of smell: Odorant receptors in insects. Cell. Mol. Life Sci. 2006, 63, 1579–1585. [Google Scholar] [CrossRef] [PubMed]
- Larsson, M.C.; Domingos, A.I.; Jones, W.D.; Chiappe, M.; Amrein, H.; Vosshall, L.B. Or83b Encodes a Broadly Expressed Odorant Receptor Essential for Drosophila Olfaction. Neuron 2004, 43, 703–714. [Google Scholar] [CrossRef]
- Joseph, R.M.; Carlson, J.R. Drosophila Chemoreceptors: A Molecular Interface Between the Chemical World and the Brain. Trends Genet. 2015, 31, 683–695. [Google Scholar] [CrossRef]
- Mukunda, L.; Miazzi, F.; Sargsyan, V.; Hansson, B.S.; Wicher, D. Calmodulin Affects Sensitization of Drosophila melanogaster Odorant Receptors. Front. Cell. Neurosci. 2016, 10, 28. [Google Scholar] [CrossRef]
- Wicher, D. Tuning Insect Odorant Receptors. Front. Cell. Neurosci. 2018, 12, 94. [Google Scholar] [CrossRef] [PubMed]
- Miazzi, F.; Hansson, B.S.; Wicher, D. Odor induced cAMP production in Drosophila melanogaster olfactory sensory neurons. J. Exp. Biol. 2016, 219, 1798–1803. [Google Scholar] [CrossRef] [PubMed]
- Mukunda, L.; Miazzi, F.; Kaltofen, S.; Hansson, B.S.; Wicher, D. Calmodulin modulates insect odorant receptor function. Cell Calcium 2014, 55, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Sargsyan, V.; Getahun, M.N.; Llanos, S.L.; Olsson, S.B.; Hansson, B.S.; Wicher, D. Phosphorylation via PKC Regulates the Function of the Drosophila Odorant Co-Receptor. Front. Cell. Neurosci. 2011, 5, 5. [Google Scholar] [CrossRef]
- Fluegge, D.; Moeller, L.M.; Cichy, A.; Gorin, M.; Weth, A.; Veitinger, S.; Cainarca, S.; Lohmer, S.; Corazza, S.; Neuhaus, E.M.; et al. Mitochondrial Ca2+ mobilization is a key element in olfactory signaling. Nat. Neurosci. 2012, 15, 754–762. [Google Scholar] [CrossRef]
- Lucke, J.; Kaltofen, S.; Hansson, B.S.; Wicher, D. The role of mitochondria in shaping odor responses in Drosophila melanogaster olfactory sensory neurons. Cell Calcium 2020, 87, 102179. [Google Scholar] [CrossRef] [PubMed]
- Clyne, P.; Grant, A.; O’Connell, R.; Carlson, J.R. Odorant response of individual sensilla on the Drosophila antenna. Invertebr. Neurosci. 1997, 3, 127–135. [Google Scholar] [CrossRef]
- Hallem, E.A.; Carlson, J.R. Coding of Odors by a Receptor Repertoire. Cell 2006, 125, 143–160. [Google Scholar] [CrossRef] [PubMed]
- Utashiro, N.; Williams, C.R.; Parrish, J.Z.; Emoto, K. Prior activity of olfactory receptor neurons is required for proper sensory processing and behavior in Drosophila larvae. Sci. Rep. 2018, 8, 8580. [Google Scholar] [CrossRef]
- A Hallem, E.; Ho, M.G.; Carlson, J.R. The Molecular Basis of Odor Coding in the Drosophila Antenna. Cell 2004, 117, 965–979. [Google Scholar] [CrossRef]
- Olsson, S.B.; Getahun, M.N.; Wicher, D.; Hansson, B.S. Piezo controlled microinjection: An in vivo complement for in vitro sensory studies in insects. J. Neurosci. Methods 2011, 201, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Pelz, D.; Roeske, T.; Zainulabeuddin, S.; de Bruyne, M.; Galizia, C.G. The Molecular Receptive Range of an Olfactory Receptor in vivo (Drosophila melanogaster Or22a). J. Neurobiol. 2006, 14, 1544–1563. [Google Scholar] [CrossRef]
- Dobritsa, A.A.; Naters, W.v.d.G.v.; Warr, C.G.; Steinbrecht, R.; Carlson, J.R. Integrating the Molecular and Cellular Basis of Odor Coding in the Drosophila Antenna. Neuron 2003, 37, 827–841. [Google Scholar] [CrossRef] [PubMed]
- Wicher, D.; Schäfer, R.; Bauernfeind, R.; Stensmyr, M.C.; Heller, R.; Heinemann, S.H.; Hansson, B.S. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 2008, 452, 1007–1011. [Google Scholar] [CrossRef] [PubMed]
- Aguadé, M. Nucleotide and Copy-Number Polymorphism at the Odorant Receptor Genes Or22a and Or22b in Drosophila melanogaster. Mol. Biol. Evol. 2009, 26, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Benton, R.; Sachse, S.; Michnick, S.W.; Vosshall, L.B. Atypical Membrane Topology and Heteromeric Function of Drosophila Odorant Receptors In Vivo. PLOS Biol. 2006, 4, e20. [Google Scholar] [CrossRef] [PubMed]
- Stensmyr, M.C.; Dweck, H.K.; Farhan, A.; Ibba, I.; Strutz, A.; Mukunda, L.; Linz, J.; Grabe, V.; Steck, K.; Lavista-Llanos, S.; et al. A Conserved Dedicated Olfactory Circuit for Detecting Harmful Microbes in Drosophila. Cell 2012, 151, 1345–1357. [Google Scholar] [CrossRef] [PubMed]
- Jain, K.; Lavista-Llanos, S.; Grabe, V.; Hansson, B.S.; Wicher, D. Calmodulin regulates the olfactory performance in Drosophila melanogaster. Sci. Rep. 2021, 11, 3747. [Google Scholar] [CrossRef]
- Gonzales, C.N.; McKaughan, Q.; A Bushong, E.; Cauwenberghs, K.; Ng, R.; Madany, M.; Ellisman, M.H.; Su, C.-Y. Systematic morphological and morphometric analysis of identified olfactory receptor neurons in Drosophila melanogaster. eLife 2021, 10, e69896. [Google Scholar] [CrossRef]
- Zhang, Y.; Tsang, T.K.; Bushong, E.A.; Chu, L.-A.; Chiang, A.-S.; Ellisman, M.H.; Reingruber, J.; Su, C.-Y. Asymmetric ephaptic inhibition between compartmentalized olfactory receptor neurons. Nat. Commun. 2019, 10, 1560. [Google Scholar] [CrossRef]
- Hansson, B.; Hallberg, E.; Löfstedt, C.; Steinbrecht, R. Correlation between dendrite diameter and action potential amplitude in sex pheromone specific receptor neurons in male Ostrinia nubilalis (Lepidoptera: Pyralidae). Tissue Cell 1994, 26, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Shanbhag, S.; Müller, B.; Steinbrecht, R. Atlas of olfactory organs of Drosophila melanogaster 2. Internal organization and cellular architecture of olfactory sensilla. Arthropod Struct. Dev. 2000, 29, 211–229. [Google Scholar] [CrossRef]
- A McCloy, R.; Rogers, S.; Caldon, C.E.; Lorca, T.; Castro, A.; Burgess, A. Partial inhibition of Cdk1 in G2phase overrides the SAC and decouples mitotic events. Cell Cycle 2014, 13, 1400–1412. [Google Scholar] [CrossRef]
- Wiesel, E.; Kaltofen, S.; Hansson, B.S.; Wicher, D. Homeostasis of Mitochondrial Ca2+ Stores Is Critical for Signal Amplification in Drosophila melanogaster Olfactory Sensory Neurons. Insects 2022, 13, 270. [Google Scholar] [CrossRef]
- Rigobello, M.P.; Scutari, G.; Boscolo, R.; Bindoli, A. Induction of mitochondrial permeability transition by auranofin, a Gold(I)-phosphine derivative. Br. J. Pharmacol. 2002, 136, 1162–1168. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.; Dunn, F.A.; Stopfer, M. Spontaneous Olfactory Receptor Neuron Activity Determines Follower Cell Response Properties. J. Neurosci. 2012, 32, 2900–2910. [Google Scholar] [CrossRef]
- Stengl, M.; Funk, N.W. The role of the coreceptor Orco in insect olfactory transduction. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2013, 199, 897–909. [Google Scholar] [CrossRef] [PubMed]
- Benton, R.; Vannice, K.S.; Vosshall, L.B. An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 2007, 450, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Martelli, C.; Carlson, J.R.; Emonet, T. Intensity Invariant Dynamics and Odor-Specific Latencies in Olfactory Receptor Neuron Response. J. Neurosci. 2013, 33, 6285–6297. [Google Scholar] [CrossRef]
- Masu, M.; Iwakabe, H.; Tagawa, Y.; Miyoshi, T.; Yamashita, M.; Fukuda, Y.; Sasaki, H.; Hiroi, K.; Nakamura, Y.; Shigemoto, R.; et al. Specific deficit of the ON response in visual transmission by targeted disruption of the mGIuR6 gene. Cell 1995, 80, 757–765. [Google Scholar] [CrossRef]
- La Guerche, S.; Dauphin, B.; Pons, M.; Blancard, D.; Darriet, P. Characterization of Some Mushroom and Earthy Off-Odors Microbially Induced by the Development of Rot on Grapes. J. Agric. Food Chem. 2006, 54, 9193–9200. [Google Scholar] [CrossRef]
- Gerber, N.N.; Lechevalier, H.A. Geosmin, an earthly-smelling substance isolated from actinomycetes. Appl. Microbiol. 1965, 13, 935–938. [Google Scholar] [CrossRef]
- Knaden, M.; Strutz, A.; Ahsan, J.; Sachse, S.; Hansson, B.S. Spatial Representation of Odorant Valence in an Insect Brain. Cell Rep. 2012, 1, 392–399. [Google Scholar] [CrossRef]
- Seki, Y.; Dweck, H.K.M.; Rybak, J.; Wicher, D.; Sachse, S.; Hansson, B.S. Olfactory coding from the periphery to higher brain centers in the Drosophila brain. BMC Biol. 2017, 15, 18–22. [Google Scholar] [CrossRef]
- Mohamed, A.A.M.; Retzke, T.; Das Chakraborty, S.; Fabian, B.; Hansson, B.S.; Knaden, M.; Sachse, S. Odor mixtures of opposing valence unveil inter-glomerular crosstalk in the Drosophila antennal lobe. Nat. Commun. 2019, 10, 1201. [Google Scholar] [CrossRef]
- Gao, X.J.; Clandinin, T.R.; Luo, L. Extremely Sparse Olfactory Inputs Are Sufficient to Mediate Innate Aversion in Drosophila. PLoS ONE 2015, 10, e0125986. [Google Scholar] [CrossRef]
- Gao, X.J.; Potter, C.J.; Gohl, D.M.; Silies, M.; Katsov, A.Y.; Clandinin, T.R.; Luo, L. Specific Kinematics and Motor-Related Neurons for Aversive Chemotaxis in Drosophila. Curr. Biol. 2013, 23, 1163–1172. [Google Scholar] [CrossRef]
- Berck, M.E.; Khandelwal, A.; Claus, L.; Hernandez-Nunez, L.; Si, G.; Tabone, C.J.; Cardona, A. The wiring diagram of a glomerular olfactory system. Elife 2016, 5, e14859. [Google Scholar] [CrossRef]
- Ha, T.S.; Smith, D.P. A Pheromone Receptor Mediates 11-cis-Vaccenyl Acetate-Induced Responses in Drosophila. J. Neurosci. 2006, 26, 8727–8733. [Google Scholar] [CrossRef]
- Jeanne, J.M.; Wilson, R.I. Convergence, Divergence, and Reconvergence in a Feedforward Network Improves Neural Speed and Accuracy. Neuron 2015, 88, 1014–1026. [Google Scholar] [CrossRef] [PubMed]
- Bhandawat, V.; Olsen, S.R.; Gouwens, N.W.; Schlief, M.L.; I Wilson, R. Sensory processing in the Drosophila antennal lobe increases reliability and separability of ensemble odor representations. Nat. Neurosci. 2007, 10, 1474–1482. [Google Scholar] [CrossRef]
- Bhandawat, V.; Reisert, J.; Yau, K.-W. Signaling by olfactory receptor neurons near threshold. Proc. Natl. Acad. Sci. USA 2010, 107, 18682–18687. [Google Scholar] [CrossRef]
- Getahun, M.N.; Thoma, M.; Lavista-Llanos, S.; Keesey, I.; Fandino, R.A.; Knaden, M.; Wicher, D.; Olsson, S.B.; Hansson, B.S. Intracellular regulation of the insect chemoreceptor complex impacts odor localization in flying insects. J. Exp. Biol. 2016, 219, 3428–3438. [Google Scholar] [CrossRef]
- Angioy, A.M.; Desogus, A.; Barbarossa, I.T.; Anderson, P.; Hansson, B.S. Extreme Sensitivity in an Olfactory System. Chem. Senses 2003, 28, 279–284. [Google Scholar] [CrossRef]
- Wilson, R.I. Early Olfactory Processing in Drosophila: Mechanisms and Principles. Annu. Rev. Neurosci. 2013, 36, 217–241. [Google Scholar] [CrossRef]
- Kim, A.J.; A Lazar, A.; Slutskiy, Y.B.; Columbia University. Projection neurons in Drosophila antennal lobes signal the acceleration of odor concentrations. eLife 2015, 4, e06651. [Google Scholar] [CrossRef]
- Appleby, T.R.; Manookin, M.B. Neural sensitization improves encoding fidelity in the primate retina. Nat. Commun. 2019, 10, 4017. [Google Scholar] [CrossRef]
- Wang, J.W. Presynaptic modulation of early olfactory processing in Drosophila. Dev. Neurobiol. 2011, 72, 87–99. [Google Scholar] [CrossRef]
- McGann, J.P. Presynaptic Inhibition of Olfactory Sensory Neurons: New Mechanisms and Potential Functions. Chem. Senses 2013, 38, 459–474. [Google Scholar] [CrossRef]
- Root, C.M.; Masuyama, K.; Green, D.S.; Enell, L.E.; Nässel, D.R.; Lee, C.-H.; Wang, J.W. A Presynaptic Gain Control Mechanism Fine-Tunes Olfactory Behavior. Neuron 2008, 59, 311–321. [Google Scholar] [CrossRef]
- Kolesov, D.V.; Ivanova, V.O.; Sokolinskaya, E.L.; Kost, L.A.; Balaban, P.M.; Lukyanov, K.A.; Nikitin, E.S.; Bogdanov, A.M. Impacts of OrX and cAMP-insensitive Orco to the insect olfactory heteromer activity. Mol. Biol. Rep. 2021, 48, 4549–4561. [Google Scholar] [CrossRef]
- Slankster, E.; Odell, S.R.; Mathew, D. Strength in diversity: Functional diversity among olfactory neurons of the same type. J. Bioenerg. Biomembr. 2019, 51, 65–75. [Google Scholar] [CrossRef]
- Schmidt, H.R.; Benton, R. Molecular mechanisms of olfactory detection in insects: Beyond receptors. Open Biol. 2020, 10, 200252. [Google Scholar] [CrossRef]
- Shanbhag, S.; Müller, B.; Steinbrecht, R. Atlas of olfactory organs of Drosophila melanogaster 1. Types, external organization, innervation and distribution of olfactory sensilla. Int. J. Insect Morphol. Embryol. 1999, 28, 377–397. [Google Scholar] [CrossRef]
- Morad, M.; Soldatov, N. Calcium channel inactivation: Possible role in signal transduction and Ca2+ signaling. Cell Calcium 2005, 38, 223–231. [Google Scholar] [CrossRef]
- Froscio, M.; Murray, A.W.; Hurst, N.P. Inhibition of protein kinase C activity by the antirheumatic drug auranofin. Biochem. Pharmacol. 1989, 38, 2087–2089. [Google Scholar] [CrossRef]
- Giarmarco, M.M.; Cleghorn, W.M.; Sloat, S.R.; Hurley, J.B.; Brockerhoff, S.E. Mitochondria Maintain Distinct Ca2+ Pools in Cone Photoreceptors. J. Neurosci. 2017, 37, 2061–2072. [Google Scholar] [CrossRef]
- Hutto, R.A.; Bisbach, C.M.; Abbas, F.; Brock, D.C.; Cleghorn, W.M.; Parker, E.D.; Bauer, B.H.; Ge, W.; Vinberg, F.; Hurley, J.B.; et al. Increasing Ca2+ in photoreceptor mitochondria alters metabolites, accelerates photoresponse recovery, and reveals adaptations to mitochondrial stress. Cell Death Differ. 2020, 27, 1067–1085. [Google Scholar] [CrossRef]
- Nicolaï, L.J.J.; Ramaekers, A.; Raemaekers, T.; Drozdzecki, A.; Mauss, A.S.; Yan, J.; Landgraf, M.; Annaert, W.; Hassan, B.A. Genetically encoded dendritic marker sheds light on neuronal connectivity in Drosophila. Proc. Natl. Acad. Sci. USA 2010, 107, 20553–20558. [Google Scholar] [CrossRef]
Sensillum | Area under the Curve (AUC, fnorm · s) | Paired Test | |||
---|---|---|---|---|---|
1st AUC | 2nd AUC | n | t-test | Wilcoxon | |
ab3A (Or22a) | 3.04 ± 0.35 | 4.78 ± 0.69 | 13 | * p < 0.05 | |
ab3B (Or85b) | 2.61 ± 0.19 | 3.35 ± 0.33 | 11 | * p < 0.05 | |
ab5A (Or82a) | 3.06 ± 0.29 | 3.85 ± 0.37 | 17 | ** p < 0.01 | |
ab5B (Or47b) | 2.50 ± 0.09 | 3.06 ± 0.18 | 19 | ** p < 0.01 | |
ab4A (Or7a) | 2.64 ± 0.26 | 2.17 ± 0.27 | 5 | ns | |
ab4B (Or56a) | 3.66 ± 0.27 | 3.62 ± 0.34 | 22 | ns | |
at1 (Or67d) | 5.25 ± 0.87 | 4.79 ± 1.11 | 14 | ns |
Control | Auranofin | |||
---|---|---|---|---|
Response intensity | 1st response | 2nd response | 1st response | 2nd response |
Outer dendrites | 48.88 ± 20.38 | 71.34 ± 22.23 | 25.66 ± 9.87 | 9.55 ± 5.53 |
Inner dendrites | 66.86 ± 13.91 | 103.8 ± 23.65 | 46.28 ± 9.18 | 15.99 ± 6.52 |
Soma | 32.18 ± 8.18 | 50.47 ± 12.06 | 29.94 ± 5.55 | 21.17 ± 7.12 |
Outer dendrites | 64.74 ± 15.36 | 34.89 ± 4.75 | 46.03 ± 11.3 | 14.15 ± 6.24 |
Inner dendrites | 50.79 ± 14.12 | 35.79 ± 7.92 | 30.95 ± 10.72 | 21.95 ± 6.67 |
Soma | 66.02 ± 16 | 45.14 ± 10.68 | 39.13 ± 7.5 | 23.13 ± 7.53 |
Genotype | |
---|---|
1 | Canton-S (WT) |
2 | w; UAS-GCaMP6f; Or22a-Gal4 |
3 | w; UAS-GCaMP6f; Or56a-Gal4/TM6B |
4 | CyO/BL; Or22a-Gal4, UAS-DenMark |
5 | CyO/BL; Or22a-Gal4, UAS-MitoGFP |
6 | (CyO)/+; Or56a-Gal4, UAS-DenMark |
7 | (CyO)/+; Or56a-Gal4, UAS-MitoGFP/TM6B |
Sensillum Type (Neuron) | Compound | CAS |
---|---|---|
ab3 (A) | ethyl hexanoate | 123-66-0 |
ab3 (B) | 2-heptanone | 110-43-0 |
ab4 (A) | E2-hexanal | 6728-26-3 |
ab4 (B) | geosmin | 16423-19-1 |
at1 | cVA | 6186-98-7 |
ab5 (A) | geranyl acetate | 105-87-3 |
ab5 (B) | pentyl acetate | 628-63-7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halty-deLeon, L.; Pal Mahadevan, V.; Wiesel, E.; Hansson, B.S.; Wicher, D. Response Plasticity of Drosophila Olfactory Sensory Neurons. Int. J. Mol. Sci. 2024, 25, 7125. https://doi.org/10.3390/ijms25137125
Halty-deLeon L, Pal Mahadevan V, Wiesel E, Hansson BS, Wicher D. Response Plasticity of Drosophila Olfactory Sensory Neurons. International Journal of Molecular Sciences. 2024; 25(13):7125. https://doi.org/10.3390/ijms25137125
Chicago/Turabian StyleHalty-deLeon, Lorena, Venkatesh Pal Mahadevan, Eric Wiesel, Bill S. Hansson, and Dieter Wicher. 2024. "Response Plasticity of Drosophila Olfactory Sensory Neurons" International Journal of Molecular Sciences 25, no. 13: 7125. https://doi.org/10.3390/ijms25137125
APA StyleHalty-deLeon, L., Pal Mahadevan, V., Wiesel, E., Hansson, B. S., & Wicher, D. (2024). Response Plasticity of Drosophila Olfactory Sensory Neurons. International Journal of Molecular Sciences, 25(13), 7125. https://doi.org/10.3390/ijms25137125