Broadening the Genetic Spectrum of Painful Small-Fiber Neuropathy through Whole-Exome Study in Early-Onset Cases
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics/Cohort Phenotype
2.2. Identification of Genetic Variants
2.3. Summary of Prioritized Variants
2.4. Pathway Analysis
3. Discussion
3.1. Voltage-Gated Sodium Channel Variants
3.2. WFS1 Pathogenic Variants
3.3. COL7A1 Likely Pathogenic Variants
3.4. ATP7B Genetic Variants
3.5. Enrichment of TRPA1 Variants
3.6. NARS Pathway
4. Materials and Methods
4.1. Cohort Characterisation
4.2. DNA Extraction
4.3. Whole-Exome Sequencing
4.4. Variant Filtration and Classification
4.5. Phenotype-Driven Gene Panel Creation
4.6. Pathway Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bitzi, L.M.; Lehnick, D.; Wilder-Smith, E.P. Small Fiber Neuropathy: Swiss Cohort Characterization. Muscle Nerve 2021, 64, 293. [Google Scholar] [CrossRef] [PubMed]
- de Greef, B.T.A.; Hoeijmakers, J.G.J.; Gorissen-Brouwers, C.M.L.; Geerts, M.; Faber, C.G.; Merkies, I.S.J. Associated Conditions in Small Fiber Neuropathy—A Large Cohort Study and Review of the Literature. Eur. J. Neurol. 2018, 25, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Sène, D. Small Fiber Neuropathy: Diagnosis, Causes, and Treatment. Jt. Bone Spine 2018, 85, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Verdugo, R.J.; Matamala, J.M.; Inui, K.; Kakigi, R.; Valls-Solé, J.; Hansson, P.; Nilsen, K.B.; Lombardi, R.; Lauria, G.; Petropoulos, I.N.; et al. Review of Techniques Useful for the Assessment of Sensory Small Fiber Neuropathies: Report from an IFCN Expert Group. Clin. Neurophysiol. 2022, 136, 13–38. [Google Scholar] [CrossRef] [PubMed]
- Devigili, G.; Cazzato, D.; Lauria, G. Clinical Diagnosis and Management of Small Fiber Neuropathy: An Update on Best Practice. Expert Rev. Neurother. 2020, 20, 967–980. [Google Scholar] [CrossRef] [PubMed]
- Raasing, L.R.M.; Vogels, O.J.M.; Veltkamp, M.; Van Swol, C.F.P.; Grutters, J.C. Current View of Diagnosing Small Fiber Neuropathy. J. Neuromuscul. Dis. 2021, 8, 185–207. [Google Scholar] [CrossRef] [PubMed]
- Eijkenboom, I.; Sopacua, M.; Hoeijmakers, J.G.J.; De Greef, B.T.A.; Lindsey, P.; Almomani, R.; Marchi, M.; Vanoevelen, J.; Smeets, H.J.M.; Waxman, S.G.; et al. Yield of Peripheral Sodium Channels Gene Screening in Pure Small Fibre Neuropathy. J. Neurol. Neurosurg. Psychiatry 2019, 90, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Ślęczkowska, M.; Almomani, R.; Marchi, M.; Salvi, E.; de Greef, B.T.A.; Sopacua, M.; Hoeijmakers, J.G.J.; Lindsey, P.; Waxman, S.G.; Lauria, G.; et al. Peripheral Ion Channel Genes Screening in Painful Small Fiber Neuropathy. Int. J. Mol. Sci. 2022, 23, 14095. [Google Scholar] [CrossRef] [PubMed]
- Calvo, M.; Davies, A.J.; Hébert, H.L.; Weir, G.A.; Chesler, E.J.; Finnerup, N.B.; Levitt, R.C.; Smith, B.H.; Neely, G.G.; Costigan, M.; et al. The Genetics of Neuropathic Pain from Model Organisms to Clinical Application. Neuron 2019, 104, 637–653. [Google Scholar] [CrossRef]
- Ślęczkowska, M.; Misra, K.; Santoro, S.; Gerrits, M.M.; Hoeijmakers, J.G.J. Ion Channel Genes in Painful Neuropathies. Biomedicines 2023, 11, 2680. [Google Scholar] [CrossRef]
- Marchi, M.; Salvi, E.; Andelic, M.; Mehmeti, E.; D’Amato, I.; Cazzato, D.; Chiappori, F.; Lombardi, R.; Cartelli, D.; Devigili, G.; et al. TRPA1 Rare Variants in Chronic Neuropathic and Nociplastic Pain Patients. Pain 2022, 164, 2048–2059. [Google Scholar] [CrossRef] [PubMed]
- Martinelli-Boneschi, F.; Colombi, M.; Castori, M.; Devigili, G.; Eleopra, R.; Malik, R.A.; Ritelli, M.; Zoppi, N.; Dordoni, C.; Sorosina, M.; et al. COL6A5 Variants in Familial Neuropathic Chronic Itch. Brain 2017, 140, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Sainio, M.T.; Aaltio, J.; Hyttinen, V.; Kortelainen, M.; Ojanen, S.; Paetau, A.; Tienari, P.; Ylikallio, E.; Auranen, M.; Tyynismaa, H. Effectiveness of Clinical Exome Sequencing in Adult Patients with Difficult-to-Diagnose Neurological Disorders. Acta Neurol. Scand. 2022, 145, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Inoue, H.; Tanizawa, Y.; Wasson, J.; Behn, P.; Kalidas, K.; Bernal-Mizrachi, E.; Mueckler, M.; Marshall, H.; Donis-Keller, H.; Crock, P.; et al. A Gene Encoding a Transmembrane Protein Is Mutated in Patients with Diabetes Mellitus and Optic Atrophy (Wolfram Syndrome). Nat. Genet. 1998, 20, 143–148. [Google Scholar] [CrossRef] [PubMed]
- De Heredia, M.L.; Clèries, R.; Nunes, V. Genotypic Classification of Patients with Wolfram Syndrome: Insights into the Natural History of the Disease and Correlation with Phenotype. Genet. Med. 2013, 15, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Astuti, D.; Sabir, A.; Fulton, P.; Zatyka, M.; Williams, D.; Hardy, C.; Milan, G.; Favaretto, F.; Yu-Wai-Man, P.; Rohayem, J.; et al. Monogenic Diabetes Syndromes: Locus-specific Databases for Alström, Wolfram, and Thiamine-responsive Megaloblastic Anemia. Hum. Mutat. 2017, 38, 764. [Google Scholar] [CrossRef] [PubMed]
- Eijkenboom, I.; Sopacua, M.; Otten, A.B.C.; Gerrits, M.M.; Hoeijmakers, J.G.J.; Waxman, S.G.; Lombardi, R.; Lauria, G.; Merkies, I.S.J.; Smeets, H.J.M.; et al. Expression of Pathogenic SCN9A Mutations in the Zebrafish: A Model to Study Small-Fiber Neuropathy. Exp. Neurol. 2019, 311, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Zeberg, H.; Dannemann, M.; Sahlholm, K.; Tsuo, K.; Maricic, T.; Wiebe, V.; Hevers, W.; Robinson, H.P.C.; Kelso, J.; Pääbo, S. A Neanderthal Sodium Channel Increases Pain Sensitivity in Present-Day Humans. Curr. Biol. 2020, 30, 3465–3469.e4. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Xiao, Z.; Xu, Y.; Zhang, Y.; Tang, D.; Wu, X.; Tang, C.; Chen, M.; Shi, X.; Chen, P.; et al. Electrophysiological and Pharmacological Analyses of Nav1.9 Voltage-Gated Sodium Channel by Establishing a Heterologous Expression System. Front. Pharmacol. 2017, 8, 852. [Google Scholar] [CrossRef]
- Rohayem, J.; Ehlers, C.; Wiedemann, B.; Holl, R.; Oexle, K.; Kordonouri, O.; Salzano, G.; Meissner, T.; Burger, W.; Schober, E.; et al. Diabetes and Neurodegeneration in Wolfram Syndrome: A Multicenter Study of Phenotype and Genotype. Diabetes Care 2011, 34, 1503–1510. [Google Scholar] [CrossRef]
- Martinelli, D.; Dionisi-Vici, C. AP1S1 Defect Causing MEDNIK Syndrome: A New Adaptinopathy Associated with Defective Copper Metabolism. Ann. N. Y. Acad. Sci. 2014, 1314, 55–63. [Google Scholar] [CrossRef] [PubMed]
- National Center of Biotechnology Information. NM_001849.4(COL6A2):C.1572+1G>A AND Not Provided—ClinVar—NCBI. Available online: https://www.ncbi.nlm.nih.gov/clinvar/RCV000423788/ (accessed on 20 November 2023).
- Inoue, M.; Saito, Y.; Yonekawa, T.; Ogawa, M.; Iida, A.; Nishino, I.; Noguchi, S. Causative Variant Profile of Collagen VI-Related Dystrophy in Japan. Orphanet J. Rare Dis. 2021, 16, 284. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. NM_000304.4(PMP22):C.88G>A (p.Val30Met) AND Charcot-Marie-Tooth Disease, Type I—ClinVar—NCBI. Available online: https://www.ncbi.nlm.nih.gov/clinvar/RCV000796876/ (accessed on 27 November 2023).
- Shames, I.; Fraser, A.; Colby, J.; Orfali, W.; Snipes, G.J. Phenotypic Differences between Peripheral Myelin Protein-22 (PMP22) and Myelin Protein Zero (P0) Mutations Associated with Charcot-Marie-Tooth-Related Diseases. J. Neuropathol. Exp. Neurol. 2003, 62, 751–764. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.W.; Du, J.; Jiao, B.; Liao, X.X.; Zhou, L.; Liu, X.X.; Yuan, Z.H.; Guo, L.N.; Wang, X.; Shen, L.; et al. Novel ATL1 Mutation in a Chinese Family with Hereditary Spastic Paraplegia: A Case Report and Review of Literature. World J. Clin. Cases 2019, 7, 1358–1366. [Google Scholar] [CrossRef] [PubMed]
- Guelly, C.; Zhu, P.P.; Leonardis, L.; Papić, L.; Zidar, J.; Schabhüttl, M.; Strohmaier, H.; Weis, J.; Strom, T.M.; Baets, J.; et al. Targeted High-Throughput Sequencing Identifies Mutations in Atlastin-1 as a Cause of Hereditary Sensory Neuropathy Type I. Am. J. Hum. Genet. 2011, 88, 99–105. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. NM_006767.4(LZTR1):C.1084C>T (p.Arg362Ter) AND Not Provided—ClinVar—NCBI. Available online: https://www.ncbi.nlm.nih.gov/clinvar/RCV000329167/ (accessed on 20 November 2023).
- Jordan, J.T.; Smith, M.J.; Walker, J.A.; Erdin, S.; Talkowski, M.E.; Merker, V.L.; Ramesh, V.; Cai, W.; Harris, G.J.; Bredella, M.A.; et al. Pain Correlates with Germline Mutation in Schwannomatosis. Medicine 2018, 97, e9717. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. NM_001303052.2(MYT1L):C.1672C>T (p.Arg558Cys) AND Intellectual Disability, Autosomal Dominant 39—ClinVar—NCBI. Available online: https://www.ncbi.nlm.nih.gov/clinvar/RCV001253116/ (accessed on 27 November 2023).
- D’Agnelli, S.; Arendt-Nielsen, L.; Gerra, M.C.; Zatorri, K.; Boggiani, L.; Baciarello, M.; Bignami, E. Fibromyalgia: Genetics and Epigenetics Insights May Provide the Basis for the Development of Diagnostic Biomarkers. Mol. Pain 2019, 15, 1744806918819944. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. VCV000279784.32—ClinVar—NCBI. Available online: https://www.ncbi.nlm.nih.gov/clinvar/variation/279784/?oq=%22NM_000094.4(COL7A1):c.497dup(p.Val168fs)%22%5Bvarname%5D&m=NM_000094.4(COL7A1):c.497dup (p.Val168fs) (accessed on 20 November 2023).
- Christiano, A.M.; D’Alessio, M.; Paradisi, M.; Angelo, C.; Mazzanti, C.; Puddu, P.; Uitto, J. A Common Insertion Mutation in COL7A1 in Two Italian Families with Recessive Dystrophic Epidermolysis Bullosa. J. Investig. Dermatol. 1996, 106, 679–684. [Google Scholar] [CrossRef]
- Varki, R.; Sadowski, S.; Uitto, J.; Pfendner, E. Epidermolysis Bullosa. II. Type VII Collagen Mutations and Phenotype–Genotype Correlations in the Dystrophic Subtypes. J. Med. Genet. 2007, 44, 181. [Google Scholar] [CrossRef]
- Loudianos, G.; Dessì, V.; Angius, A.; Lovicu, M.; Loi, A.; Deiana, M.; Akar, N.; Vajro, P.; Figus, A.; Cao, A.; et al. Wilson Disease Mutations Associated with Uncommon Haplotypes in Mediterranean Patients. Hum. Genet. 1996, 98, 640–642. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. VCV002195419.1—ClinVar—NCBI. Available online: https://www.ncbi.nlm.nih.gov/clinvar/variation/2195419/ (accessed on 20 November 2023).
- Farschtschi, S.C.; Mainka, T.; Glatzel, M.; Hannekum, A.L.; Hauck, M.; Gelderblom, M.; Hagel, C.; Friedrich, R.E.; Schuhmann, M.U.; Schulz, A.; et al. C-Fiber Loss as a Possible Cause of Neuropathic Pain in Schwannomatosis. Int. J. Mol. Sci. 2020, 21, 3569. [Google Scholar] [CrossRef]
- Vanoye, C.G.; Desai, R.R.; Fabre, K.L.; Gallagher, S.L.; Potet, F.; DeKeyser, J.M.; Macaya, D.; Meiler, J.; Sanders, C.R.; George, A.L. High Throughput Functional Evaluation of KCNQ1 Decrypts Variants of Unknown Significance. Circ. Genom. Precis. Med. 2018, 11, e002345. [Google Scholar] [CrossRef]
- Machado, A.A.C.; Deguti, M.M.; Genschel, J.; Cançado, E.L.R.; Bochow, B.; Schmidt, H.; Barbosa, E.R. Neurological Manifestations and ATP7B Mutations in Wilson’s Disease. Parkinsonism Relat. Disord. 2008, 14, 246–249. [Google Scholar] [CrossRef]
- National Center of Biotechnology Information NM_000228.3(LAMB3):C.1903C>T (p.Arg635Ter) AND Not Provided—ClinVar—NCBI. Available online: https://www.ncbi.nlm.nih.gov/clinvar/RCV000255105/ (accessed on 20 November 2023).
- Yuan, J.H.; Schulman, B.R.; Effraim, P.R.; Sulayman, D.H.; Jacobs, D.S.; Waxman, S.G. Genomic Analysis of 21 Patients with Corneal Neuralgia after Refractive Surgery. Pain Rep. 2020, 5, e826. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. VCV001063557.6—ClinVar—NCBI. Available online: https://www.ncbi.nlm.nih.gov/clinvar/variation/1063557/#id_second (accessed on 28 November 2023).
- National Center for Biotechnology Information. VCV001384008.5—ClinVar—NCBI. Available online: https://www.ncbi.nlm.nih.gov/clinvar/variation/1384008/#id_second (accessed on 28 November 2023).
- National Center for Biotechnology Information. NM_004990.4(MARS1):C.1793G>A (p.Arg598His) AND Severe Early-Onset Pulmonary Alveolar Proteinosis Due to MARS Deficiency—ClinVar—NCBI. Available online: https://www.ncbi.nlm.nih.gov/clinvar/RCV001647326/ (accessed on 29 November 2023).
- National Center for Biotechnology Information. NM_000263.4(NAGLU):C.1000G>A (p.Val334Ile) AND Not Provided—ClinVar—NCBI. Available online: https://www.ncbi.nlm.nih.gov/clinvar/RCV000761953/ (accessed on 29 November 2023).
- Weber, B.; Guo, X.H.; Kleijer, W.J.; Van De Kamp, J.J.P.; Poorthuis, B.J.H.M.; Hopwood, J.J. Sanfilippo Type B Syndrome (Mucopolysaccharidosis III B): Allelic Heterogeneity Corresponds to the Wide Spectrum of Clinical Phenotypes. Eur. J. Hum. Genet. 1999, 7, 34–44. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. NM_000263.4(NAGLU):C.384-10C>G AND Not Provided—ClinVar—NCBI. Available online: https://www.ncbi.nlm.nih.gov/clinvar/RCV001754503/ (accessed on 29 November 2023).
- National Center for Biotechnology Information. NM_000263.4(NAGLU):C.527A>G (p.Gln176Arg) AND Multiple Conditions—ClinVar—NCBI. Available online: https://www.ncbi.nlm.nih.gov/clinvar/RCV002595192/ (accessed on 29 November 2023).
- Liao, Y.; Wang, J.; Jaehnig, E.J.; Shi, Z.; Zhang, B. WebGestalt 2019: Gene Set Analysis Toolkit with Revamped UIs and APIs. Nucleic Acids Res. 2019, 47, W199–W205. [Google Scholar] [CrossRef] [PubMed]
- Mi, H.; Ebert, D.; Muruganujan, A.; Mills, C.; Albou, L.P.; Mushayamaha, T.; Thomas, P.D. PANTHER Version 16: A Revised Family Classification, Tree-Based Classification Tool, Enhancer Regions and Extensive API. Nucleic Acids Res. 2021, 49, D394. [Google Scholar] [CrossRef] [PubMed]
- Faber, C.G.; Hoeijmakers, J.G.J.; Ahn, H.S.; Cheng, X.; Han, C.; Choi, J.S.; Estacion, M.; Lauria, G.; Vanhoutte, E.K.; Gerrits, M.M.; et al. Gain of Function Na V1.7 Mutations in Idiopathic Small Fiber Neuropathy. Ann. Neurol. 2012, 71, 26–39. [Google Scholar] [CrossRef]
- Pallotta, M.T.; Tascini, G.; Crispoldi, R.; Orabona, C.; Mondanelli, G.; Grohmann, U.; Esposito, S. Wolfram Syndrome, a Rare Neurodegenerative Disease: From Pathogenesis to Future Treatment Perspectives. J. Transl. Med. 2019, 17, 238. [Google Scholar] [CrossRef]
- Gross, F.; Üçeyler, N. Mechanisms of Small Nerve Fiber Pathology. Neurosci. Lett. 2020, 737, 135316. [Google Scholar] [CrossRef]
- Schmidt, D.; Díaz, P.; Muñoz, D.; Espinoza, F.; Nystrom, A.; Fuentes, I.; Ezquer, M.; Bennett, D.L.; Calvo, M. Characterisation of the Pathophysiology of Neuropathy and Sensory Dysfunction in a Mouse Model of Recessive Dystrophic Epidermolysis Bullosa. Pain 2022, 163, 2052–2060. [Google Scholar] [CrossRef] [PubMed]
- Kern, J.S.; Kohlhase, J.; Bruckner-Tuderman, L.; Has, C. Expanding the COL7A1 Mutation Database: Novel and Recurrent Mutations and Unusual Genotype-Phenotype Constellations in 41 Patients with Dystrophic Epidermolysis Bullosa. J. Investig. Dermatol. 2006, 126, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Bandmann, O.; Weiss, K.H.; Kaler, S.G. Wilson’s Disease and Other Neurological Copper Disorders. Lancet. Neurol. 2015, 14, 103. [Google Scholar] [CrossRef] [PubMed]
- Hartwig, C.; Zlatic, S.A.; Wallin, M.; Vrailas-Mortimer, A.; Fahrni, C.J.; Faundez, V. Trafficking Mechanisms of P-Type ATPase Copper Transporters. Curr. Opin. Cell Biol. 2019, 59, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Sturniolo, G.C.; Lazzarini, D.; Bartolo, O.; Berton, M.; Leonardi, A.; Fregona, I.A.; Parrozzani, R.; Midena, E. Small Fiber Peripheral Neuropathy in Wilson Disease: An In Vivo Documentation by Corneal Confocal Microscopy. Investig. Ophthalmol. Vis. Sci. 2015, 56, 1390–1395. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.H.; Ahn, T.B.; Jeon, B.S. Wilson Disease With an Initial Manifestation of Polyneuropathy. Arch. Neurol. 2005, 62, 1628–1631. [Google Scholar] [CrossRef] [PubMed]
- Moparthi, L.; Survery, S.; Kreir, M.; Simonsen, C.; Kjellbom, P.; Högestätt, E.D.; Johanson, U.; Zygmunt, P.M. Human TRPA1 Is Intrinsically Cold- and Chemosensitive with and without Its N-Terminal Ankyrin Repeat Domain. Proc. Natl. Acad. Sci. USA 2014, 111, 16901–16906. [Google Scholar] [CrossRef]
- Meents, J.E.; Fischer, M.J.M.; McNaughton, P.A. Sensitization of TRPA1 by Protein Kinase A. PLoS ONE 2017, 12, e0170097. [Google Scholar] [CrossRef]
- Stokes, C.; Treinin, M.; Papke, R.L. Looking below the Surface of Nicotinic Acetylcholine Receptors. Trends Pharmacol. Sci. 2015, 36, 514–523. [Google Scholar] [CrossRef]
- Orr-Urtreger, A.; Seldin, M.F.; Baldini, A.; Beaudet, A.L. Cloning and Mapping of the Mouse Alpha 7-Neuronal Nicotinic Acetylcholine Receptor. Genomics 1995, 26, 399–402. [Google Scholar] [CrossRef]
- Hone, A.J.; McIntosh, J.M. Nicotinic Acetylcholine Receptors in Neuropathic and Inflammatory Pain. FEBS Lett. 2018, 592, 1045. [Google Scholar] [CrossRef] [PubMed]
- Lang, P.M.; Burgstahler, R.; Sippel, W.; Irnich, D.; Schlotter-Weigel, B.; Grafe, P. Characterization of Neuronal Nicotinic Acetylcholine Receptors in the Membrane of Unmyelinated Human C-Fiber Axons by in Vitro Studies. J. Neurophysiol. 2003, 90, 3295–3303. [Google Scholar] [CrossRef] [PubMed]
- Wieskopf, J.S.; Mathur, J.; Limapichat, W.; Post, M.R.; Al-Qazzaz, M.; Sorge, R.E.; Martin, L.J.; Zaykin, D.V.; Smith, S.B.; Freitas, K.; et al. The Nicotinic A6 Subunit Gene Determines Variability in Chronic Pain Sensitivity via Cross-Inhibition of P2X2/3 Receptors. Sci. Transl. Med. 2015, 7, 287ra72. [Google Scholar] [CrossRef] [PubMed]
- Periviita, V.; Palmio, J.; Jokela, M.; Hartikainen, P.; Vihola, A.; Rauramaa, T.; Udd, B. CACNA1S Variant Associated with a Myalgic Myopathy Phenotype. Neurology 2023, 101, e1779–e1786. [Google Scholar] [CrossRef]
- Agilent Technologies Agilent Technologies SureSelect QXT Target Enrichment for the Illumina Platform. Available online: https://www.agilent.com/cs/library/usermanuals/public/G9681-90000.pdf (accessed on 29 June 2024).
- Illumina Technologies. HiSeq 2500 Specifications|Key Performance Parameters. Available online: https://www.illumina.com/systems/sequencing-platforms/hiseq-2500/specifications.html (accessed on 3 January 2022).
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Fadista, J.; Oskolkov, N.; Hansson, O.; Groop, L. LoFtool: A Gene Intolerance Score Based on Loss-of-Function Variants in 60,706 Individuals. Bioinformatics 2017, 33, 471–474. [Google Scholar] [CrossRef] [PubMed]
- Frésard, L.; Montgomery, S.B. Diagnosing Rare Diseases after the Exome. Cold Spring Harb. Mol. Case Stud. 2018. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.; Dou, B.; Zhang, Y.; Chen, Z.; Li, Y.; Fan, Z.; Ma, Y.; Du, S.; Wang, J.; Xu, Z.; et al. Inflammation-the Role of TRPA1 Channel. Front. Physiol. 2023, 14, 1093925. [Google Scholar] [CrossRef] [PubMed]
- Señarís, R.; Ordás, P.; Reimúndez, A.; Viana, F. Mammalian Cold TRP Channels: Impact on Thermoregulation and Energy Homeostasis. Pflugers Arch. 2018, 470, 761–777. [Google Scholar] [CrossRef]
- Hellenthal, K.E.M.; Brabenec, L.; Gross, E.R.; Wagner, N.M. TRP Channels as Sensors of Aldehyde and Oxidative Stress. Biomolecules 2021, 11, 1401. [Google Scholar] [CrossRef]
- Irwin, W.A.; Bergamin, N.; Sabatelli, P.; Reggiani, C.; Megighian, A.; Merlini, L.; Braghetta, P.; Columbaro, M.; Volpin, D.; Bressan, G.M.; et al. Mitochondrial Dysfunction and Apoptosis in Myopathic Mice with Collagen VI Deficiency. Nat. Genet. 2003, 35, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, Y.; Takashima, H. The Current State of Charcot-Marie-Tooth Disease Treatment. Genes 2023, 14, 1391. [Google Scholar] [CrossRef] [PubMed]
- Barro-Soria, R. Sensing Its Own Permeant Ion: KCNQ1 Channel Inhibition by External K. J. Gen. Physiol. 2023, 155, e202313337. [Google Scholar] [CrossRef] [PubMed]
- Sheline, C.T.; Choi, E.H.; Kim-Han, J.S.; Dugan, L.L.; Choi, D.W. Cofactors of Mitochondrial Enzymes Attenuate Copper-Induced Death In Vitro and In Vivo. Ann. Neurol. 2002, 52, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Delprat, B.; Rieusset, J.; Delettre, C. Defective Endoplasmic Reticulum–Mitochondria Connection Is a Hallmark of Wolfram Syndrome. Contact 2019, 2, 2515256419847407. [Google Scholar] [CrossRef]
- Lischka, A.; Lassuthova, P.; Çakar, A.; Record, C.J.; Van Lent, J.; Baets, J.; Dohrn, M.F.; Senderek, J.; Lampert, A.; Bennett, D.L.; et al. Genetic Pain Loss Disorders. Nat. Rev. Dis. Prim. 2022, 8, 41. [Google Scholar] [CrossRef]
- Hardiman, O.; Al-Chalabi, A.; Chio, A.; Corr, E.M.; Logroscino, G.; Robberecht, W.; Shaw, P.J.; Simmons, Z.; Van Den Berg, L.H. Amyotrophic Lateral Sclerosis. Nat. Rev. Dis. Prim. 2017, 3, 17071. [Google Scholar] [CrossRef]
FINCB 1 | MUMC+ 2 | HC 3 | Total | |
---|---|---|---|---|
Individuals (n) | 52 | 36 | 40 | 88 |
Gender (F) | 29 | 27 | 27 | 56 |
Average age at onset | 35 | 29 | - | 33.3 |
IENFD (↓) | 52 | 22 | - | 74 |
TTT (Abnormal) | - | 24 | - | 24 |
Individuals | Gene Name | c.change | p.change | Transcript | MAF gnomAD NFE | VAF (%) | CADD Scores | References |
---|---|---|---|---|---|---|---|---|
ET14, NET22 | SCN9A | c.684C>G | p.Ile228Met | NM_001365536.1 | 0.00159 | 46.3, 42.5 | 20.2 | [7,17] |
NET12 | SCN9A | c.2567G>A | p.Gly856Asp | NM_002977.3 | −1 | 48.5 | 24.6 | [7,18] |
ITA03, NET36 | SCN9A | c.2794A>C | p.Met932Leu | NM_002977.3 | 0.0028 | 27.2, 45.1 | 20.1 | [7,18] |
c.2971G>T | p.Val991Leu | NM_002977.3 | 0.0028 | 47.3, 41.3 | 9.81 | |||
c.5723A>G | p.Asp1908Gly | NM_002977.3 | 0.0033 | 46.2, 58.3 | 22.8 | |||
NET17 | SCN11A | c.1744G>A | p.Ala582Thr | NM_001349253.1 | 0.000264 | 49.5 | 19.4 | [7,19] |
ITA42 | WFS1 | c.409_424dupGGCCGTCGCGAGGCTG | p.Val142fs | NM_006005.3 | 0.000056 | 50 | NA | [14,15,16] |
NET11 | WFS1 | c.2648_2651delTCTT | p.Phe883SerfsTer68 | NM_006005.3 | 0.000195 | 60.4 | NA | [16,20] |
Individuals | Gene Name | c.change | p.change | Transcript | MAF gnomAD NFE | VAF (%) | CADD Scores | References |
---|---|---|---|---|---|---|---|---|
ITA03 | SCN9A | c.4612T>C | p.Trp1538Arg | NM_002977.3 | 0.002461 | 50 | 18.64 | [7] |
ITA04 | ATP7B | c.1993A>G | p.Met665Val | NM_000053.3 | 0.0004051 | 48.5 | 22 | [21] |
COL6A2 | c.1572+1G>A | - | NM_001849.4 | −1 | 50 | 33 | [22,23] | |
ITA17 | PMP22 | c.88G>A | p.Val30Met | NM_000304.4 | 0.00001549 | 50.7 | 22.8 | [24,25] |
ITA19 | ATL1 | c.1247G>A | p.Arg416His | NM_015915.4 | 0.00006481 | 47.2 | 24.7 | [26,27] |
ITA26 | LZTR1 | c.1084C>T | p.Arg362 * | NM_006767.4 | 0.00006208 | 47.6 | 37 | [28,29] |
ITA27 | MYT1L | c.1672C>T | p.Arg558Cys | NM_001303052.1 | −1 | 52.3 | 32 | [30,31] |
ITA34 | COL7A1 | c.497dupA | p.Val168fs | NM_000094.3 | 0.00006164 | 39.2 | NA | [32,33,34] |
ITA45 | SCN10A | c.3674T>C | p.Ile1225Thr | NM_006514.3 | 0.0008442 | 46.1 | 26.7 | [7] |
ITA46 | ATP7B | c.2138A>G | p.Tyr713Cys | NM_000053.3 | 0.00002337 | 48 | 26.5 | [21,35] |
NET04 | LZTR1 | c.2066C>G | p.Ser689Cys | NM_006767.4 | −1 | 69.1 | 22.2 | [36,37] |
NET19 | KCNQ1 | c.590C>T | p.Pro197Leu | NM_000218.2 | 0.000115 | 49.1 | 29.3 | [38] |
NET23 | ATP7B | c.3207C>A | p.His1069Gln | NM_000053.3 | 0.00000883 | 51.1 | 23 | [39] |
NET30 | LAMB3 | c.1903C>T | p.Arg635 * | NM_000228.3 | 0.00103 | 52.6 | 36 | [40] |
NET33 | COL7A1 | c.4373C>T | p.Pro1458Leu | NM_000094.3 | 0.003635 | 72.2 | 27.7 | [41] |
Variants | Gene-Disease Association | Classification | References |
---|---|---|---|
ATL1(NM_015915.4): c.1247G>A | HSN ID | LP | [26,27] |
KIF1A(NM_001244008.1): c.694G>A | HSN IIC | VUS | [42] |
KIF1A(NM_001244008.1): c.4334G>A | HSN IIC | VUS | [43] |
MARS1(NM_004990.4): c.1793G>A | CMTD, axonal, type 2U | VUS | [44] |
NAGLU(NM_000263.4): c.1000G>A | CMTD, axonal, type 2V | LP | [45,46] |
NAGLU(NM_000263.4): c.384-10C>G | CMTD, axonal, type 2V | VUS | [47] |
NAGLU(NM_000263.4): c.527A>G | CMTD, axonal, type 2V | VUS | [48] |
NEFH(NM_021076.3): c.736C>G | CMTD, axonal, type 2CC | VUS | - |
PMP22(NM_000304.4): c.88G>A | HNPP | LP | [24,25] |
SCN9A(NM_002977.3): c.4612T>C | HSAN IID, PEM, SFN | LP | [7] |
SCN9A(NM_002977.3): c.3689T>C | HSAN IID, PEM, SFN | VUS | [7] |
Gene Name | Pathogenic | Likely Pathogenic | VUS | Total |
---|---|---|---|---|
SCN9A | 9 § | 1 | 5 | 15 |
TRPA1 | 0 | 0 | 6 * | 6 |
ATP7B | 0 | 3 | 3 | 6 |
SCN10A | 0 | 1 | 5 # | 6 |
COL7A1 | 0 | 2 | 2 | 4 |
WFS1 | 0 | 2 | 2 | 4 |
NAGLU | 0 | 1 | 2 | 3 |
SCN11A | 0 | 1 | 2 | 3 |
TRPM8 | 0 | 0 | 3 | 3 |
TRPV1 | 0 | 0 | 2 | 2 |
A: Pathway Analysis Results from Cases | |||||
Pathway | Size | Expect | Ratio | p Value | FDR |
Nicotinic acetylcholine receptor signalling pathway | 93 | 24.173 | 2.1511 | 3.7977 × 10−10 | 4.2914 × 10−8 |
Integrin signalling pathway | 166 | 43.148 | 1.3210 | 0.0081741 | 0.33901 |
Blood coagulation | 38 | 9.8773 | 1.7211 | 0.0091 | 0.33901 |
Alzheimer disease-presenilin pathway | 112 | 29.112 | 1.3396 | 0.0212 | 0.49960 |
Cadherin signalling pathway | 153 | 39.769 | 1.28245 | 0.0221 | 0.49960 |
B: Pathway Analysis Results from Healthy Controls | |||||
Pathway | Size | Expect | Ratio | p value | FDR |
Cadherin signalling pathway | 153 | 12.9 | 1.861 | 0.00159 | 0.179 |
JAK/STAT signalling pathway | 15 | 1.26 | 3.955 | 0.00602 | 0.277 |
Nicotinic acetylcholine receptor signalling pathway | 93 | 7.89 | 1.913 | 0.00943 | 0.277 |
Integrin signalling pathway | 166 | 13.9 | 1.643 | 0.00983 | 0.277 |
Wnt signalling pathway | 294 | 24.7 | 1.412 | 0.01726 | 0.390 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Misra, K.; Ślęczkowska, M.; Santoro, S.; Gerrits, M.M.; Mascia, E.; Marchi, M.; Salvi, E.; Smeets, H.J.M.; Hoeijmakers, J.G.J.; Martinelli Boneschi, F.G.; et al. Broadening the Genetic Spectrum of Painful Small-Fiber Neuropathy through Whole-Exome Study in Early-Onset Cases. Int. J. Mol. Sci. 2024, 25, 7248. https://doi.org/10.3390/ijms25137248
Misra K, Ślęczkowska M, Santoro S, Gerrits MM, Mascia E, Marchi M, Salvi E, Smeets HJM, Hoeijmakers JGJ, Martinelli Boneschi FG, et al. Broadening the Genetic Spectrum of Painful Small-Fiber Neuropathy through Whole-Exome Study in Early-Onset Cases. International Journal of Molecular Sciences. 2024; 25(13):7248. https://doi.org/10.3390/ijms25137248
Chicago/Turabian StyleMisra, Kaalindi, Milena Ślęczkowska, Silvia Santoro, Monique M. Gerrits, Elisabetta Mascia, Margherita Marchi, Erika Salvi, Hubert J. M. Smeets, Janneke G. J. Hoeijmakers, Filippo Giovanni Martinelli Boneschi, and et al. 2024. "Broadening the Genetic Spectrum of Painful Small-Fiber Neuropathy through Whole-Exome Study in Early-Onset Cases" International Journal of Molecular Sciences 25, no. 13: 7248. https://doi.org/10.3390/ijms25137248
APA StyleMisra, K., Ślęczkowska, M., Santoro, S., Gerrits, M. M., Mascia, E., Marchi, M., Salvi, E., Smeets, H. J. M., Hoeijmakers, J. G. J., Martinelli Boneschi, F. G., Filippi, M., Lauria Pinter, G., Faber, C. G., & Esposito, F. (2024). Broadening the Genetic Spectrum of Painful Small-Fiber Neuropathy through Whole-Exome Study in Early-Onset Cases. International Journal of Molecular Sciences, 25(13), 7248. https://doi.org/10.3390/ijms25137248