Follicular Fluid and Blood Monitorization of Infertility Biomarkers in Women with Endometriosis
Abstract
:1. Introduction
2. Metabolomics Biomarkers
3. Follicular Fluid (FF)
3.1. Biomarkers of Oxidative Stress
3.2. Immune Cells and Proteins, Interleukins and Cytokines
3.3. Lipids
3.4. Proteins
3.5. Energetic Metabolic Pathways
3.6. Other Compounds
4. Blood Specimens (Plasma and Serum)
4.1. Biomarkers of Oxidative Stress
4.2. Immune Cells and Proteins, Interleukins and Cytokines
4.3. Lipids
4.4. Energetic Metabolic Pathways
4.5. miRNA
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Symons, L.K.; Miller, J.E.; Kay, V.R.; Marks, R.M.; Liblik, K.; Koti, M.; Tayade, C. The Immunopathophysiology of Endometriosis. Trends Mol. Med. 2018, 24, 748–762. [Google Scholar] [CrossRef] [PubMed]
- Marianna, S.; Alessia, P.; Susan, C.; Francesca, C.; Angela, S.; Francesca, C.; Antonella, N.; Patrizia, I.; Nicola, C.; Emilio, C. Metabolomic Profiling and Biochemical Evaluation of the Follicular Fluid of Endometriosis Patients. Mol. Biosyst. 2017, 13, 1213–1222. [Google Scholar] [CrossRef] [PubMed]
- Mikhaleva, L.M.; Davydov, A.I.; Patsap, O.I.; Mikhaylenko, E.V.; Nikolenko, V.N.; Neganova, M.E.; Klochkov, S.G.; Somasundaram, S.G.; Kirkland, C.E.; Aliev, G. Malignant Transformation and Associated Biomarkers of Ovarian Endometriosis: A Narrative Review. Adv. Ther. 2020, 37, 2580–2603. [Google Scholar] [CrossRef] [PubMed]
- Falcone, T.; Flyckt-Rebecca, R. Clinical Management of Endometriosis. Obstet. Gynecol. 2018, 131, 557–571. [Google Scholar] [CrossRef]
- Vinatier, D.; Cosson, M.; Dufour, P. Is Endometriosis an Endometrial Disease? Eur. J. Obstet. Gynecol. Reprod. Biol. 2000, 91, 113–125. [Google Scholar] [CrossRef]
- Larosa, M.; Facchini, F.; Pozzoli, G.; Leone, M.; Grande, M.; Monica, B.; Urologia, U.O.C.; Ausl, A.; Emilia, R. Endometriosi: Le Basi Eziopatogenetiche. G. Ital. Ostet. Ginecol. 2010, 77, 1–11. [Google Scholar]
- Pocate-Cheriet, K.; Santulli, P.; Kateb, F.; Bourdon, M.; Maignien, C.; Batteux, F.; Chouzenoux, S.; Patrat, C.; Wolf, J.P.; Bertho, G.; et al. The Follicular Fluid Metabolome Differs According to the Endometriosis Phenotype. Reprod. Biomed. Online 2020, 41, 1023–1037. [Google Scholar] [CrossRef] [PubMed]
- Santulli, P.; Chouzenoux, S.; Fiorese, M.; Marcellin, L.; Lemarechal, H.; Millischer, A.E.; Batteux, F.; Borderie, D.; Chapron, C. Protein Oxidative Stress Markers in Peritoneal Fluids of Women with Deep Infiltrating Endometriosis Are Increased. Hum. Reprod. 2015, 30, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Chapron, C.; Marcellin, L.; Borghese, B.; Santulli, P. Rethinking Mechanisms, Diagnosis and Management of Endometriosis. Nat. Rev. Endocrinol. 2019, 15, 666–682. [Google Scholar] [CrossRef]
- Sanchez, A.M.; Viganò, P.; Somigliana, E.; Panina-Bordigno, P.; Vercellini, P.; Candiani, M. The Distinguishing Cellular and Molecular Features of the Endometriotic Ovarian Cyst: Frompathophysiology to the Potential Endometrioma-Mediated Damage to the Ovary. Hum. Reprod. Update 2014, 20, 217–230. [Google Scholar] [CrossRef]
- Prins, J.R.; Marissen, L.M.; Scherjon, S.A.; Hoek, A.; Cantineau, A.E.P. Is There an Immune Modulating Role for Follicular Fluid in Endometriosis? A Narrative Review. Reproduction 2020, 159, R45–R54. [Google Scholar] [CrossRef]
- Somigliana, E.; Vigano, P.; Benaglia, L.; Busnelli, A.; Berlanda, N.; Vercellini, P. Management of Endometriosis in the Infertile Patient. Semin. Reprod. Med. 2017, 35, 031–037. [Google Scholar] [CrossRef]
- Karaer, A.; Tuncay, G.; Mumcu, A.; Dogan, B. Metabolomics Analysis of Follicular Fluid in Women with Ovarian Endometriosis Undergoing in Vitro Fertilization. Syst. Biol. Reprod. Med. 2019, 65, 39–47. [Google Scholar] [CrossRef]
- Sun, Z.; Wu, H.; Lian, F.; Zhang, X.; Pang, C.; Guo, Y.; Song, J.; Wang, A.; Shi, L.; Han, L. Human Follicular Fluid Metabolomics Study of Follicular Development and Oocyte Quality. Chromatographia 2017, 80, 901–909. [Google Scholar] [CrossRef]
- Hernandes, V.V.; Barbas, C.; Dudzik, D. A Review of Blood Sample Handling and Pre-Processing for Metabolomics Studies. Electrophoresis 2017, 38, 2232–2241. [Google Scholar] [CrossRef]
- Ban, Y.; Ran, H.; Chen, Y.; Ma, L. Lipidomics Analysis of Human Follicular Fluid Form Normal-Weight Patients with Polycystic Ovary Syndrome: A Pilot Study. J. Ovarian Res. 2021, 14, 135. [Google Scholar] [CrossRef]
- Bracewell-Milnes, T.; Saso, S.; Abdalla, H.; Nikolau, D.; Norman-Taylor, J.; Johnson, M.; Holmes, E.; Thum, M.Y. Metabolomics as a Tool to Identify Biomarkers to Predict and Improve Outcomes in Reproductive Medicine: A Systematic Review. Hum. Reprod. Update 2017, 23, 723–736. [Google Scholar] [CrossRef]
- Kalinina, E.A.; Malushko, A.V.; Zubareva, T.M.; Sitkin, S.I.; Dedul, A.G.; Sheveleva, T.S.; Gamzatova, Z.H.; Bejenar, V.F.; Komlichenko, E.V. Metabolomics: The Perspective Search of Methods to Overcome Infertility. Gynecol. Endocrinol. 2015, 31, 79–82. [Google Scholar] [CrossRef]
- Revelli, A.; Piane, L.D.; Casano, S.; Molinari, E.; Massobrio, M.; Rinaudo, P. Follicular Fluid Content and Oocyte Quality: From Single Biochemical Markers to Metabolomics. Reprod. Biol. Endocrinol. 2009, 7, 40. [Google Scholar] [CrossRef]
- O’Gorman, A.; Wallace, M.; Cottell, E.; Gibney, M.J.; McAuliffe, F.M.; Wingfield, M.; Brennan, L. Metabolic Profiling of Human Follicular Fluid Identifies Potential Biomarkers of Oocyte Developmental Competence. Reproduction 2013, 146, 389–395. [Google Scholar] [CrossRef]
- Wörheide, M.A.; Krumsiek, J.; Kastenmüller, G.; Arnold, M. Multi-Omics Integration in Biomedical Research – A Metabolomics-Centric Review. Anal. Chim. Acta 2021, 1141, 144–162. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Hayashi, M.A.F.; Barbosa, B.S.; Pontes, J.G.M.; Tasic, L.; Brietzke, E. Metabolomics: From Fundamentals to Clinical Applications. Adv. Exp. Med. Biol. 2017, 965, 19–44. [Google Scholar] [CrossRef]
- Luti, S.; Fiaschi, T.; Magherini, F.; Modesti, P.A.; Piomboni, P.; Governini, L.; Luddi, A.; Amoresano, A.; Illiano, A.; Pinto, G.; et al. Relationship between the Metabolic and Lipid Profile in Follicular Fluid of Women Undergoing in Vitro Fertilization. Mol. Reprod. Dev. 2020, 87, 986–997. [Google Scholar] [CrossRef]
- Guo, H.; Zhu, Q.; Gao, H.; Lyu, Q.; Chai, W.; Wu, L.; Li, B. Metabolomics Analysis of Follicular Fluid in Ovarian Endometriosis Women Receiving Progestin-Primed Ovary Stimulation Protocol for in Vitro Fertilization. Sci. Rep. 2023, 13, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Basuino, L.; Silveira, C.F. Human Follicular Fluid and Effects on Reproduction. J. Bras. Reprod. Assist. 2016, 20, 38–40. [Google Scholar] [CrossRef] [PubMed]
- Da Broi, M.G.; Giorgi, V.S.I.; Wang, F.; Keefe, D.L.; Albertini, D.; Navarro, P.A. Influence of Follicular Fluid and Cumulus Cells on Oocyte Quality: Clinical Implications. J. Assist. Reprod. Genet. 2018, 35, 735–751. [Google Scholar] [CrossRef] [PubMed]
- Rajska, A.; Buszewska-Forajta, M.; Rachoń, D.; Markuszewski, M.J. Metabolomic Insight into Polycystic Ovary Syndrome—An Overview. Int. J. Mol. Sci. 2020, 21, 4853. [Google Scholar] [CrossRef] [PubMed]
- Da Broi, M.G.; de Albuquerque, F.O.; de Andrade, A.Z.; Cardoso, R.L.; Jordão Junior, A.A.; Navarro, P.A. Increased Concentration of 8-Hydroxy-2′-Deoxyguanosine in Follicular Fluid of Infertile Women with Endometriosis. Cell Tissue Res. 2016, 366, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Da Broi, M.G.; Jordão, A.A., Jr.; Ferriani, R.A.; Navarro, P.A. Oocyte Oxidative DNA Damage May Be Involved in Minimal/Mild Endometriosis-Related Infertility. Mol. Reprod. Dev. 2018, 85, 128–136. [Google Scholar] [CrossRef]
- Várnagy, Á.; Kőszegi, T.; Györgyi, E.; Szegedi, S.; Sulyok, E.; Prémusz, V.; Bódis, J. Levels of Total Antioxidant Capacity and 8-Hydroxy-2′-Deoxyguanosine of Serum and Follicular Fluid in Women Undergoing in Vitro Fertilization: Focusing on Endometriosis. Hum. Fertil. 2020, 23, 200–208. [Google Scholar] [CrossRef]
- Singh, A.K.; Chattopadhyay, R.; Chakravarty, B.; Chaudhury, K. Markers of Oxidative Stress in Follicular Fluid of Women with Endometriosis and Tubal Infertility Undergoing IVF. Reprod. Toxicol. 2013, 42, 116–124. [Google Scholar] [CrossRef]
- Nishihara, T.; Matsumoto, K.; Hosoi, Y.; Morimoto, Y. Evaluation of Antioxidant Status and Oxidative Stress Markers in Follicular Fluid for Human in Vitro Fertilization Outcome. Reprod. Med. Biol. 2018, 17, 481–486. [Google Scholar] [CrossRef]
- Lazzarino, G.; Pallisco, R.; Bilotta, G.; Listorti, I.; Mangione, R.; Saab, M.W.; Caruso, G.; Amorini, A.M.; Brundo, M.V.; Lazzarino, G.; et al. Altered Follicular Fluid Metabolic Pattern Correlates with Female Infertility and Outcome Measures of in Vitro Fertilization. Int. J. Mol. Sci. 2021, 22, 8735. [Google Scholar] [CrossRef]
- Rajani, S.; Chattopadhyay, R.; Goswami, S.K.; Ghosh, S.; Sharma, S.; Chakravarty, B. Assessment of Oocyte Quality in Polycystic Ovarian Syndrome and Endometriosis by Spindle Imaging and Reactive Oxygen Species Levels in Follicular Fluid and Its Relationship with IVF-ET Outcome. J. Hum. Reprod. Sci. 2012, 5, 187–193. [Google Scholar] [CrossRef]
- Prieto, L.; Quesada, J.F.; Cambero, O.; Pacheco, A.; Pellicer, A.; Codoceo, R.; Garcia-Velasco, J.A. Analysis of Follicular Fluid and Serum Markers of Oxidative Stress in Women with Infertility Related to Endometriosis. Fertil. Steril. 2012, 98, 126–130. [Google Scholar] [CrossRef]
- Goud, P.T.; Goud, A.P.; Joshi, N.; Puscheck, E.; Diamond, M.P.; Abu-Soud, H.M. Dynamics of Nitric Oxide, Altered Follicular Microenvironment, and Oocyte Quality in Women with Endometriosis. Fertil. Steril. 2014, 102, 151–159.e5. [Google Scholar] [CrossRef]
- Hadi, C.; Dasuki, D.; Sadewa, A.H.; Astuti, I.; Prasetyo, A. Nitric Oxide (NO) Level of the Follicular Fluid in Endometriosis Patients. Maj. Obstet. Ginekol. 2018, 26, 29. [Google Scholar] [CrossRef]
- Song, Y.; Liu, J.; Qiu, Z.; Chen, D.; Luo, C.; Liu, X.; Hua, R.U.I.; Zhu, X.I.; Lin, Y.; Li, L.; et al. Advanced Oxidation Protein Products from the Follicular Microenvironment and Their Role in Infertile Women with Endometriosis. Exp. Ther. Med. 2018, 15, 479–486. [Google Scholar] [CrossRef]
- de Lima, C.B.; Cordeiro, F.B.; Camargo, M.; Zylbersztejn, D.S.; Cedenho, A.P.; Bertolla, R.P.; Lo Turco, E.G. Follicular Fluid Lipid Peroxidation Levels in Women with Endometriosis during Controlled Ovarian Hyperstimulation. Hum. Fertil. 2017, 20, 48–54. [Google Scholar] [CrossRef]
- Nasiri, N.; Moini, A.; Eftekhari-Yazdi, P.; Karimian, L.; Salman-Yazdi, R.; Arabipoor, A. Oxidative Stress Statues in Serum and Follicular Fluid of Women with Endometriosis. Cell J. 2016, 18, 582–587. [Google Scholar] [CrossRef]
- Collodel, G.; Gambera, L.; Stendardi, A.; Nerucci, F.; Signorini, C.; Pisani, C.; Marcheselli, M.; Vellucci, F.L.; Pizzasegale, S.E.; Micheli, L.; et al. Follicular Fluid Components in Reduced Ovarian Reserve, Endometriosis, and Idiopathic Infertility. Int. J. Mol. Sci. 2023, 24, 2589. [Google Scholar] [CrossRef]
- Fabjan, T.; Vrtačnik-Bokal, E.; Virant-Klun, I.; Bedenk, J.; Kumer, K.; Osredkar, J. Antimüllerian Hormone and Oxidative Stress Biomarkers as Predictors of Successful Pregnancy in Polycystic Ovary Syndrome, Endometriosis and Tubal Infertility Factor. Acta Chim. Slov. 2020, 67, 885–895. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.S.; Cho, S.H.; Seo, S.K.; Park, J.H.; Kim, S.H.; Lee, B.S. Alteration in the Intrafollicular Thiol-Redox System in Infertile Women with Endometriosis. Reproduction 2015, 149, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Han, M.T.; Cheng, W.; Zhu, R.; Wu, H.H.; Ding, J.; Zhao, N.N.; Li, H.; Wang, F.X. The Cytokine Profiles in Follicular Fluid and Reproductive Outcomes in Women with Endometriosis. Am. J. Reprod. Immunol. 2023, 89, e13633. [Google Scholar] [CrossRef]
- Caccavo, D.; Pellegrino, N.M.; Totaro, I.; Vacca, M.P.; Selvaggi, L.; Depalo, R. Anti-Laminin-1 Antibodies in Sera and Follicular Fluid of Women with Endometriosis Undergoing in Vitro Fertilization. Int. J. Immunopathol. Pharmacol. 2011, 24, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Ghodsi, M.; Hojati, V.; Attaranzadeh, A.; Saifi, B. Evaluation of IL-3, IL-5, and IL-6 Concentration in the Follicular Fluid of Women with Endometriosis: A Cross-Sectional Study. Int. J. Reprod. Biomed. 2022, 20, 213–220. [Google Scholar] [CrossRef]
- Wu, G.; Bersinger, N.A.; Mueller, M.D.; von Wolff, M. Intrafollicular Inflammatory Cytokines but Not Steroid Hormone Concentrations Are Increased in Naturally Matured Follicles of Women with Proven Endometriosis. J. Assist. Reprod. Genet. 2017, 34, 357–364. [Google Scholar] [CrossRef]
- Lee, J.; Yun, B.; Seo, S.; Cho, S.; Lee, B.; Choi, Y. CRH Expression in Follicular Fluid Patients with Endometriosis. Fertil. Steril. 2017, 108, e202. [Google Scholar] [CrossRef]
- Singh, A.K.; Dutta, M.; Chattopadhyay, R.; Chakravarty, B.; Chaudhury, K. Intrafollicular Interleukin-8, Interleukin-12, and Adrenomedullin Are the Promising Prognostic Markers of Oocyte and Embryo Quality in Women with Endometriosis. J. Assist. Reprod. Genet. 2016, 33, 1363–1372. [Google Scholar] [CrossRef]
- Natadisastra, M.; Jacoeb, T.Z. Homocysteine Level in the Blood and Follicular Fluid Is Higher in Infertile Women with Endometriosis. Indones. J. Obstet. Gynecol. 2013, 37, 92–98. [Google Scholar]
- Zhang, Q.F.; Chen, G.Y.; Liu, Y.; Huang, H.J.; Song, Y.F. Relationship between Resistin and IL-23 Levels in Follicular Fluid in Infertile Patients with Endometriosis Undergoing IVF-ET. Adv. Clin. Exp. Med. 2017, 26, 1431–1435. [Google Scholar] [CrossRef] [PubMed]
- Abolghasemi, M.; Esmaeilzadeh, S.; Mahjoub, S.; HashemiKarouei, S.; Mirabi, P. Resistin and Chemerin Levels in Follicular Fluid of Infertile Women with Endometriosis Undergoing ICSI. J. Obstet. Gynaecol. 2022, 42, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, F.B.; Cataldi, T.R.; Perkel, K.J.; do Vale Teixeira da Costa, L.; Rochetti, R.C.; Stevanato, J.; Eberlin, M.N.; Zylbersztejn, D.S.; Cedenho, A.P.; Turco, E.G. Lo Lipidomics Analysis of Follicular Fluid by ESI-MS Reveals Potential Biomarkers for Ovarian Endometriosis. J. Assist. Reprod. Genet. 2015, 32, 1817–1825. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, F.B.; Cataldi, T.R.; do Vale Teixeira da Costa, L.; de Souza, B.Z.; Montani, D.A.; Fraietta, R.; Labate, C.A.; Cedenho, A.P.; Lo Turco, E.G. Metabolomic Profiling in Follicular Fluid of Patients with Infertility-Related Deep Endometriosis. Metabolomics 2017, 13, 120. [Google Scholar] [CrossRef]
- Castiglione Morelli, M.A.; Iuliano, A.; Schettini, S.C.A.; Petruzzi, D.; Ferri, A.; Colucci, P.; Viggiani, L.; Cuviello, F.; Ostuni, A. NMR Metabolic Profiling of Follicular Fluid for Investigating the Different Causes of Female Infertility: A Pilot Study. Metabolomics 2019, 15, 19. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Song, J.; Zhang, X.; Wang, A.; Guo, Y.; Yang, Y.; Wang, X.; Xu, K.; Deng, J. Novel SWATHTM Technology for Follicular Fluid Metabolomics in Patients with Endometriosis. Pharmazie 2018, 73, 218–323. [Google Scholar] [CrossRef]
- Cao, X.L.; Song, J.Y.; Sun, Z.G. Quantitative Label-Free Proteomic Analysis of Human Follicle Fluid to Identify Novel Candidate Protein Biomarker for Endometriosis-Associated Infertility. J. Proteom. 2022, 266, 104680. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.J.; Xing, F.; Zong, K.; Wang, M.Y.; Ji, D.M.; Zhao, Y.H.; Xia, Y.H.; Wang, A.; Shi, L.G.; Ding, S.M.; et al. Increased ApoE Expression in Follicular Fluid and the ApoE Genotype Are Associated with Endometriosis in Chinese Women. Front. Endocrinol. 2021, 12, 779183. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ni, Z.; Cai, Z.; Cheng, W.; Sun, S.; Yu, C.; Yu, J. The Mechanism Exploration of Follicular Fluids on Granulose Cell Apoptosis in Endometriosis-Associated Infertility. Biomed. Res. Int. 2021, 2021, 6464686. [Google Scholar] [CrossRef]
- Lo Turco, E.G.; Souza, G.H.M.F.; Garcia, J.S.; Ferreira, C.R.; Eberlin, M.N.; Bertolla, R.P. Effect of Endometriosis on the Protein Expression Pattern of Follicular Fluid from Patients Submitted to Controlled Ovarian Hyperstimulation for in Vitro Fertilization. Hum. Reprod. 2010, 25, 1755–1766. [Google Scholar] [CrossRef]
- Lo Turco, E.G.; Cordeiro, F.B.; de Carvalho Lopes, P.H.; Gozzo, F.C.; Pilau, E.J.; Soler, T.B.; da Silva, B.F.; Del Giudice, P.T.; Bertolla, R.P.; Fraietta, R.; et al. Proteomic Analysis of Follicular Fluid from Women with and without Endometriosis: New Therapeutic Targets and Biomarkers. Mol. Reprod. Dev. 2013, 80, 441–450. [Google Scholar] [CrossRef]
- Regiani, T.; Cordeiro, F.B.; Da Costa, L.D.V.T.; Salgueiro, J.; Cardozo, K.; Carvalho, V.M.; Perkel, K.J.; Zylbersztejn, D.S.; Cedenho, A.P.; Lo Turco, E.G. Follicular Fluid Alterations in Endometriosis: Label-Free Proteomics by MSE as a Functional Tool for Endometriosis. Syst. Biol. Reprod. Med. 2015, 61, 263–276. [Google Scholar] [CrossRef]
- Pauli, S.A.; Session, D.R.; Shang, W.; Easley, K.; Wieser, F.; Taylor, R.N.; Pierzchalski, K.; Napoli, J.L.; Kane, M.A.; Sidell, N. Analysis of Follicular Fluid Retinoids in Women Undergoing in Vitro Fertilization: Retinoic Acid Influences Embryo Quality and Is Reduced in Women with Endometriosis. Reprod. Sci. 2013, 20, 1116–1124. [Google Scholar] [CrossRef]
- Brinca, A.T.; Anjos, O.; Alves, M.M.C.; Sousa, Â.; Oliani, A.H.; Breitenfeld, L.; Passarinha, L.A.; Ramalhinho, A.C.; Gallardo, E. Volatilomics as an Emerging Strategy to Determine Potential Biomarkers of Female Infertility: A Pilot Study. Biomedicines 2022, 10, 2852. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Fu, J.; Xu, Y.; Gu, R.; Qu, R.; Li, L.; Sun, Y.; Sun, X. MicroRNA-451 Is Downregulated in the Follicular Fluid of Women with Endometriosis and Influences Mouse and Human Embryonic Potential. Reprod. Biol. Endocrinol. 2019, 17, 96. [Google Scholar] [CrossRef]
- Didziokaite, G.; Biliute, G.; Gudaite, J.; Kvedariene, V. Oxidative Stress as a Potential Underlying Cause of Minimal and Mild Endometriosis-Related Infertility. Int. J. Mol. Sci. 2023, 24, 3809. [Google Scholar] [CrossRef]
- Martins, J.O.; Ferracini, M.; Ravanelli, N.; Landgraf, R.G.; Jancar, S. Insulin Suppresses LPS-Induced INOS and COX-2 Expression and NF-ΚB Activation in Alveolar Macrophages. Cell. Physiol. Biochem. 2008, 22, 279–286. [Google Scholar] [CrossRef]
- Graille, M.; Wild, P.; Sauvain, J.J.; Hemmendinger, M.; Guseva Canu, I.; Hopf, N.B. Urinary 8-Isoprostane as a Biomarker for Oxidative Stress. A Systematic Review and Meta-Analysis. Toxicol. Lett. 2020, 328, 19–27. [Google Scholar] [CrossRef]
- Wang, F.; Huang, S.; Xia, H.; Yao, S. Specialized Pro-Resolving Mediators: It’s Anti-Oxidant Stress Role in Multiple Disease Models. Mol. Immunol. 2020, 126, 40–45. [Google Scholar] [CrossRef]
- De, F.; Fermino, P.M.P.; Piovezan, A.P. The Inflammatory Role of Pro-Resolving Mediators in Endometriosis: An Integrative Review. Int. J. Mol. Sci. 2021, 22, 4370. [Google Scholar] [CrossRef]
- Siracusa, R.; D’amico, R.; Cordaro, M.; Peritore, A.F.; Genovese, T.; Gugliandolo, E.; Crupi, R.; Impellizzeri, D.; Cuzzocrea, S.; Fusco, R.; et al. The Methyl Ester of 2-Cyano-3,12-Dioxooleana-1,9-Dien-28-Oic Acid Reduces Endometrial Lesions Development by Modulating the NFkB and Nrf2 Pathways. Int. J. Mol. Sci. 2021, 22, 3991. [Google Scholar] [CrossRef]
- Seino, T.; Saito, H.; Kaneko, T.; Takahashi, T.; Kawachiya, S.; Kurachi, H. Eight-Hydroxy-2′-Deoxyguanosine in Granulosa Cells Is Correlated with the Quality of Oocytes and Embryos in an in Vitro Fertilization-Embryo Transfer Program. Fertil. Steril. 2002, 77, 1184–1190. [Google Scholar] [CrossRef]
- Tamura, H.; Takasaki, A.; Miwa, I.; Taniguchi, K.; Maekawa, R.; Asada, H.; Taketani, T.; Matsuoka, A.; Yamagata, Y.; Shimamura, K.; et al. Oxidative Stress Impairs Oocyte Quality and Melatonin Protects Oocytes from Free Radical Damage and Improves Fertilization Rate. J. Pineal Res. 2008, 44, 280–287. [Google Scholar] [CrossRef]
- Brinca, A.T.; Ramalhinho, A.C.; Sousa, Â.; Oliani, A.H.; Breitenfeld, L.; Passarinha, L.A.; Gallardo, E. Follicular Fluid: A Powerful Tool for the Understanding and Diagnosis of Polycystic Ovary Syndrome. Biomedicines 2022, 10, 1254. [Google Scholar] [CrossRef]
- Zhang, T.; De Carolis, C.; Man, G.C.W.; Wang, C.C. The Link between Immunity, Autoimmunity and Endometriosis: A Literature Update. Autoimmun. Rev. 2018, 17, 945–955. [Google Scholar] [CrossRef]
- Adachi, M.; Nasu, K.; Tsuno, A.; Yuge, A.; Kawano, Y.; Narahara, H. Attachment to Extracellular Matrices Is Enhanced in Human Endometriotic Stromal Cells: A Possible Mechanism Underlying the Pathogenesis of Endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2011, 155, 85–88. [Google Scholar] [CrossRef]
- Macer, M.L.; Taylor, H.S. Endometriosis and Infertility: A Review of the Pathogenesis and Treatment of Endometriosis-Associated Infertility. Natl. Institutes Heal. 2012, 39, 535–549. [Google Scholar] [CrossRef]
- de Barros, I.B.L.; Malvezzi, H.; Gueuvoghlanian-Silva, B.Y.; Piccinato, C.A.; Rizzo, L.V.; Podgaec, S. What Do We Know about Regulatory T Cells and Endometriosis? A Systematic Review. J. Reprod. Immunol. 2017, 120, 48–55. [Google Scholar] [CrossRef]
- Lessey, B.A.; Lebovic, D.I.; Taylor, R.N. Eutopic Endometrium in Women with Endometriosis: Ground Zero for the Study of Implantation Defects. Semin. Reprod. Med. 2013, 31, 109–124. [Google Scholar] [CrossRef]
- Nishimoto-Kakiuchi, A.; Sato, I.; Nakano, K.; Ohmori, H.; Kayukawa, Y.; Tanimura, H.; Yamamoto, S.; Sakamoto, Y.; Nakamura, G.; Maeda, A.; et al. A Long-Acting Anti–IL-8 Antibody Improves Inflammation and Fibrosis in Endometriosis. Sci. Transl. Med. 2023, 15, 25–30. [Google Scholar] [CrossRef]
- Yland, J.; Carvalho, L.F.P.; Beste, M.; Bailey, A.; Thomas, C.; Abrão, M.S.; Racowsky, C.; Griffith, L.; Missmer, S.A. Endometrioma, the Follicular Fluid Inflammatory Network and Its Association with Oocyte and Embryo Characteristics. Reprod. Biomed. 2020, 40, 399–408. [Google Scholar] [CrossRef]
- Podgaec, S.; Abrao, M.S.; Dias, J.A.; Rizzo, L.V.; de Oliveira, R.M.; Baracat, E.C. Endometriosis: An Inflammatory Disease with a Th2 Immune Response Component. Hum. Reprod. 2007, 22, 1373–1379. [Google Scholar] [CrossRef]
- Gazvani, M.R.; Bates, M.; Vince, G.; Christmas, S.; Lewis-Jones, D.I.; Kingsland, C. Follicular Fluid Concentrations of Interleukin-12 and Interleukin-8 in IVF Cycles. Fertil. Steril. 2000, 74, 953–958. [Google Scholar] [CrossRef]
- Lédée, N.; Lombroso, R.; Lombardelli, L.; Selva, J.; Dubanchet, S.; Chaouat, G.; Frankenne, F.; Foidart, J.M.; Maggi, E.; Romagnani, S.; et al. Cytokines and Chemokines in Follicular Fluids and Potential of the Corresponding Embryo: The Role of Granulocyte Colony-Stimulating Factor. Hum. Reprod. 2008, 23, 2001–2009. [Google Scholar] [CrossRef]
- Fairbanks, F.; Abrão, M.S.; Podgaec, S.; Dias, J.A.; de Oliveira, R.M.; Rizzo, L.V. Interleukin-12 but Not Interleukin-18 Is Associated with Severe Endometriosis. Fertil. Steril. 2009, 91, 320–324. [Google Scholar] [CrossRef]
- Bergqvist, A.; Bruse, C.; Carlberg, M.; Carlström, K. Interleukin 1β, Interleukin-6, and Tumor Necrosis Factor-α in Endometriotic Tissue and in Endometrium. Fertil. Steril. 2001, 75, 489–495. [Google Scholar] [CrossRef]
- Bulun, S.E. Endometriosis, 8th ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 11, ISBN 9780323582322. [Google Scholar]
- Shen, H.H.; Zhang, T.; Yang, H.L.; Lai, Z.Z.; Zhou, W.J.; Mei, J.; Shi, J.W.; Zhu, R.; Xu, F.Y.; Li, D.J.; et al. Ovarian Hormones-Autophagy-Immunity Axis in Menstruation and Endometriosis. Theranostics 2021, 11, 3512–3526. [Google Scholar] [CrossRef]
- Eisenberg, V.H.; Zolti, M.; Soriano, D. Is There an Association between Autoimmunity and Endometriosis? Autoimmun. Rev. 2012, 11, 806–814. [Google Scholar] [CrossRef]
- Jørgensen, H.; Hill, A.S.; Beste, M.T.; Kumar, M.P.; Chiswick, E.; Fedorcsak, P.; Isaacson, K.B.; Lauffenburger, D.A.; Griffith, L.G.; Qvigstad, E. Peritoneal Fluid Cytokines Related to Endometriosis in Patients Evaluated for Infertility. Fertil. Steril. 2017, 107, 1191–1199.e2. [Google Scholar] [CrossRef]
- Ek, M.; Roth, B.; Engström, G.; Ohlsson, B. AXIN1 in Plasma or Serum Is a Potential New Biomarker for Endometriosis. Int. J. Mol. Sci. 2019, 20, 189. [Google Scholar] [CrossRef]
- Xu, H.; Schultze-Mosgau, A.; Agic, A.; Diedrich, K.; Taylor, R.N.; Hornung, D. Regulated upon Activation, Normal T Cell Expressed and Secreted (RANTES) and Monocyte Chemotactic Protein 1 in Follicular Fluid Accumulate Differentially in Patients with and without Endometriosis Undergoing in Vitro Fertilization. Fertil. Steril. 2006, 86, 1616–1620. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, X.; Xu, J.; Lu, L. SerpinE2, a Poor Biomarker of Endometrial Cancer, Promotes the Proliferation and Mobility of EC Cells. Cancer Biomark. 2017, 19, 271–278. [Google Scholar] [CrossRef]
- Kasvandik, S. The Role of Proteomic Changes in Endometrial Cells—from the Perspective of Fertility and Endometriosis; University of Tartu: Tartu, Estonia, 2016; ISBN 2013206534. [Google Scholar]
- Gao, J.; Wu, L.; Wang, S.; Chen, X. Role of Chemokine (C-X-C Motif) Ligand 10 (CXCL10) in Renal Diseases. Mediat. Inflamm. 2020, 2020, 6194864. [Google Scholar] [CrossRef]
- Guo, F.; He, Y.; Fan, Y.; Du, Z.; Sun, H.; Feng, Z.; Zhang, G.; Xiong, T. G-CSF and IL-6 May Be Involved in Formation of Endometriosis Lesions by Increasing the Expression of Angiogenic Factors in Neutrophils. Mol. Hum. Reprod. 2021, 27, gaab064. [Google Scholar] [CrossRef]
- Tomkins, N.E.; Girling, J.E.; Boughton, B.; Holdsworth-Carson, S.J. Is There a Role for Small Molecule Metabolite Biomarkers in the Development of a Diagnostic Test for Endometriosis? Syst. Biol. Reprod. Med. 2022, 68, 89–112. [Google Scholar] [CrossRef]
- Adamyan, L.V.; Starodubtseva, N.; Borisova, A.; Stepanian, A.A.; Chagovets, V.; Salimova, D.; Wang, Z.; Kononikhin, A.; Popov, I.; Bugrova, A.; et al. Direct Mass Spectrometry Differentiation of Ectopic and Eutopic Endometrium in Patients with Endometriosis. J. Minim. Invasive Gynecol. 2018, 25, 426–433. [Google Scholar] [CrossRef]
- Pralhada Rao, R.; Vaidyanathan, N.; Rengasamy, M.; Mammen Oommen, A.; Somaiya, N.; Jagannath, M.R. Sphingolipid Metabolic Pathway: An Overview of Major Roles Played in Human Diseases. J. Lipids 2013, 2013, 178910. [Google Scholar] [CrossRef]
- Bianchi, L.; Gagliardi, A.; Landi, C.; Focarelli, R.; De Leo, V.; Luddi, A.; Bini, L.; Piomboni, P. Protein Pathways Working in Human Follicular Fluid: The Future for Tailored IVF? Expert Rev. Mol. Med. 2016, 18, e9. [Google Scholar] [CrossRef]
- Kacperczyk, M.; Kmieciak, A.; Kratz, E.M. The Role of ApoE Expression and Variability of Its Glycosylation in Human Reproductive Health in the Light of Current Information. Int. J. Mol. Sci. 2021, 22, 7197. [Google Scholar] [CrossRef]
- Kanellopoulou, T. Revealing the Enigma of Coagulation in Endometriosis: The Risk of Thrombosis and the Role of Antithrombotic Treatment. HJOG 2020, 19, 65–75. [Google Scholar] [CrossRef]
- Kobayashi, H.; Shigetomi, H.; Imanaka, S. Nonhormonal Therapy for Endometriosis Based on Energy Metabolism Regulation. Reprod. Fertil. 2021, 2, C42–C57. [Google Scholar] [CrossRef]
- Anderson, G. Endometriosis Pathoetiology and Pathophysiology: Roles of Vitamin A, Estrogen, Immunity, Adipocytes, Gut Microbiome and Melatonergic Pathway on Mitochondria Regulation. Biomol. Concepts 2019, 10, 133–149. [Google Scholar] [CrossRef]
- Bulun, S.E.; Yilmaz, B.D. Endometriosis and Nuclear Receptors. Hum. Reprod. Update 2019, 25, 473–485. [Google Scholar] [CrossRef]
- Luisi, S.; Pinzauti, S.; Regini, C.; Petraglia, F. Serum Markers for the Noninvasive Diagnosis of Endometriosis. Women’s Heal. 2015, 11, 603–610. [Google Scholar] [CrossRef]
- Dutta, M.; Joshi, M.; Srivastava, S.; Lodh, I.; Chakravarty, B.; Chaudhury, K. A Metabonomics Approach as a Means for Identification of Potential Biomarkers for Early Diagnosis of Endometriosis. Mol. Biosyst. 2012, 8, 3281–3287. [Google Scholar] [CrossRef]
- Jana, S.K.; Dutta, M.; Joshi, M.; Srivastava, S.; Chakravarty, B.; Chaudhury, K. 1H NMR Based Targeted Metabolite Profiling for Understanding the Complex Relationship Connecting Oxidative Stress with Endometriosis. Biomed. Res. Int. 2013, 2013, 329058. [Google Scholar] [CrossRef]
- Ozhan, E.; Kokcu, A.; Yanik, K.; Gunaydin, M. Investigation of Diagnostic Potentials of Nine Different Biomarkers in Endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014, 178, 128–133. [Google Scholar] [CrossRef]
- Gajbhiye, R.; Sonawani, A.; Khan, S.; Suryawanshi, A.; Kadam, S.; Warty, N.; Raut, V.; Khole, V. Identification and Validation of Novel Serum Markers for Early Diagnosis of Endometriosis. Hum. Reprod. 2012, 27, 408–417. [Google Scholar] [CrossRef]
- Chmaj-Wierzchowska, K.; Kampioni, M.; Wilczak, M.; Sajdak, S.; Opala, T. Novel Markers in the Diagnostics of Endometriomas: Urocortin, Ghrelin, and Leptin or Leukocytes, Fibrinogen, and CA-125? Taiwan. J. Obstet. Gynecol. 2015, 54, 126–130. [Google Scholar] [CrossRef]
- Tokmak, A.; Ugur, M.; Tonguc, E.; Var, T.; Moraloǧlu, O.; Ozaksit, G. The Value of Urocortin and Ca-125 in the Diagnosis of Endometrioma. Arch. Gynecol. Obstet. 2011, 283, 1075–1079. [Google Scholar] [CrossRef]
- Socolov, R.; Butureanu, S.; Angioni, S.; Sindilar, A.; Boiculese, L.; Cozma, L.; Socolov, D. The Value of Serological Markers in the Diagnosis and Prognosis of Endometriosis: A Prospective Case-Control Study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2011, 154, 215–217. [Google Scholar] [CrossRef]
- Vodolazkaia, A.; El-Aalamat, Y.; Popovic, D.; Mihalyi, A.; Bossuyt, X.; Kyama, C.M.; Fassbender, A.; Bokor, A.; Schols, D.; Huskens, D.; et al. Evaluation of a Panel of 28 Biomarkers for the Non-Invasive Diagnosis of Endometriosis. Hum. Reprod. 2012, 27, 2698–2711. [Google Scholar] [CrossRef]
- Mihalyi, A.; Gevaert, O.; Kyama, C.M.; Simsa, P.; Pochet, N.; De Smet, F.; De Moor, B.; Meuleman, C.; Billen, J.; Blanckaert, N.; et al. Non-Invasive Diagnosis of Endometriosis Based on a Combined Analysis of Six Plasma Biomarkers. Hum. Reprod. 2010, 25, 654–664. [Google Scholar] [CrossRef]
- Chen, L.; Fan, R.; Huang, X.; Xu, H.; Zhang, X. Reduced Levels of Serum Pigment Epithelium-Derived Factor in Women with Endometriosis. Reprod. Sci. 2012, 19, 64–69. [Google Scholar] [CrossRef]
- Vouk, K.; Hevir, N.; Ribič-Pucelj, M.; Haarpaintner, G.; Scherb, H.; Osredkar, J.; Möller, G.; Prehn, C.; Rižner, T.L.; Adamski, J. Discovery of Phosphatidylcholines and Sphingomyelins as Biomarkers for Ovarian Endometriosis. Hum. Reprod. 2012, 27, 2955–2965. [Google Scholar] [CrossRef]
- Letsiou, S.; Peterse, D.P.; Fassbender, A.; Hendriks, M.M.; van den Broek, N.J.; Berger, R.; Dorien, O.F.; Vanhie, A.; Vodolazkaia, A.; Van Langendonckt, A.; et al. Endometriosis Is Associated with Aberrant Metabolite Profiles in Plasma. Fertil. Steril. 2017, 107, 699–706.e6. [Google Scholar] [CrossRef]
- Lee, Y.H.; Tan, C.W.; Venkatratnam, A.; Tan, C.S.; Cui, L.; Loh, S.F.; Griffith, L.; Tannenbaum, S.R.; Chan, J.K.Y. Dysregulated Sphingolipid Metabolism in Endometriosis. J. Clin. Endocrinol. Metab. 2014, 99, E1913–E1921. [Google Scholar] [CrossRef]
- Lee, Y.H.; Cui, L.; Fang, J.; Chern, B.S.M.; Tan, H.H.; Chan, J.K.Y. Limited Value of Pro-Inflammatory Oxylipins and Cytokines as Circulating Biomarkers in Endometriosis—A Targeted ’omics Study. Sci. Rep. 2016, 6, 26117. [Google Scholar] [CrossRef]
- Choi, Y.S.; Kim, S.; Oh, Y.S.; Cho, S.H.; Hoon Kim, S. Elevated Serum Interleukin-32 Levels in Patients with Endometriosis: A Cross-Sectional Study. Am. J. Reprod. Immunol. 2019, 82, e13149. [Google Scholar] [CrossRef]
- Dutta, M.; Singh, B.; Joshi, M.; Das, D.; Subramani, E.; Maan, M.; Jana, S.K.; Sharma, U.; Das, S.; Dasgupta, S.; et al. Metabolomics Reveals Perturbations in Endometrium and Serum of Minimal and Mild Endometriosis. Sci. Rep. 2018, 8, 6466. [Google Scholar] [CrossRef]
- Vicente-Muñoz, S.; Morcillo, I.; Puchades-Carrasco, L.; Payá, V.; Pellicer, A.; Pineda-Lucena, A. Pathophysiologic Processes Have an Impact on the Plasma Metabolomic Signature of Endometriosis Patients. Fertil. Steril. 2016, 106, 1733–1741.e1. [Google Scholar] [CrossRef]
- Şengül, Ö.; Dilbaz, B.; Halici, Z.; Ferah, I.; Çadirci, E.; Yilmaz, F. Decreased Serum Nesfatin-1 Levels in Endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014, 177, 34–37. [Google Scholar] [CrossRef]
- Kocbek, V.; Vouk, K.; Bersinger, N.A.; Mueller, M.D.; Rižner, T.L. Panels of Cytokines and Other Secretory Proteins as Potential Biomarkers of Ovarian Endometriosis. J. Mol. Diagnostics 2015, 17, 325–334. [Google Scholar] [CrossRef]
- Mosbah, A.; Nabiel, Y.; Khashaba, E. Interleukin-6, Intracellular Adhesion Molecule-1, and Glycodelin A Levels in Serum and Peritoneal Fluid as Biomarkers for Endometriosis. Int. J. Gynecol. Obstet. 2016, 134, 247–251. [Google Scholar] [CrossRef]
- Hwang, J.H.; Lee, K.S.; Joo, J.K.; Wang, T.; Son, J.B.; Park, J.H.A.; Hwang, D.Y.; Choi, M.H.; Lee, H.G. Identification of Biomarkers for Endometriosis in Plasma from Patients with Endometriosis Using a Proteomics Approach. Mol. Med. Rep. 2014, 10, 725–730. [Google Scholar] [CrossRef]
- Dabi, Y.; Suisse, S.; Jornea, L.; Bouteiller, D.; Touboul, C.; Puchar, A.; Daraï, E.; Bendifallah, S. Clues for Improving the Pathophysiology Knowledge for Endometriosis Using Serum Micro-RNA Expression. Diagnostics 2022, 12, 175. [Google Scholar] [CrossRef]
- Gu, C.L.; Zhang, Z.; Fan, W.S.; Li, L.A.; Ye, M.X.; Zhang, Q.; Zhang, N.N.; Li, Z.; Meng, Y. guang Identification of MicroRNAs as Potential Biomarkers in Ovarian Endometriosis. Reprod. Sci. 2020, 27, 1715–1723. [Google Scholar] [CrossRef]
- Moustafa, S.; Burn, M.; Mamillapalli, R.; Nematian, S.; Flores, V.; Taylor, H.S. Accurate Diagnosis of Endometriosis Using Serum MicroRNAs. Am. J. Obstet. Gynecol. 2020, 223, 557.e1–557.e11. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H.; Yuan, M.; Li, D.; Sun, C.; Wang, G. Serum Exosomal MicroRNAs as Potential Circulating Biomarkers for Endometriosis. Dis. Markers 2020, 2020, 2456340. [Google Scholar] [CrossRef] [PubMed]
- Nisenblat, V.; Sharkey, D.J.; Wang, Z.; Evans, S.F.; Healey, M.; Maria Ohlsson Teague, E.C.; Print, C.G.; Robertson, S.A.; Louise Hull, M. Plasma MiRNAs Display Limited Potential as Diagnostic Tools for Endometriosis. J. Clin. Endocrinol. Metab. 2019, 104, 1999–2022. [Google Scholar] [CrossRef] [PubMed]
- Vanhie, A.; Dorien, O.; Peterse, D.; Beckers, A.; Cuéllar, A.; Fassbender, A.; Meuleman, C.; Mestdagh, P.; D’Hooghe, T. Plasma MiRNAs as Biomarkers for Endometriosis. Hum. Reprod. 2019, 34, 1650–1660. [Google Scholar] [CrossRef]
- Wang, L.; Huang, W.; Ren, C.; Zhao, M.; Jiang, X.; Fang, X.; Xia, X. Analysis of Serum MicroRNA Profile by Solexa Sequencing in Women with Endometriosis. Reprod. Sci. 2016, 23, 1359–1370. [Google Scholar] [CrossRef]
- Cosar, E.; Mamillapalli, R.; Ersoy, G.S.; Cho, S.Y.; Seifer, B.; Taylor, H.S. Serum MicroRNAs as Diagnostic Markers of Endometriosis: A Comprehensive Array-Based Analysis. Fertil. Steril. 2016, 106, 402–409. [Google Scholar] [CrossRef]
- Jia, S.Z.; Yang, Y.; Lang, J.; Sun, P.; Leng, J. Plasma MiR-17-5p, MiR-20a and MiR-22 Are down-Regulated in Women with Endometriosis. Hum. Reprod. 2013, 28, 322–330. [Google Scholar] [CrossRef]
- Misir, S.; Hepokur, C.; Oksasoglu, B.; Yildiz, C.; Yanik, A.; Aliyazicioglu, Y. Circulating Serum MiR-200c and MiR-34a-5p as Diagnostic Biomarkers for Endometriosis. J. Gynecol. Obstet. Hum. Reprod. 2021, 50, 102092. [Google Scholar] [CrossRef]
- Bashti, O.; Noruzinia, M.; Garshasbi, M.; Abtahi, M. MiR-31 and MiR-145 as Potential Non-Invasive Regulatory Biomarkers in Patients with Endometriosis. Cell J. 2018, 20, 84–89. [Google Scholar] [CrossRef]
- Pateisky, P.; Pils, D.; Szabo, L.; Kuessel, L.; Husslein, H.; Schmitz, A.; Wenzl, R.; Yotova, I. Hsa-MiRNA-154-5p Expression in Plasma of Endometriosis Patients Is a Potential Diagnostic Marker for the Disease. Reprod. Biomed. Online 2018, 37, 449–466. [Google Scholar] [CrossRef]
- Cho, S.; Mutlu, L.; Grechukhina, O.; Taylor, H.S. Circulating MicroRNAs as Potential Biomarkers for Endometriosis. Fertil. Steril. 2015, 103, 1252–1260.e1. [Google Scholar] [CrossRef] [PubMed]
- Rekker, K.; Saare, M.; Roost, A.M.; Kaart, T.; Sõritsa, D.; Karro, H.; Sõritsa, A.; Simón, C.; Salumets, A.; Peters, M. Circulating MiR-200-Family Micro-RNAs Have Altered Plasma Levels in Patients with Endometriosis and Vary with Blood Collection Time. Fertil. Steril. 2015, 104, 938–946.e2. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.Y.; Hsieh, T.H.; Tsai, C.F.; Tsai, H.P.; Chen, H.S.; Chang, Y.; Chuang, H.Y.; Lee, J.N.; Hsu, Y.L.; Tsai, E.M. MiRNA-199a-5p Regulates VEGFA in Endometrial Mesenchymal Stem Cells and Contributes to the Pathogenesis of Endometriosis. J. Pathol. 2014, 232, 330–343. [Google Scholar] [CrossRef] [PubMed]
- Suryawanshi, S.; Vlad, A.M.; Lin, H.M.; Mantia-Smaldone, G.; Laskey, R.; Lee, M.; Lin, Y.; Donnellan, N.; Klein-Patel, M.; Lee, T.; et al. Plasma MicroRNAs as Novel Biomarkers for Endometriosis and Endometriosis-Associated Ovarian Cancer. Clin. Cancer Res. 2013, 19, 1213–1224. [Google Scholar] [CrossRef] [PubMed]
- Welsh, P.; Doolin, O.; Mcconnachie, A.; Boulton, E.; Mcneil, G.; Macdonald, H.; Hardcastle, A.; Hart, C.; Upton, M.; Watt, G.; et al. Calcium Associations with Incident Cardiovascular Disease and Mortality: The MIDSPAN Family Study. J. Clin. Endocrinol. Metab. 2012, 97, 4578–4587. [Google Scholar] [CrossRef] [PubMed]
- Vouk, K.; Šmuc, T.; Guggenberger, C.; Ribič-Pucelj, M.; Šinkovec, J.; Husen, B.; Thole, H.; Houba, P.; Thaete, C.; Adamski, J.; et al. Novel Estrogen-Related Genes and Potential Biomarkers of Ovarian Endometriosis Identified by Differential Expression Analysis. J. Steroid Biochem. Mol. Biol. 2011, 125, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Pušić, M.; Klančič, T.; Knific, T.; Vogler, A.; Schmidt, R.; Schröder, C.; Lanišnik Rižner, T. Antibody Arrays Identified Cycle-Dependent Plasma Biomarker Candidates of Peritoneal Endometriosis. J. Pers. Med. 2022, 12, 852. [Google Scholar] [CrossRef] [PubMed]
- O, D.; Waelkens, E.; Vanhie, A.; Peterse, D.; Fassbender, A.; D’Hooghe, T. The Use of Antibody Arrays in the Discovery of New Plasma Biomarkers for Endometriosis. Reprod. Sci. 2020, 27, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Guan, L.; Zhang, H.; Gao, Y.; Sun, J.; Gong, X.; Li, D.; Chen, P.; Liang, X.; Huang, M.; et al. Endometrium Metabolomic Profiling Reveals Potential Biomarkers for Diagnosis of Endometriosis at Minimal-Mild Stages. Reprod. Biol. Endocrinol. 2018, 16, 42. [Google Scholar] [CrossRef]
- Coutinho, L.M.; Ferreira, M.C.; Rocha, A.L.L.; Carneiro, M.M.; Reis, F.M. New Biomarkers in Endometriosis, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; Volume 89, ISBN 9780128171455. [Google Scholar]
- Kikuchi, A. Roles of Axin in the Wnt Signalling Pathway. Cell. Signal. 1999, 11, 777–788. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xiong, W.; Xiong, Y.; Liu, H.; Liu, Y. 17 β-Estradiol Promotes Vascular Endothelial Growth Factor Expression via the Wnt/β-Catenin Pathway during the Pathogenesis of Endometriosis. Mol. Hum. Reprod. 2016, 22, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, S.; Botchorishvili, R.; Pouly, J.L.; Canis, M. Targeting the Wnt/β-Catenin Pathway in Endometriosis: A Potentially Effective approach for treatment and prevention. Mol. Cell. Ther. 2014, 2, 36. [Google Scholar] [CrossRef]
- Rižner, T.L. The Important Roles of Steroid Sulfatase and Sulfotransferases in Gynecological Diseases. Front. Pharmacol. 2016, 7, 30. [Google Scholar] [CrossRef]
- Hemmerich, S. Carbohydrate Sulfotransferases: Novel Therapeutic Targets for Inflammation, Viral Infection and Cancer. Drug Discov. Today 2001, 6, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Gamage, N.U.; Tsvetanov, S.; Duggleby, R.G.; McManus, M.E.; Martin, J.L. The Structure of Human SULT1A1 Crystallized with Estradiol: An Insight into Active Site Plasticity and Substrate Inhibition with Multi-Ring Substrates. J. Biol. Chem. 2005, 280, 41482–41486. [Google Scholar] [CrossRef]
- Inagaki, J.; Kondo, A.; Lopez, L.R.; Shoenfeld, Y.; Matsuura, E. Pregnancy Loss and Endometriosis: Pathogenic Role of Anti-Laminin-1 Autoantibodies. Ann. N. Y. Acad. Sci. 2005, 1051, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, J.; Sugiura-Ogasawara, M.; Nomizu, M.; Nakatsuka, M.; Ikuta, K.; Suzuki, N.; Kaihara, K.; Kobayashi, K.; Yasuda, T.; Shoenfeld, Y.; et al. An Association of IgG Anti-Laminin-1 Autoantibodies with Endometriosis in Infertile Patients. Hum. Reprod. 2003, 18, 544–549. [Google Scholar] [CrossRef] [PubMed]
- Ametzazurra, A.; Matorras, R.; García-Velasco, J.A.; Prieto, B.; Simón, L.; Martínez, A.; Nagore, D. Endometrial Fluid Is a Specific and Non-Invasive Biological Sample for Protein Biomarker Identification in Endometriosis. Hum. Reprod. 2009, 24, 954–965. [Google Scholar] [CrossRef] [PubMed]
- Sarapik, A.; Haller-Kikkatalo, K.; Utt, M.; Teesalu, K.; Salumets, A.; Uibo, R. Serum Anti-Endometrial Antibodies in Infertile Women - Potential Risk Factor for Implantation Failure. Am. J. Reprod. Immunol. 2010, 63, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.C.; Liu, F.Y.; Wang, L.Q.; Zou, Y.; Wang, F.; Deng, W.; Wan, X.D.; Yang, X.; He, M.; Huang, O.P. Serum Metabolic Profiling Study of Endometriosis by Using Wooden-Tip Electrospray Ionization Mass Spectrometry. Anal. Methods 2015, 7, 6125–6132. [Google Scholar] [CrossRef]
- Starodubtseva, N.; Chagovets, V.; Borisova, A.; Salimova, D.; Aleksandrova, N.; Chingin, K.; Chen, H.; Frankevich, V. Identification of Potential Endometriosis Biomarkers in Peritoneal Fluid and Blood Plasma via Shotgun Lipidomics. Clin. Mass Spectrom. 2019, 13, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Lalami, I.; Abo, C.; Borghese, B.; Chapron, C.; Vaiman, D. Genomics of Endometriosis: From Genome Wide Association Studies to Exome Sequencing. Int. J. Mol. Sci. 2021, 22, 7297. [Google Scholar] [CrossRef]
- Goulielmos, G.N.; Matalliotakis, M.; Matalliotaki, C.; Eliopoulos, E.; Matalliotakis, I.; Zervou, M.I. Endometriosis Research in the -Omics Era. Gene 2020, 741, 144545. [Google Scholar] [CrossRef]
- Ghasemi, F.; Alemzadeh, E.; Allahqoli, L.; Alemzadeh, E.; Mazidimoradi, A.; Salehiniya, H.; Alkatout, I. MicroRNAs Dysregulation as Potential Biomarkers for Early Diagnosis of Endometriosis. Biomedicines 2022, 10, 2558. [Google Scholar] [CrossRef] [PubMed]
Marker | Detection and Quantification | Oocyte and Embryo Quality, Fertilization Rate | Other Characteristics | Endometriosis Stage | Age (Years) | N° Patients/Controls | Ref. |
---|---|---|---|---|---|---|---|
↓ Fatty acids ↑ CH2NH2 phospholipids ↑ Lipids ↑ Lactate ↓ Leucine ↓ β-glucose ↓ α-glucose ↓ alanine ↓ Lysine ↓ Phosphocholine ↓ Choline ↓ Valine ↓ Aspartate ↓ Proline ↑ PTX3 ↑ CXCL8 ↑ CXCL10 ↑ CCL11 ↑ VEGF ↑ Insulin ↓ LDH | Immunoassay qPCR | ↓ Retrieved oocytes ↓ MII oocytes | ↑ insulin receptor mRNA levels in cumulus cells ↓ LDHB mRNA levels in cumulus cells | I/II III/IV | 31–39 | 16/7 | [2] |
↑ 8-OHdG ↑ Vitamin E | HPLC Immunoassay | - | ↑ oxidative damage to DNA in the follicular compartment | I/II/III/IV | <38 | 29/32 | [28] |
↑ 8-OHdG | Immunoassay | ↓ Oocyte quality | - | I/II | 30–36 | 19/32 | [29] |
↑ 8-OHdG | Immunoassay | ↓ Good quality embryos | ↑ TAC | II/IV | 27–40 | 61/43 | [30] |
↑ NO ↑ ROS ↑ Malondialdehyde ↓ SOD ↓ GSH peroxidase ↓ GSH reductase ↓ Vitamin A ↓ Vitamin C ↓ Vitamin E ↓ Selenium ↓ Zinc ↓ Copper ↑ Iron ↑ Lead ↑ Cadmium | Reverse phase HPLC Immunoassay Analytical chemistry test Colorimetric assay Protein Estimation Kit Spectrophotometric | ↓ Oocyte quality ↓ Embryo quality ↓ Total number of FF aspirated ↓ Oocytes retrieved ↓ Number of MII oocytes ↓ Fertilization rate ↓ Formation of grade I and II embryos | ↓ TAC | III/IV | 26–40 | 200/140 | [31] |
↓ Vitamin C (mg/L) ↑ 8-OHdG (ng/mL) | Colorimetric assay Immunoassay | ↓ Fertilization rate after ICS ↓ Good quality blastocysts | ↑ TAC (µmol/L) ↓ Total GSH (µmol/L) | - | 31–40 | 35/64 | [32] |
↓ Glucose ↑ Lactate ↑ Ascorbate | Analytical chemistry test | ↓ Retrieved Oocytes ↓ Mature Oocytes | ↓ Fat-soluble antioxidants | - | 23–35 | 145/35 | [33] |
↓ ROS | Immunoassay | ↑ Mature MII oocytes | ↑ Meiotic spindle present | - | 29–37 | 56/63 | [34] |
↓ Vitamin C | Spectrophotometry | ↓ Nº of follicles | ↓ TAC | III/IV | - | 23/68 | [35] |
↑ NO | Colorimetric assay | ↓ Matured MII oocytes ↑ Oocyte aging ↑ GC apoptosis | ↑ Protein nitration | - | 35–38 | 10/18 | [36] |
↑ NO | PCR-RFLP | - | ↑ Polymorphism of allele GG | I/II/III/IV | - | 27/27 | [37] |
↑ AOPP | Spectrophotometric method described | ↓ Blastocyst rate | ↓ Progesterone | I/II/III | 27–35 | 44/45 | [38] |
↑ MDA | Colorimetric assay | ↓ Blastocyst rate | ↑ Peroxidation levels were | III/IV | 31–36 | 38/41 | [39] |
↑ LPO | Antioxidant capacity test Colorimetric assay | - | ↓ TAC | - | <40 | 43/20 | [40] |
↑ MDA ↑ RvD1 | HPLC Immunoassay | - | ↓LH | - | 35–42 | 22/29 | [41] |
↓ 8-IP | Immunoassay | - | ↓ AMH ↓ TAC | - | 31–35 | 72/48 | [42] |
↓ GSH ↑ TBP2 ↑ IL-6 ↑ IL-8 ↑ TNF-α ↑ GPX3 ↑ TRX | Immunoassay | ↓ Total antral follicle count ↓ High-quality embryos ↓ Mature oocytes ↓ Cumulative embryo score per embryo | ↑ Dose of gonadotropins ↓ Serum E2 on hCG day ↓ Serum AMH | - | 31–38 | 31/34 | [43] |
↓ CD4+/CD8+ T ↑ CD45+/CD56+ NK ↑ CD45+CD14+ macrophages ↑ IP-10 ↑ RANTES ↑ G-CSF | Flow cytometry Immunoassay | ↓ Antral follicle ↓ Blastocyst formation rate ↓ Ovarian reserve ↓ Retrieved oocytes ↓ D3 high-quality embryo rate ↓ Implantation rate ↓ Fertilization rate ↓ Clinical pregnancy rate ↓ Cumulative live birth rate of one oocyte retrieval cycle | ↓ Serum AMH ↓ Serum E2 ↑ Inflammatory state | III/IV | 26–32 | 40/40 | [44] |
↑ aLN-l | Immunoassay | ↓ Metaphase II oocyte | - | - | 26–43 | 35/50 | [45] |
↓ IL-3 ↓ IL-5 ↑ IL-6 | Immunoassay | - | - | - | 25–37 | 34/34 | [46] |
↑ IL-1β ↑ IL-6 | Immunoassay | - | ↓ Estradiol | II/III/IV | 26–42 | 17/17 | [47] |
↑ Urocortin ↑ IL-6 ↑ IL-8 ↑ TNF-α ↑ RAGE | Immunoassay | - | ↑ CRH | - | 25–40 | 30/7 | [48] |
↑ IL-1β ↑ TNF-α ↑ IL-2 ↑ IL-4 ↑ IL-6 ↑ IL-8 ↑ IL-10 ↑ IL-12 ↑ INF-γ ↑ VEGF ↑ ADM ↑ Angiogenin | Immunoassay | ↓ Oocyte maturity ↓ Embryo quality ↓ MII oocytes quality | - | III/IV | 29–35 | 200/140 | [49] |
↑ Homocysteine | Immunoassay | - | - | - | 30–38 | 29/29 | [50] |
↑ Resistin ↑ IL-23 | Immunoassay | ↓ Implantation rate ↓ Clinical pregnancy rate ↑ Abortion rate | - | I/II III/IV | 26–36 | 76/40 | [51] |
↑ Resistin | Immunoassay | - | - | I/II III/IV | 27–40 | 40/40 | [52] |
↓ Phosphatidylglycerol phosphate ↓ Phosphatidylcholine ↓ Phosphatidylserine ↓ Phosphatidylinositol bisphosphate ↑ Sphingolipids ↑ Phosphatidylcholines | ESI-MS | ↓ Luteinization process ↓ Oocyte quality ↓ Embryonic cleavages | ↓ Apoptosis regulation ↑ Cell proliferation ↑ Malignant tumors ↑ endometriotic lesions. | III/IV | 26–35 | 10/10 | [53] |
↑ Fatty acids ↑ Carnitines ↑ Monoacylglycerols ↑ Lysophosphatidic acids ↑ Lysophosphatidylglycerols ↑ Diacylglycerols ↑ Lysophosphatidylcholines ↑ Phosphatidylserine ↑ Lysophosphatidylinositols ↑ Phosphatidic Acid | UPLC-MS | ↓ Embryo quality ↓ Transferred embryos ↓ Implantation rates | - | - | 33–39 | 18/22 | [54] |
↓ Acetate ↓ β-hydroxybutyrate ↓ Citrate ↓ Valine ↑ Glucose ↑ Lactate ↑ Unsaturated lipids | NMR | ↓ MII oocytes recovered ↓ Fertilization rate ↓ Pregnancy rate | ↑ Inflammatory processes | III/IV | 35–42 | 8/10 | [55] |
↑ LysoPC(18:2(9Z,12Z)) ↑ LysoPC(18:0) ↓ Phytosphingosine | SWATHTM LC-MS | ↓ MII rates ↓ Fertility rates | - | - | 33–39 | 17/16 | [56] |
↑ IGLV7–46 ↑ IGHG2 ↑ GDN ↑ ITIH3 ↓ CBG ↓ AGT ↓ FETUB | LC-MS/MS LFQP PRM | ↓ Oocyte development ↓ Oocyte quality ↓ Embryo implantation ↓ Endometrial receptivity | ↑ Immune response ↑ Pelvic pain | I/II/III | 28–35 | 20/10 | [57] |
↑ ApoE ↑ ApoE4 | Immunoassay | ↓ Retrieved mature oocytes ↓ Blastocysts and high-quality blastocysts ↑ Spontaneous pregnancy loss | ↓ BMI | - | 25–32 | 106/111 | [58] |
↑ BAX ↑ CASP3 ↑ CASP9 ↑ TP53 ↓ BCL2 ↑ TNFRSF13C ↑ BMPR2 ↑ FGF9 ↑ GPC3 ↑ SCYA1 ↑ ICAM1 ↑ IGFBP4 ↑ IGFBP6 ↑ IL-13RA2 ↑ CXCL10 ↑ MMP25 ↑ PDGFB ↑ CCL25 ↑ TGFBR1 ↑ TNFAIP6 ↑ EDA2R ↑ WIF1 ↓ IL23A ↓ XCL1 ↓ NAP1L4 ↓ HCRT ↓ WIF1 | Immunoassay Real-Time PCR | ↑ Granulosa cells’ apoptosis | - | I/II | <35 | 30/30 | [59] |
↓ PBX3 ↑ FAN ↑ IGLα ↑ IGLC1 ↑ Serotransferrin ↓ IL-2 ↑ CDCA2 ↑ TAK-1 ↑ PLGLA ↑ PPR3B | Protein Estimation Kit nanoUPLC-nanoESI-MSE | - | ↓ Serum LH ↓ Regulation of apoptosis | III/IV | 28–36 | 5/5 | [60] |
↑ Complement factor I ↑ Vitronectin ↓ VEGF ↑ Kininogen-1 ↑ FAK1 ↓ Apolipoprotein-AIV ↓ Transthyretin | 2D SDSPAGE LC-ESI-MS/MS | - | ↑ OX ↑ ROS ↑ Inflammatory response ↑ apoptosis | - | 23–33 | 12/9 | [61] |
↑ Kallikrein B ↑ Prothrombin ↑ Sex hormone- -binding globulin | Mass spectrometry | - | ↑ Coagulation | - | 18–37 | 30/10 | [62] |
↓ Glucose ↓ Citrate ↓ Creatine ↓ Tyrosine ↓ Alanine ↑ Lactate ↑ Pyruvate ↑ Lipids ↑ Glycerol ↑ Acetoacetate ↑ 3-Hydroxybutyrate ↑ Acetone ↑ Threonine ↑ Glutamine ↑ Succinate | 1H-NMR | - | ↑ Lipolysis ↑ Beta -oxidation ↑ Anaerobic glycolysis pathway | - | 30–41 | 50/29 | [7] |
↑ Lactate ↑ β-glucose ↑ Pyruvate ↑ Valine | NMR | - | - | - | 28–39 | 12/12 | [13] |
↓ Retinol ↓ Retinoic acid | LC-MSMS HPLC-UV | ↓ High-quality grade I embryos ↓ Follicle size | - | - | 32–35 | 79 | [63] |
↑ Tetradecanal ↑ Octadecanal ↑ Hexadecanal ↑ Eicosamethyl-cyclodecasiloxane ↑ 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene | SPMS GC-MS | - | - | - | - | 8/17 | [64] |
↓ miR-451 | Immunoassay | ↓ Quality MI oocytes ↓ Blastocyst-stage embryos | - | III /IV | - | 30/184 | [65] |
Marker | Detection and Quantification | Oocyte and Embryo Quality, Fertilization Rate | Other Characteristics | Endometriosis Stage | Age (Years) | N° Patients/ Controls | Ref. |
---|---|---|---|---|---|---|---|
↑ GSH ↑ SOD | Spectrophotometry | - | ↓ TAC | I/II/III/IV | <38 | 43/44 | [28] |
↑ FOX1 | Immunoassay | - | ↓ TAC | I/II | 30–36 | 27/44 | [29] |
↑ Vitamin E ↑ SOD | HPLC ELISA | ↓ N° of follicles | ↓ TAC | III/IV | - | 23/68 | [35] |
↑ aLN-l | Immunoassay | ↓ Metaphase II oocyte | - | - | 26–43 | 35/50 | [45] |
↑ AXIN1 ↑ ST1A1 ↓ CXCL9 | Immunoassay | - | - | - | 29–44 | 94/28 | [91] |
↑ Citrate ↑ Succinate ↑ ROS ↓ SOD ↓ Catalase ↓ GSH | Colorimetric assay Immunoassay Biochemical assay Spectrophotometry NMR | - | ↑ Glucose metabolism ↑ Lipid peroxidation ↑Advanced oxidation of protein products ↓ TAC ↓ Mitochondrial respiratory system | - | 24–40 | 75/60 | [108] |
↑ CA-125 ↑ STX-5 ↑ LN-1 | Immunoassay | - | - | I/II/III/IV | 25–40 | 60/20 | [109] |
↑ Anti-TPM3a-autoAb ↑ Anti-TPM3c-autoAb ↑ Anti-TPM3d-autoAb ↑ Anti-SLP2a-autoAb ↑ Anti-SLP2c-autoAb ↑ Anti-TMOD3b-autoAb ↑ Anti-TMOD3c-autoAb ↑ Anti-TMOD3d-autoAb ↑ CA-125 | Immunoassay MALDI-TOF/MS | - | - | I/II III/IV | 25 -38 | 50/27 | [110] |
↑ CA-125 ↑ Leukocytes ↑ Fibrinoge | Immunoassay | - | - | - | 25–35 | 48/38 | [111] |
↑ CA-125 | Immunoassay | - | - | III/IV | 26–42 | 42/46 | [112] |
↑ CA-125 ↑ IL-6 | Immunoassay | - | - | I/II/III/IV | - | 24/24 | [113] |
↑ Annexin V ↑ VEGF ↑ CA-125 ↑ sICAM-1 | Immunoassay | - | - | I/II III/IV | 24–44 | 232/121 | [114] |
↑ IL-6 ↑ IL-8 ↑ CA-125 ↑ hsCRP | Immunoassay | - | - | I/II III/IV | - | 201/93 | [115] |
↓ PEDF | Immunoassay | - | ↑ Pain related | - | 25–37 | 43/28 | [116] |
↑ SMOH C16:1 ↑ PCaaC36:2/PCaeC34:2 | ESI-MS/MS Biochemical assay | - | ↑ Age ↑ BMI | III/IV | 22–44 | 40/52 | [117] |
↑ Lauroylcarnitine ↑ Oleylcarnitine ↑ Myristoylcarnitine ↑ Hexadecenoylcarnitine ↑ Tetradecenoylcarnitine ↓ trimethylamine-N-oxide | UPLC-MS/ MS UPLC-ESI-Q-TOF | - | - | I/II/III/IV | 25–39 | 25/19 | [118] |
↑ Glucosylceramide | LC-MS/ MS | - | ↓ Apoptosis of shed endometrial cells | I/II/III/IV | 22–44 | 38/24 | [119] |
↓ IL-12 ↓ IL-13 ↓ VEGF | LC-MS/MS | - | - | I/II III/IV | 27–42 | 57/46 | [120] |
↑ CA-125 ↑ IL-32 | Immunoassay | - | - | III/IV | 33–36 | 50/35 | [121] |
↑ Resistin ↑ IL-23 | Immunoassay | ↓ Implantation rate ↓ Clinical pregnancy rate ↑ Abortion rate | - | I/II III/IV | 26 -36 | 76/40 | [51] |
↑ IL-1β ↑ TNF-α ↑ IL-2 ↑ IL-4 ↑ IL-6 ↑ IL-8 ↑ IL-10 ↑ IL-12 ↑ INF-γ ↑ VEGF ↑ ADM ↑ Angiogenin | Immunoassay | ↓ Oocyte maturity ↓ Embryo quality ↓ MII oocytes quality | - | III/IV | 29–35 | 200/140 | [49] |
↓ Retinol ↓ Retinoic acid | LC-MSMS HPLC-UV | ↓ High-quality grade I embryos ↓ Follicle size | - | - | 32–35 | 79 | [63] |
↑ Alanine ↑ Lysine ↑ Phenylalanine ↑ Leucine ↑ Proline | NMR | - | - | I/II/III/IV | 23–35 | 95/24 | [122] |
↑ Valine ↑ Fucose ↑ Choline-containing metabolites ↑ Glycerophosphocholine ↑ Lysine/arginine ↑ Lipoproteins ↓ Creatinine | 1H- NMR | - | - | I/II/III/IV | 25–37 | 50/23 | [123] |
↑ Lactate ↑ 3-Hydroxybutyrate ↑ Alanine ↑ Leucine ↑ Valine ↑ Threonine ↑ Lysine ↑ Glycerophosphatidylcholine ↑ Succinic Acid ↑ 2-Hydroxybutyrate ↓ Lipids ↓ Glucose ↓ Isoleucine ↓ Arginine | NMR | ↑ Anaerobic glycolysis ↑ OS ↓ NO ↓ NOS | I/II | <40 | 22/22 | [107] | |
↑ Homocysteine | Immunoassay | - | - | - | 30–38 | 29/29 | [50] |
↓ Nesfatin-1 | Immunoassay | - | ↓ BMI | I/II/III/IV | 21–35 | 25/25 | [124] |
↑ Glycodelin-A | Immunoassay | - | - | I/II/III/IV | 26–49 | 58/40 | [125] |
↑ Glycodelin-A ↑ IL-6 | Immunoassay | - | - | II/III/IV | 21–48 | 48/20 | [126] |
↓ Haptoglobin | Immunoassay Biochemical assay | - | - | I/II/III/IV | 27–40 | 15/15 | [127] |
↑ miR-515-5p ↑ miR-29b-1-5p ↓ miR-3168 ↑ miR-6502-5p ↑ miR-4748 ↓ miR-3137 | Immunoassay | - | - | I/II/III/IV | 20–42 | 100 /47 | [128] |
↓ let-7a-5p ↓ let-7b-5p ↓ let-7d-5p ↓ let-7f-5p ↓ let-7g- 5p ↓ let-7i-5p ↓ miR-199a-3p ↓ miR-320a ↓ miR-320b ↓ miR-320c ↓ miR-320d ↓ miR-328-3p ↓ miR-331-3p ↓ miR-320e | Immunoassay | - | - | - | - | 29/10 | [129] |
↑ miR- 125b-5p ↑ miR-150-5p ↑ miR-342-3p ↑ miR-451a ↓ miR-3613-5p ↓ let-7b | Immunoassay | - | - | I/II/III/IV | 27–41 | 41/59 | [130] |
↑ miR-22-3p ↑ miR-320a | Immunoassay | - | - | I/II/III/IV | 20–50 | 20/20 | [131] |
↓ miR-155 ↓ miR574-3p ↓ miR139-3p | Immunoassay | - | - | I/II/III/IV | 18–50 | 51/16 | [132] |
↑ miR-125b-5p ↑ miR-28-5p ↑ miR-29a-3p | Immunoassay | - | - | I/II/III/IV | 27–36 | 82/38 | [133] |
↓ miR-30c-5p ↓ miR- 127-3p ↓ miR-99b-5p ↓ miRNA-15b-5p ↓ miRNA-20a-5p ↑ miR-424-3p ↑ miR-185-5p was | Immunoassay | - | - | I/II | 21–43 | 30/20 | [134] |
↓ miR-3613-5p ↓ miR-6755-3p ↑ miR-125b-5p ↑ miR-150–5p ↑ miR-342-3p ↑ miR-143-3p ↑ miR-145-5p ↑ miR-500a-3p ↑ miR-451a ↑ miR-18a-5p | Immunoassay | - | - | III /IV | 26–40 | 24/24 | [135] |
↓ miR-17-5p ↓ miR-20a ↓ miR-22 | Immunoassay | - | - | III/IV | 25–44 | 23/23 | [136] |
↑ miR-200c ↓ miR-34a-5p | Immunoassay | - | - | I/II/III/IV | - | 71/65 | [137] |
↓ miR-31 ↑ miR-145 | Immunoassay | - | - | - | - | - | [138] |
↓ miRNA-154-5p ↓ miR-196b-5p ↓ miR-378a-3p ↑ miR-33a-5p | Immunoassay | - | - | III/IV | 29–43 | 51/41 | [139] |
↓ let-7b ↓ miR-135a | Immunoassay | - | - | III/IV | 26–40 | 24/24 | [140] |
↓ miR-200a ↓ miR-141 | Immunoassay | - | - | I/II/III/IV | 26–38 | 61/35 | [141] |
↑ miR-199a-5p | Immunoassay | - | - | - | - | 33/65 | [142] |
↑ miR-9, 96 ↑ miR-182 ↑ miR-183 ↑ miR-196a ↑ miR-196b ↑ miR-205 ↑ miR-375 | Immunoassay | - | - | - | - | 33/20 | [143] |
↑ miR-199a ↑ miR-122 ↓ miR-145 ↓ miR-141 ↓ miR- 542-3p ↓ miR-9 | Immunoassay | - | ↑ Pelvic adhesion and distribution | I/II/III/IV | 20–58 | 60/10 | [144] |
↑ CYP19A1 ↑ ESR1 ↑ ESR2 ↑ PGR ↑ BGN | Immunoassay | - | - | III/IV | 26–34 | 11/9 | [145] |
↑ ITB3 ↑ ITA2B2 ↑ ACVL-1 | Immunoassay | - | ↑ Peritoneal Endometriosis | I/II | 25–36 | 40/20 | [146] |
↑ CD48 ↑ DNAM-1 ↑ IL-31 ↑ XIAP | Immunoassay | - | ↑ Apoptosis ↑ immune response | I/II/III/IV | 23–40 | 68/35 | [147] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brinca, A.T.; Peiró, A.M.; Evangelio, P.M.; Eleno, I.; Oliani, A.H.; Silva, V.; Vicente, L.F.; Ramalhinho, A.C.; Gallardo, E. Follicular Fluid and Blood Monitorization of Infertility Biomarkers in Women with Endometriosis. Int. J. Mol. Sci. 2024, 25, 7177. https://doi.org/10.3390/ijms25137177
Brinca AT, Peiró AM, Evangelio PM, Eleno I, Oliani AH, Silva V, Vicente LF, Ramalhinho AC, Gallardo E. Follicular Fluid and Blood Monitorization of Infertility Biomarkers in Women with Endometriosis. International Journal of Molecular Sciences. 2024; 25(13):7177. https://doi.org/10.3390/ijms25137177
Chicago/Turabian StyleBrinca, Ana Teresa, Ana Maria Peiró, Pilar Matallín Evangelio, Irene Eleno, Antonio Helio Oliani, Vladimiro Silva, Luís F. Vicente, Ana Cristina Ramalhinho, and Eugenia Gallardo. 2024. "Follicular Fluid and Blood Monitorization of Infertility Biomarkers in Women with Endometriosis" International Journal of Molecular Sciences 25, no. 13: 7177. https://doi.org/10.3390/ijms25137177
APA StyleBrinca, A. T., Peiró, A. M., Evangelio, P. M., Eleno, I., Oliani, A. H., Silva, V., Vicente, L. F., Ramalhinho, A. C., & Gallardo, E. (2024). Follicular Fluid and Blood Monitorization of Infertility Biomarkers in Women with Endometriosis. International Journal of Molecular Sciences, 25(13), 7177. https://doi.org/10.3390/ijms25137177