Long-Chain Alkylthio Cyclodextrin Derivatives for Modulation of Quorum-Sensing-Based Bioluminescence in Aliivibrio fischeri Model System
Abstract
:1. Introduction
2. Results
2.1. Preparation of Randomly Substituted Quaternary Amino 6-Monodeoxy-6-Monoalkylthio CD Derivatives
2.2. NMR Characrterization
- The signals of the anomeric protons can be identified at around 4.8 ppm;
- The core region of the CD ring lays in the range of 3.9 and 3.2 ppm;
- The proton signals of the aliphatic side chain are assigned in the range of 1.6 and 0.8 ppm;
- The methyl group of the aliphatic side chain is located at 0.86 ppm;
- At 2.50 ppm, the signal of DMSO (residual solvent) can be recognized.
- The methyl groups of the quaternary amino moieties can be recognized at around 3.3 ppm with high intensity;
- The signals of methine in the quaternary amino groups are located at around 4.3 ppm;
- The signals at around 4.76 and 1.9 ppm belong to the two residual solvents: HDO (used as internal standard) and tetrahydrofurane (THF), respectively.
2.3. Characterization of Aggregation
2.4. Bioluminescence Inhibition Assay in the Aliivibrio fischeri Model System
2.4.1. Effect of α-Cyclodextrins on Bioluminescence
2.4.2. Effect of α-Cyclodextrins on Cell Viability
2.4.3. Effect of β-Cyclodextrins on the Bioluminescence
2.4.4. Effect of β-Cyclodextrins on Cell Viability
3. Discussion
Comparative Evaluation of Cyclodextrin Effectiveness
4. Materials and Methods
4.1. Synthesis of Cyclodextrins
4.2. NMR Spectra
4.3. MALDI-TOF Mass Spectra
4.4. Aggregation Studies
4.5. Examination of the Effect on Bacterial Communication
4.5.1. Bacterial Strains and Culture Conditions
4.5.2. Preparation of CD Stock Solutions
4.5.3. Bioluminescence Inhibition Assay
Cyclodextrin | Concentration [mM] | |||
---|---|---|---|---|
6S-C12-β-CD (7) | 0.016 | 0.08 | 0.4 | 2 |
QA-6S-C10-α-CD (4) | 0.008 | 0.04 | 0.02 | 1 |
QA-6S-C10-β-CD (8), QA-6S-C16-β-CD (9) | 0.04 | 0.2 | 1 | 5 |
α-CD (1), QA-α-CD (2), 6S-C12-α-CD (3), β-CD (5), QA-β-CD (6) | 0.08 | 0.4 | 2 | 10 |
4.6. Optical Density Measurement—The Population Growth Assay
4.7. Cell Viability—Tetrazolium Reduction Assay
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maisetta, G.; Piras, A.M.; Motta, V.; Braccini, S.; Mazzantini, D.; Chiellini, F.; Zambito, Y.; Esin, S.; Batoni, G. Antivirulence properties of a low-molecular-weight quaternized chitosan derivative against Pseudomonas aeruginosa. Microorganisms 2021, 9, 912. [Google Scholar] [CrossRef] [PubMed]
- Azam, M.W.; Khan, A.U. Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug Discov. 2019, 24, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Schaefer, A.; Parsek, M.; Moninger, T.O.; Welsh, M.J.; Greenberg, E.P. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 2000, 407, 762–764. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Misba, L.; Khan, A.U. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control 2019, 8, 76. [Google Scholar] [CrossRef] [PubMed]
- Baldelli, V.; D’Angelo, F.; Pavoncello, V.; Fiscarelli, E.V.; Visca, P.; Rampioni, G.; Leoni, L. Identification of FDA-approved antivirulence drugs targeting the Pseudomonas aeruginosa quorum sensing effector protein PqsE. Virulence 2020, 11, 652–668. [Google Scholar] [CrossRef] [PubMed]
- Popat, R.; Cornforth, D.M.; McNally, L.; Brown, S.P. Collective sensing and collective responses in quorum-sensing bacteria. J. R. Soc. Interface 2015, 12, 20140882. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, J.A. Bacteria as Multicellular Organisms. Sci. Am. 1988, 258, 82–89. Available online: http://www.jstor.org/stable/24989125 (accessed on 11 July 2023). [CrossRef]
- Davey, M.; O’Toole, G. Microbial biofilms: From ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 2001, 64, 847–867. [Google Scholar] [CrossRef] [PubMed]
- Nealson, K.H.; Platt, T.; Hastings, J.W. Cellular control of the synthesis and activity of the bacterial luminescent system. J. Bacteriol. 1970, 104, 313–322. [Google Scholar] [CrossRef]
- Boylan, M.; Miyamoto, C.; Wall, L.; Graham, A.; Meighen, E. Lux C, D and E genes of the Vibrio fischeri luminescence operon code for the reductase, transferase, and synthetase enzymes involved in aldehyde biosynthesis. Photochem. Photobiol. 1989, 49, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Waters, C.M.; Bassler, B.L. Quorum sensing: Cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 2005, 21, 319–346. [Google Scholar] [CrossRef] [PubMed]
- Whiteley, M.; Diggle, S.P.; Greenberg, E.P. Progress in and promise of bacterial quorum sensing research. Nature 2017, 551, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Kumari, A.; Pasini, P.; Deo, S.K.; Flomenhoft, D.; Shashidhar, H.; Daunert, S. Biosensing systems for the detection of bacterial quorum signaling molecules. Anal. Chem. 2006, 78, 7603–7609. [Google Scholar] [CrossRef] [PubMed]
- Frezza, M.; Soulère, L.; Reverchon, S.; Guiliani, N.; Jerez, C.; Queneau, Y.; Doutheau, A. Synthetic homoserine lactone-derived sulfonylureas as inhibitors of Vibrio fischeri quorum sensing regulator. Bioorg. Med. Chem. 2008, 16, 3550–3556. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Pan, Y.; Gu, Y.; Lin, Z. Mechanistic explanation of time-dependent cross-phenomenon based on quorum sensing: A case study of the mixture of sulfonamide and quorum sensing inhibitor to bioluminescence of Aliivibrio fischeri. Sci. Total Environ. 2019, 630, 11–19. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, J.; Wang, T.; Sun, H.; Lin, Z.; Zhang, Y. Time-dependent toxicities of quorum sensing inhibitors to Aliivibrio fischeri and Bacillus subtilis. Dose-Response 2019, 17, 1559325818822938. [Google Scholar] [CrossRef] [PubMed]
- Szejtli, J. Cyclodextrins and molecular encapsulation. In Encyclopedia of Nanoscience and Nanotechnology, 2nd ed.; Nalwa, H.S., Ed.; American Scientific Publishers: Valencia, CA, USA, 2004; pp. 283–304. [Google Scholar]
- Crini, G.; Aleya, L. Cyclodextrin applications in pharmacy, biology, medicine, and environment. Environ. Sci. Pollut. Res. Int. 2022, 29, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Fenyvesi, É.; Sohajda, T. Cyclodextrin-enabled green environmental biotechnologies. Environ. Sci. Pollut. Res. 2022, 29, 20085–20097. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T.; Inoue, Y.; Suehiro, A.; Ikeshoji, H.; Ishida, T.; Takiguchi, N.; Kuroda, A.; Kato, J.; Ohtake, H. The effects of cyclodextrins on autoinducer activities of quorum sensing in Pseudomonas aeruginosa. J. Incl. Phenom. Macrocycl. Chem. 2002, 44, 381–382. [Google Scholar] [CrossRef]
- Morohoshi, T.; Tokita, K.; Ito, S.; Saito, Y.; Maeda, S.; Kato, N.; Ikeda, T. Inhibition of quorum sensing in Gram-negative bacteria by alkylamine-modified cyclodextrins. J. Biosci. Bioeng. 2013, 116, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, C. Exploiting quorum sensing interfering strategies in Gram-negative bacteria for the enhancement of environmental applications. Front. Microbiol. 2015, 6, 1535. [Google Scholar] [CrossRef] [PubMed]
- Molnár, M.; Fenyvesi, É.; Berkl, Z.; Németh, I.; Fekete-Kertész, I.; Márton, R.; Vaszita, E.; Varga, E.; Ujj, D.; Szente, L. Cyclodextrin-mediated quorum quenching in the Aliivibrio fischeri bioluminescence model system—Modulation of bacterial communication. Int. J. Pharm. 2021, 594, 120150. [Google Scholar] [CrossRef]
- Barnaby, R.; Koeppen, K.; Stanton, B. Cyclodextrins reduce the ability of Pseudomonas aeruginosa outer-membrane vesicles to reduce CFTR Cl- secretion. Am. J. Physiol. Lung Cell Mol. Physiol. 2019, 316, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T.; Morohoshi, T.; Kato, N.; Inoyama, M.; Nakazawa, S.; Hiratani, K.; Ishida, T.; Kato, J.; Ohtake, H. Quorum sensing control using synthetic autoinducer analogues and cyclodextrins in Gram-negative bacteria. In Proceedings of the 10th Asia Pacific Confederation of Chemical Engineering, Kitakyushu, Japan, 17–21 October 2004; Volume 390, pp. 1–5. [Google Scholar] [CrossRef]
- Kato, N.; Morohoshi, T.; Nozawa, T.; Matsumoto, H.; Ikeda, T. Control of Gram-negative bacterial quorum sensing with cyclodextrin immobilized cellulose ether gel. J. Incl. Phenom. Macrocycl. Chem. 2006, 56, 55–59. [Google Scholar] [CrossRef]
- Kato, N.; Tanaka, T.; Nakagawa, S.; Morohoshi, T.; Hiratani, K.; Ikeda, T. Control of virulence factor expression in opportunistic pathogens using cyclodextrin immobilized gel. J. Incl. Phenom. Macrocycl. Chem. 2007, 57, 419–423. [Google Scholar] [CrossRef]
- Okano, C.; Arai, M.; Nasuno, E.; Iimura, K.; Morohoshi, T.; Ikeda, T.; Kato, N. β-Cyclodextrin interaction with n-hexanoyl homoserine lactone as quorum sensing signal produced in Gram-negative bacteria. Trans. Mater. Res. Soc. Jpn. 2012, 37, 315–318. [Google Scholar] [CrossRef]
- Okano, C.; Arai, M.; Nasuno, E.; Iimura, K.; Kato, N. Cyclodextrin-immobilized microspheres for uptake of the quorum-sensing signaling molecule N-acyl homoserine lactone. J. Appl. Polym. Sci. 2016, 133, 43198. [Google Scholar] [CrossRef]
- Takayama, Y.; Kato, N. Inhibition of quorum sensing in opportunistic pathogen, Serratia marcescens, using cyclodextrin-immobilized, multiple parallel gel filaments fabricated with dynamic flow of polymer blend solution. Mater. Sci. Eng. C 2020, 107, 110331. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, E.W.; Brown, A.B.; Nesnas, N.; Chouinard, C.D.; Mehta, A.K.; Palmer, A.G. β-cyclodextrin encapsulation of synthetic AHLs: Drug delivery implications and quorum-quenching exploits. Chem. Biochem. 2021, 22, 1292–1301. [Google Scholar] [CrossRef] [PubMed]
- Kasal, P.; Jindřich, J. Mono-6-substituted cyclodextrins—Synthesis and applications. Molecules 2021, 26, 5065. [Google Scholar] [CrossRef] [PubMed]
- Bonenfant, D.; Bourgeois, F.R.; Mimeault, M.; Monette, F.; Niquette, P.; Hausler, R. Synthesis and structure-activity study of quaternary ammonium functionalized β-cyclodextrin-carboxymethylcellulose polymers. Water Sci. Technol. 2011, 63, 2827–2832. [Google Scholar] [CrossRef] [PubMed]
- Jennings, M.C.; Minbiole, K.P.C.; Wuest, W.M. Quaternary ammonium compounds: An antimicrobial mainstay and platform for innovation to address bacterial resistance. ACS Infect. Dis. 2015, 1, 288–303. [Google Scholar] [CrossRef] [PubMed]
- Loftsson, T. Self-assembled cyclodextrin nanoparticles and drug delivery. J. Incl. Phenom. Macrocycl. Chem. 2014, 80, 1–7. [Google Scholar] [CrossRef]
- Stenz, L.; François, P.; Fischer, A.; Huyghe, A.; Tangomo, M.; Hernandez, D.; Cassat, J.; Linder, P.; Schrenzel, J. Impact of oleic acid (cis-9-octadecenoic acid) on bacterial viability and biofilm production in Staphylococcus aureus. FEMS Microbiol. Lett. 2008, 287, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Lee, J.H.; Beyenal, H.; Lee, J. Fatty acids as antibiofilm and antivirulence agents. Trends Microbiol. 2020, 28, 753–768. [Google Scholar] [CrossRef] [PubMed]
- Fekete-Kertész, I.; Piszmán, D.; Molnár, M. Particle size and concentration dependent ecotoxicity of nano- and microscale TiO2—Comparative study by different aquatic test organisms of different trophic levels. Water Air Soil Pollut. 2017, 228, 245. [Google Scholar] [CrossRef]
- Leitgib, L.; Kálmán, J.; Gruiz, K. Comparison of bioassays by testing whole soil and their water extract from contaminated sites. Chemosphere 2007, 66, 428–434. [Google Scholar] [CrossRef] [PubMed]
- ISO 11348-3:2007; Water Quality—Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio fischeri (Luminescent Bacteria Test) Part 3: Method Using Freeze-Dried Bacteria. ISO: Geneva, Switzerland, 2007.
- Ujaczki, É.; Klebercz, O.; Feigl, V.; Molnár, M.; Magyar, Á.; Uzinger, N.; Gruiz, K. Environmental toxicity assessment of the spilled ajka red mud in soil microcosms for its potential utilisation as soil ameliorant. Period. Polytech. Chem. Eng. 2015, 59, 253–261. [Google Scholar] [CrossRef]
- Gruiz, K. Environmental toxicology—A general overview. In Engineering Tools for Environmental Risk Management: 2. Environmental Toxicology, 1st ed.; Gruiz, K., Meggyes, T., Fenyvesi, E., Eds.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar] [CrossRef]
Source of Variation | Df 1 | MS 2 | F 3 | p 4 |
---|---|---|---|---|
α-CD (1) treatment | 4 | 7.94 × 107 | 0.51 | 0.73 |
Time | 2 | 7.57 × 109 | 570.07 | 0.00 |
Time × α-CD (1) treatment | 8 | 8.12 × 107 | 6.12 | 0.00 |
6S-C12-α-CD (3) treatment | 4 | 7.75 × 109 | 88.86 | 0.00 |
Time | 2 | 1.54 × 109 | 186.96 | 0.00 |
Time × 6S-C12-α-CD (3) treatment | 8 | 1.43 × 108 | 17.37 | 0.00 |
QA-α-CD (2) treatment | 4 | 1.02 × 108 | 0.62 | 0.65 |
Time | 2 | 4.48 × 109 | 322.40 | 0.00 |
Time × QA-α-CD (2) treatment | 8 | 4.27 × 107 | 3.07 | 0.00 |
QA-6S-C10-α-CD (4) treatment | 4 | 2.60 × 109 | 22.00 | 0.00 |
Time | 2 | 2.87 × 109 | 353.13 | 0.00 |
Time × QA-6S-C10-α-CD (4) treatment | 8 | 5.78 × 107 | 7.10 | 0.00 |
Source of Variation | Df 1 | MS 2 | F 3 | p 4 |
---|---|---|---|---|
β-CD (5) treatment | 4 | 3.70 × 109 | 2.59 | 0.05 |
Time | 2 | 8.94 × 109 | 48.18 | 0.00 |
Time × β-CD (5) treatment | 8 | 9.67 × 107 | 0.52 | 0.84 |
6S-C12-β-CD (7) treatment | 4 | 2.38 × 109 | 22.35 | 0.00 |
Time | 2 | 5.74 × 106 | 0.68 | 0.51 |
Time × 6S-C12-β-CD (7) treatment | 8 | 1.50 × 108 | 17.60 | 0.00 |
QA-β-CD (6) treatment | 4 | 7.68 × 109 | 5.01 | 0.00 |
Time | 2 | 6.25 × 109 | 40.00 | 0.00 |
Time × QA-β-CD (6) treatment | 8 | 1.89 × 108 | 1.21 | 0.31 |
QA-6S-C10-β-CD (8) treatment | 4 | 2.80 × 1010 | 33.18 | 0.00 |
Time | 2 | 2.53 × 109 | 15.48 | 0.00 |
Time × QA-6S-C10-β-CD (8) treatment | 8 | 2.59 × 108 | 1.58 | 0.15 |
QA-6S-C16-β-CD (9) treatment | 4 | 2.85 × 109 | 2.44 | 0.07 |
Time | 2 | 5.32 × 109 | 33.89 | 0.00 |
Time × QA-6S-C16-β-CD (9) treatment | 8 | 6.49 × 108 | 4.13 | 0.00 |
Effective Concentrations [mM]—120 min | ||
---|---|---|
EC20 | EC50 | |
α-CD (1) | 0.08 | nd |
6S-C12-α-CD (3) | 0.06 | 0.16 |
QA-α-CD (2) | 3.14 | nd |
QA-6S-C10-α-CD (4) | 0.20 | 0.24 |
β-CD (5) | nd | nd |
6S-C12-β-CD (7) | 0.09 | 0.76 |
QA-β-CD (6) | nd | nd |
QA-6S-C10-β-CD (8) | 2.19 | 2.26 |
QA-6S-C16-β-CD (9) | 0.17 | nd |
α-Cyclodextrins (α-CDs) | A 1 | No. | MW 2 [g/mol] | WS 3 [g/L] | DS 4 |
---|---|---|---|---|---|
Native α-CD | α-CD | 1 | 972 | 145 | - |
N,N,N-Trimethylammoniopropyl-α-CD * | QA-α-CD | 2 | 1430 | >500 | 2.5–4 |
6-monodeoxy-6-monododecanethiol-α-CD | 6S-C12-α-CD | 3 | 1188 | >10 | ~1 |
N,N,N-Trimethylammoniopropyl-6-monodeoxy-6-monodecanethiol-α-CD | QA-6S-C10-α-CD | 4 | 1160 | ~10 | ~1 (R-S) ~2 (QA) |
β-Cyclodextrins (β-CDs) | A 1 | No. | MW 2 [g/mol] | WS 3 [g/L] | DS 4 |
---|---|---|---|---|---|
Native β-CD | β-CD | 5 | 1135 | 18 | - |
N,N,N-Trimethylammoniopropyl-β-CD * | QA-β-CD | 6 | 1665 | >500 | 3–4 |
6-monodeoxy-6-monododecanethiol-β-CD | 6S-C12-β-CD | 7 | 1350 | >10 | ~1 |
N,N,N-Trimethylammoniopropyl-6-monodeoxy-6-monodecanethiol-β-CD | QA-6S-C10-β-CD | 8 | 1320 | ~10 | ~1 (R-S) ~2 (QA) |
N,N,N-Trimethylammoniopropyl-6-monodeoxy-6-monohexadecanethiol-β-CD | QA-6S-C16-β-CD | 9 | 1410 | ~10 | ~1 (R-S) ~2 (QA) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fenyvesi, É.; Berkl, Z.; Ligethy, L.; Fekete-Kertész, I.; Csizmazia, M.; Malanga, M.; Puskás, I.; Szőcs, L.; Iványi, R.; Kese, I.; et al. Long-Chain Alkylthio Cyclodextrin Derivatives for Modulation of Quorum-Sensing-Based Bioluminescence in Aliivibrio fischeri Model System. Int. J. Mol. Sci. 2024, 25, 7139. https://doi.org/10.3390/ijms25137139
Fenyvesi É, Berkl Z, Ligethy L, Fekete-Kertész I, Csizmazia M, Malanga M, Puskás I, Szőcs L, Iványi R, Kese I, et al. Long-Chain Alkylthio Cyclodextrin Derivatives for Modulation of Quorum-Sensing-Based Bioluminescence in Aliivibrio fischeri Model System. International Journal of Molecular Sciences. 2024; 25(13):7139. https://doi.org/10.3390/ijms25137139
Chicago/Turabian StyleFenyvesi, Éva, Zsófia Berkl, Laura Ligethy, Ildikó Fekete-Kertész, Márton Csizmazia, Milo Malanga, István Puskás, Levente Szőcs, Róbert Iványi, István Kese, and et al. 2024. "Long-Chain Alkylthio Cyclodextrin Derivatives for Modulation of Quorum-Sensing-Based Bioluminescence in Aliivibrio fischeri Model System" International Journal of Molecular Sciences 25, no. 13: 7139. https://doi.org/10.3390/ijms25137139
APA StyleFenyvesi, É., Berkl, Z., Ligethy, L., Fekete-Kertész, I., Csizmazia, M., Malanga, M., Puskás, I., Szőcs, L., Iványi, R., Kese, I., Varga, E., Szente, L., & Molnár, M. (2024). Long-Chain Alkylthio Cyclodextrin Derivatives for Modulation of Quorum-Sensing-Based Bioluminescence in Aliivibrio fischeri Model System. International Journal of Molecular Sciences, 25(13), 7139. https://doi.org/10.3390/ijms25137139