Inflammatory and Immune Mechanisms for Atherosclerotic Cardiovascular Disease in HIV
Abstract
:1. Introduction
2. Regulation of Inflammation in PLWH
2.1. HIV-Related: Viral Replication, Viral Reservoir, Viral Proteins
2.2. Alterations of the Microbiome
2.3. Lipids
2.4. Substance Use: Heroin, Cocaine, Methamphetamine, Tobacco, Cannabis
3. Soluble Mediators
4. Innate Immunity
4.1. Neutrophils
4.2. Monocytes and Macrophages
4.3. Dendritic Cells
4.4. NK Cells
4.5. Platelets
5. Adaptive Immune System
5.1. T Cell Lymphocytes
5.1.1. CD4+ T cells
5.1.2. Regulatory T Cells (Tregs)
5.1.3. Cytotoxic CD4+ T cells
5.1.4. CD8+ T cells
5.2. B Cells
5.2.1. B1 Cells
5.2.2. B2 Cells
5.2.3. Immune Regulation
6. Co-Pathogens
6.1. Herpesviruses: CMV, EBV, HSV, HHV-8, VZV
6.1.1. CMV
6.1.2. Epstein Barr Virus (EBV)
6.1.3. HSV-2 and Kaposi-Sarcoma-Associated Herpesvirus (HHV-8)
6.1.4. VZV
6.2. HCV
7. Summary and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mathers, C.D.; Loncar, D. Projections of Global Mortality and Burden of Disease from 2002 to 2030. PLoS Med. 2006, 3, e442. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.S.V.; Stelzle, D.; Lee, K.K.; Beck, E.J.; Alam, S.; Clifford, S.; Longenecker, C.T.; Strachan, F.; Bagchi, S.; Whiteley, W.; et al. Global Burden of Atherosclerotic Cardiovascular Disease in People Living with HIV: Systematic Review and Meta-Analysis. Circulation 2018, 138, 1100–1112. [Google Scholar] [CrossRef] [PubMed]
- Boccara, F.; Lang, S.; Meuleman, C.; Ederhy, S.; Mary-Krause, M.; Costagliola, D.; Capeau, J.; Cohen, A. HIV and Coronary Heart Disease: Time for a Better Understanding. J. Am. Coll. Cardiol. 2013, 61, 511–523. [Google Scholar] [CrossRef]
- Triant, V.A.; Lee, H.; Hadigan, C.; Grinspoon, S.K. Increased Acute Myocardial Infarction Rates and Cardiovascular Risk Factors among Patients with Human Immunodeficiency Virus Disease. J. Clin. Endocrinol. Metab. 2007, 92, 2506–2512. [Google Scholar] [CrossRef] [PubMed]
- Guaraldi, G.; Orlando, G.; Zona, S.; Menozzi, M.; Carli, F.; Garlassi, E.; Berti, A.; Rossi, E.; Roverato, A.; Palella, F. Premature Age-Related Comorbidities among HIV-Infected Persons Compared with the General Population. Clin. Infect. 2011, 53, 1120–1126. [Google Scholar] [CrossRef] [PubMed]
- Burrowes, S.; Cahill, P.; Kottilil, S.; Bagchi, S. Contribution of Antiretroviral Therapy to Cardiovascular Disease Risk in HIV-Infected Patients. Future Virol. 2016, 11, 509–527. [Google Scholar] [CrossRef]
- Jaschinski, N.; Greenberg, L.; Neesgaard, B.; Miró, J.M.; Grabmeier-Pfistershammer, K.; Wandeler, G.; Smith, C.; De Wit, S.; Wit, F.; Pelchen-Matthews, A.; et al. Recent Abacavir Use and Incident Cardiovascular Disease in Contemporary-Treated People with HIV. AIDS 2023, 37, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Hansson, G.K. Inflammation, Atherosclerosis, and Coronary Artery Disease. N. Engl. J. Med. 2005, 352, 1685–1695. [Google Scholar] [CrossRef] [PubMed]
- Hansson, G.K.; Hermansson, A. The Immune System in Atherosclerosis. Nat. Immunol. 2011, 12, 204–212. [Google Scholar] [CrossRef]
- Libby, P.; Lichtman, A.H.; Hansson, G.K. Immune Effector Mechanisms Implicated in Atherosclerosis: From Mice to Humans. Immunity 2013, 38, 1092–1104. [Google Scholar] [CrossRef]
- Teague, H.L.; Ahlman, M.A.; Alavi, A.; Wagner, D.D.; Lichtman, A.H.; Nahrendorf, M.; Swirski, F.K.; Nestle, F.; Gelfand, J.M.; Kaplan, M.J.; et al. Unraveling Vascular Inflammation: From Immunology to Imaging. J. Am. Coll. Cardiol. 2017, 70, 1403–1412. [Google Scholar] [CrossRef] [PubMed]
- Hsue, P.Y.; Waters, D.D. HIV Infection and Coronary Heart Disease: Mechanisms and Management. Nat. Rev. Cardiol. 2019, 16, 745–759. [Google Scholar] [CrossRef] [PubMed]
- Lo, J.; Plutzky, J. The Biology of Atherosclerosis: General Paradigms and Distinct Pathogenic Mechanisms among HIV-Infected Patients. J. Infect. Dis. 2012, 205 (Suppl. 3), S368–S374. [Google Scholar] [CrossRef] [PubMed]
- Jeudy, J.; Patel, P.; George, N.; Burrowes, S.; Husson, J.; Chua, J.; Conn, L.; Weiss, R.G.; Bagchi, S. Assessment of Coronary Inflammation in Antiretroviral Treated People with HIV Infection and Active HIV/Hepatitis C Virus Co-Infection. AIDS 2022, 36, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Freeman, M.L.; Lederman, M.M.; Gianella, S. Partners in Crime: The Role of CMV in Immune Dysregulation and Clinical Outcome during HIV Infection. Curr. HIV/AIDS Rep. 2016, 13, 10–19. [Google Scholar] [CrossRef] [PubMed]
- The Strategies for Management of Antiretroviral Therapy (SMART) Study Group. Inferior Clinical Outcome of the CD4+ Cell Count–Guided Antiretroviral Treatment Interruption Strategy in the SMART Study: Role of CD4+ Cell Counts and HIV RNA Levels during Follow-Up. J. Infect. Dis. 2008, 197, 1145–1155. [Google Scholar] [CrossRef] [PubMed]
- Hove-Skovsgaard, M.; Møller, D.L.; Hald, A.; Gerstoft, J.; Lundgren, J.; Ostrowski, S.R.; Nielsen, S.D. Improved Induced Innate Immune Response after cART Initiation in People with HIV. Front. Immunol. 2022, 13, 974767. [Google Scholar] [CrossRef] [PubMed]
- Kreider, E.F.; Bar, K.J. HIV-1 Reservoir Persistence and Decay: Implications for Cure Strategies. Curr. HIV/AIDS Rep. 2022, 19, 194–206. [Google Scholar] [CrossRef] [PubMed]
- Cheung, R.; Ravyn, V.; Wang, L.; Ptasznik, A.; Collman, R.G. Signaling Mechanism of HIV-1 Gp120 and Virion-Induced IL-1beta Release in Primary Human Macrophages. J. Immunol. 2008, 180, 6675–6684. [Google Scholar] [CrossRef]
- Henrick, B.M.; Yao, X.-D.; Rosenthal, K.L.; INFANT Study Team. HIV-1 Structural Proteins Serve as PAMPs for TLR2 Heterodimers Significantly Increasing Infection and Innate Immune Activation. Front. Immunol. 2015, 6, 426. [Google Scholar] [CrossRef]
- Altfeld, M.; Gale, M., Jr. Innate Immunity against HIV-1 Infection. Nat. Immunol. 2015, 16, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Nissen, S.K.; Højen, J.F.; Andersen, K.L.D.; Kofod-Olsen, E.; Berg, R.K.; Paludan, S.R.; Østergaard, L.; Jakobsen, M.R.; Tolstrup, M.; Mogensen, T.H. Innate DNA Sensing Is Impaired in HIV Patients and IFI16 Expression Correlates with Chronic Immune Activation. Clin. Exp. Immunol. 2014, 177, 295–309. [Google Scholar] [CrossRef] [PubMed]
- de Lima, L.L.P.; de Olivera, A.Q.T.; Moura, T.C.F.; da Silva Graça Amoras, E.; Lima, S.S.; da Silva, A.N.M.R.; Queiroz, M.A.F.; Cayres-Vallinoto, I.M.V.; Ishak, R.; Vallinoto, A.C.R. STING and cGAS Gene Expressions Were Downregulated among HIV-1-Infected Persons after Antiretroviral Therapy. Virol. J. 2021, 18, 78. [Google Scholar] [CrossRef] [PubMed]
- Meås, H.Z.; Haug, M.; Beckwith, M.S.; Louet, C.; Ryan, L.; Hu, Z.; Landskron, J.; Nordbø, S.A.; Taskén, K.; Yin, H.; et al. Sensing of HIV-1 by TLR8 Activates Human T Cells and Reverses Latency. Nat. Commun. 2020, 11, 147. [Google Scholar] [CrossRef] [PubMed]
- Lv, T.; Cao, W.; Li, T. HIV-Related Immune Activation and Inflammation: Current Understanding and Strategies. J. Immunol. Res. 2021, 2021, 7316456. [Google Scholar] [CrossRef] [PubMed]
- Laguette, N.; Brégnard, C.; Hue, P.; Basbous, J.; Yatim, A.; Larroque, M.; Kirchhoff, F.; Constantinou, A.; Sobhian, B.; Benkirane, M. Premature Activation of the SLX4 Complex by Vpr Promotes G2/M Arrest and Escape from Innate Immune Sensing. Cell 2014, 156, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Brenchley, J.M.; Schacker, T.W.; Ruff, L.E.; Price, D.A.; Taylor, J.H.; Beilman, G.J.; Nguyen, P.L.; Khoruts, A.; Larson, M.; Haase, A.T.; et al. CD4+ T Cell Depletion during All Stages of HIV Disease Occurs Predominantly in the Gastrointestinal Tract. J. Exp. Med. 2004, 200, 749–759. [Google Scholar] [CrossRef] [PubMed]
- Cassol, E.; Malfeld, S.; Mahasha, P.; van der Merwe, S.; Cassol, S.; Seebregts, C.; Alfano, M.; Poli, G.; Rossouw, T. Persistent Microbial Translocation and Immune Activation in HIV-1-Infected South Africans Receiving Combination Antiretroviral Therapy. J. Infect. Dis. 2010, 202, 723–733. [Google Scholar] [CrossRef] [PubMed]
- Ancuta, P.; Kamat, A.; Kunstman, K.J.; Kim, E.-Y.; Autissier, P.; Wurcel, A.; Zaman, T.; Stone, D.; Mefford, M.; Morgello, S.; et al. Microbial Translocation Is Associated with Increased Monocyte Activation and Dementia in AIDS Patients. PLoS ONE 2008, 3, e2516. [Google Scholar] [CrossRef]
- Jiang, W.; Lederman, M.M.; Hunt, P.; Sieg, S.F.; Haley, K.; Rodriguez, B.; Landay, A.; Martin, J.; Sinclair, E.; Asher, A.I.; et al. Plasma Levels of Bacterial DNA Correlate with Immune Activation and the Magnitude of Immune Restoration in Persons with Antiretroviral-Treated HIV Infection. J. Infect. Dis. 2009, 199, 1177–1185. [Google Scholar] [CrossRef]
- Nowak, P.; Troseid, M.; Avershina, E.; Barqasho, B.; Neogi, U.; Holm, K.; Hov, J.R.; Noyan, K.; Vesterbacka, J.; Svärd, J.; et al. Gut Microbiota Diversity Predicts Immune Status in HIV-1 Infection. AIDS 2015, 29, 2409–2418. [Google Scholar] [CrossRef] [PubMed]
- Isnard, S.; Fombuena, B.; Sadouni, M.; Lin, J.; Richard, C.; Routy, B.; Ouyang, J.; Ramendra, R.; Peng, X.; Zhang, Y.; et al. Circulating β-d-Glucan as a Marker of Subclinical Coronary Plaque in Antiretroviral Therapy-Treated People with Human Immunodeficiency Virus. Open Forum Infect. Dis. 2021, 8, ofab109. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.; Hillenbrand, M.; Finkelman, M.; George, M.P.; Singh, V.; Kessinger, C.; Lucht, L.; Busch, M.; McMahon, D.; Weinman, R.; et al. Serum (1→3)-β-D-Glucan Levels in HIV-Infected Individuals Are Associated with Immunosuppression, Inflammation, and Cardiopulmonary Function. J. Acquir. Immune Defic. Syndr. 1999 2012, 61, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Dillon, S.M.; Lee, E.J.; Kotter, C.V.; Austin, G.L.; Dong, Z.; Hecht, D.K.; Gianella, S.; Siewe, B.; Smith, D.M.; Landay, A.L.; et al. An Altered Intestinal Mucosal Microbiome in HIV-1 Infection Is Associated with Mucosal and Systemic Immune Activation and Endotoxemia. Mucosal Immunol. 2014, 7, 983–994. [Google Scholar] [CrossRef] [PubMed]
- Dillon, S.M.; Lee, E.J.; Kotter, C.V.; Austin, G.L.; Gianella, S.; Siewe, B.; Smith, D.M.; Landay, A.L.; McManus, M.C.; Robertson, C.E.; et al. Gut Dendritic Cell Activation Links an Altered Colonic Microbiome to Mucosal and Systemic T-Cell Activation in Untreated HIV-1 Infection. Mucosal Immunol. 2016, 9, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Rocafort, M.; Gootenberg, D.B.; Luévano, J.M.; Paer, J.M.; Hayward, M.R.; Bramante, J.T.; Ghebremichael, M.S.; Xu, J.; Rogers, Z.H.; Munoz, A.R.; et al. HIV-Associated Gut Microbial Alterations Are Dependent on Host and Geographic Context. Nat. Commun. 2024, 15, 1055. [Google Scholar] [CrossRef] [PubMed]
- Dinh, D.M.; Volpe, G.E.; Duffalo, C.; Bhalchandra, S.; Tai, A.K.; Kane, A.V.; Wanke, C.A.; Ward, H.D. Intestinal Microbiota, Microbial Translocation, and Systemic Inflammation in Chronic HIV Infection. J. Infect. Dis. 2015, 211, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Padmapriyadarsini, C.; Ramesh, K.; Sekar, L.; Ramachandran, G.; Reddy, D.; Narendran, G.; Sekar, S.; Chandrasekar, C.; Anbarasu, D.; Wanke, C.; et al. Factors Affecting High-Density Lipoprotein Cholesterol in HIV-Infected Patients on Nevirapine-Based Antiretroviral Therapy. Indian J. Med. Res. 2017, 145, 641–650. [Google Scholar] [PubMed]
- El-Sadr, W.M.; Mullin, C.M.; Carr, A.; Gibert, C.; Rappoport, C.; Visnegarwala, F.; Grunfeld, C.; Raghavan, S.S. Effects of HIV Disease on Lipid, Glucose and Insulin Levels: Results from a Large Antiretroviral-Naive Cohort. HIV Med. 2005, 6, 114–121. [Google Scholar] [CrossRef]
- Riddler, S.A.; Smit, E.; Cole, S.R.; Li, R.; Chmiel, J.S.; Dobs, A.; Palella, F.; Visscher, B.; Evans, R.; Kingsley, L.A. Impact of HIV Infection and HAART on Serum Lipids in Men. JAMA 2003, 289, 2978–2982. [Google Scholar] [CrossRef]
- Low, H.; Hoang, A.; Pushkarsky, T.; Dubrovsky, L.; Dewar, E.; Di Yacovo, M.-S.; Mukhamedova, N.; Cheng, L.; Downs, C.; Simon, G.; et al. HIV Disease, Metabolic Dysfunction and Atherosclerosis: A Three Year Prospective Study. PLoS ONE 2019, 14, e0215620. [Google Scholar] [CrossRef] [PubMed]
- Ouimet, M.; Barrett, T.J.; Fisher, E.A. HDL and Reverse Cholesterol Transport. Circ. Res. 2019, 124, 1505–1518. [Google Scholar] [CrossRef] [PubMed]
- Duprez, D.A.; Kuller, L.H.; Tracy, R.; Otvos, J.; Cooper, D.A.; Hoy, J.; Neuhaus, J.; Paton, N.I.; Friis-Moller, N.; Lampe, F.; et al. Lipoprotein Particle Subclasses, Cardiovascular Disease and HIV Infection. Atherosclerosis 2009, 207, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Bucher, H.C.; Richter, W.; Glass, T.R.; Magenta, L.; Wang, Q.; Cavassini, M.; Vernazza, P.; Hirschel, B.; Weber, R.; Furrer, H.; et al. Small Dense Lipoproteins, Apolipoprotein B, and Risk of Coronary Events in HIV-Infected Patients on Antiretroviral Therapy: The Swiss HIV Cohort Study. J. Acquir. Immune Defic. Syndr. 1999 2012, 60, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Zisman, E.; Hossain, M.; Funderburg, N.T.; Christenson, R.; Jeudy, J.; Burrowes, S.; Hays, A.G.; George, N.; Freeman, M.L.; Rebuck, H.; et al. Association of Lipoprotein (a) with Peri-Coronary Inflammation in Persons with and without HIV Infection. J. Clin. Lipidol. 2024, 18, e430–e443. [Google Scholar] [CrossRef] [PubMed]
- Zidar, D.A.; Juchnowski, S.; Ferrari, B.; Clagett, B.; Pilch-Cooper, H.A.; Rose, S.; Rodriguez, B.; McComsey, G.A.; Sieg, S.F.; Mehta, N.N.; et al. Oxidized LDL Levels Are Increased in HIV Infection and May Drive Monocyte Activation. J. Acquir. Immune Defic. Syndr. 1999 2015, 69, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Hileman, C.O.; Turner, R.; Funderburg, N.T.; Semba, R.D.; McComsey, G.A. Changes in Oxidized Lipids Drive the Improvement in Monocyte Activation and Vascular Disease after Statin Therapy in HIV. AIDS 2016, 30, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Mujawar, Z.; Rose, H.; Morrow, M.P.; Pushkarsky, T.; Dubrovsky, L.; Mukhamedova, N.; Fu, Y.; Dart, A.; Orenstein, J.M.; Bobryshev, Y.V.; et al. Human Immunodeficiency Virus Impairs Reverse Cholesterol Transport from Macrophages. PLoS Biol. 2006, 4, e365. [Google Scholar] [CrossRef]
- Cui, H.L.; Ditiatkovski, M.; Kesani, R.; Bobryshev, Y.V.; Liu, Y.; Geyer, M.; Mukhamedova, N.; Bukrinsky, M.; Sviridov, D. HIV Protein Nef Causes Dyslipidemia and Formation of Foam Cells in Mouse Models of Atherosclerosis. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2014, 28, 2828–2839. [Google Scholar] [CrossRef]
- Maisa, A.; Hearps, A.C.; Angelovich, T.A.; Pereira, C.F.; Zhou, J.; Shi, M.D.Y.; Palmer, C.S.; Muller, W.A.; Crowe, S.M.; Jaworowski, A. Monocytes from HIV-Infected Individuals Show Impaired Cholesterol Efflux and Increased Foam Cell Formation after Transendothelial Migration. AIDS 2015, 29, 1445–1457. [Google Scholar] [CrossRef]
- Hileman, C.O.; Durieux, J.C.; Janus, S.E.; Bowman, E.; Kettelhut, A.; Nguyen, T.-T.; Avery, A.K.; Funderburg, N.; Sullivan, C.; McComsey, G.A. Heroin Use Is Associated with Vascular Inflammation in Human Immunodeficiency Virus. Clin. Infect. Dis. 2023, 76, 375–381. [Google Scholar] [CrossRef]
- Hileman, C.O.; Bowman, E.R.; Gabriel, J.; Kettelhut, A.; Labbato, D.; Smith, C.; Avery, A.; Parran, T.; Funderburg, N.; McComsey, G.A. Impact of Heroin and HIV on Gut Integrity and Immune Activation. J. Acquir. Immune Defic. Syndr. 1999 2022, 89, 519–526. [Google Scholar] [CrossRef]
- Underwood, M.L.; Nguyen, T.; Uebelhoer, L.S.; Kunkel, L.E.; Korthuis, P.T.; Lancioni, C.L. Altered Monocyte Phenotype and Dysregulated Innate Cytokine Responses among People Living with HIV and Opioid-Use Disorder. AIDS 2020, 34, 177–188. [Google Scholar] [CrossRef]
- Miller, M.; Lee, J.-Y.; Fulcher, J.A.; Roach, M.E.; Dilworth, S.E.; Chahine, A.; Pallikkuth, S.; Fuchs, D.; Pahwa, S.; Carrico, A.W. Getting to the Point: Methamphetamine Injection Is Associated with Biomarkers Relevant to HIV Pathogenesis. Drug Alcohol Depend. 2020, 213, 108133. [Google Scholar] [CrossRef]
- Cherenack, E.M.; Chavez, J.V.; Martinez, C.; Hirshfield, S.; Balise, R.; Horvath, K.J.; Viamonte, M.; Jimenez, D.E.; Paul, R.; Dilworth, S.E.; et al. Stimulant Use, HIV, and Immune Dysregulation among Sexual Minority Men. Drug Alcohol Depend. 2023, 251, 110942. [Google Scholar] [CrossRef] [PubMed]
- Pacek, L.R.; Cioe, P.A. Tobacco Use, Use Disorders, and Smoking Cessation Interventions in Persons Living with HIV. Curr. HIV/AIDS Rep. 2015, 12, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.G.; Plankey, M.; Post, W.S.; Li, X.; Stall, R.; Jacobson, L.P.; Witt, M.D.; Kingsley, L.; Cox, C.; Budoff, M.; et al. Associations between Tobacco, Alcohol, and Drug Use with Coronary Artery Plaque among HIV-Infected and Uninfected Men in the Multicenter AIDS Cohort Study. PLoS ONE 2016, 11, e0147822. [Google Scholar] [CrossRef] [PubMed]
- Calvo, M.; Laguno, M.; Martínez, M.; Martínez, E. Effects of Tobacco Smoking on HIV-Infected Individuals. AIDS Rev. 2015, 17, 47–55. [Google Scholar]
- Costiniuk, C.T.; Jenabian, M.-A. Cannabinoids and Inflammation: Implications for People Living with HIV. AIDS 2019, 33, 2273–2288. [Google Scholar] [CrossRef]
- Ellis, R.J.; Wilson, N.; Peterson, S. Cannabis and Inflammation in HIV: A Review of Human and Animal Studies. Viruses 2021, 13, 1581. [Google Scholar] [CrossRef]
- Lorenz, D.R.; Dutta, A.; Mukerji, M.; Holman, A.; Uno, H.; Gabuzda, D. Marijuana Use Impacts Midlife Cardiovascular Events in HIV-Infected Men. Clin. Infect. 2017, 65, 626–635. [Google Scholar] [CrossRef]
- Fourman, L.T.; Saylor, C.F.; Cheru, L.; Fitch, K.; Looby, S.; Keller, K.; Robinson, J.A.; Hoffmann, U.; Lu, M.T.; Burdo, T.; et al. Anti-Inflammatory Interleukin 10 Inversely Relates to Coronary Atherosclerosis in Persons with Human Immunodeficiency Virus. J. Infect. Dis. 2020, 221, 510–515. [Google Scholar] [CrossRef]
- León, R.; Reus, S.; López, N.; Portilla, I.; Sánchez-Payá, J.; Giner, L.; Boix, V.; Merino, E.; Torrús, D.; Moreno-Pérez, Ó.; et al. Subclinical Atherosclerosis in Low Framingham Risk HIV Patients. Eur. J. Clin. Investig. 2017, 47, 591–599. [Google Scholar] [CrossRef]
- Kearns, A.; Gordon, J.; Burdo, T.H.; Qin, X. HIV-1-Associated Atherosclerosis: Unraveling the Missing Link. J. Am. Coll. Cardiol. 2017, 69, 3084–3098. [Google Scholar] [CrossRef] [PubMed]
- Tilton, J.C.; Johnson, A.J.; Luskin, M.R.; Manion, M.M.; Yang, J.; Adelsberger, J.W.; Lempicki, R.A.; Hallahan, C.W.; McLaughlin, M.; Mican, J.M.; et al. Diminished Production of Monocyte Proinflammatory Cytokines during Human Immunodeficiency Virus Viremia Is Mediated by Type I Interferons. J. Virol. 2006, 80, 11486–11497. [Google Scholar] [CrossRef]
- Hileman, C.O.; Longenecker, C.T.; Carman, T.L.; Milne, G.L.; Labbato, D.E.; Storer, N.J.; White, C.A.; McComsey, G.A. Elevated D-Dimer Is Independently Associated with Endothelial Dysfunction: A Cross-Sectional Study in HIV-Infected Adults on Antiretroviral Therapy. Antivir. Ther. 2012, 17, 1345–1349. [Google Scholar] [CrossRef] [PubMed]
- Pontrelli, G.; Martino, A.M.; Tchidjou, H.K.; Citton, R.; Mora, N.; Ravà, L.; Tozzi, A.E.; Palma, P.; Muraca, M.; Franco, E.; et al. HIV Is Associated with Thrombophilia and High D-Dimer in Children and Adolescents. AIDS 2010, 24, 1145–1151. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, R.C.; Landay, A.L.; Hodis, H.N.; Gange, S.J.; Norris, P.J.; Young, M.; Anastos, K.; Tien, P.C.; Xue, X.; Lazar, J.; et al. Potential Cardiovascular Disease Risk Markers among HIV-Infected Women Initiating Antiretroviral Treatment. J. Acquir. Immune Defic. Syndr. 1999 2012, 60, 359–368. [Google Scholar] [CrossRef]
- Chow, D.C.; Saiki, K.M.W.; Siriwardhana, C.; Lozano-Gerona, J.; Vanapruks, S.; Ogle, J.; Premeaux, T.A.; Ndhlovu, L.C.; Boisvert, W.A. Increased Transmigration of Intermediate Monocytes Associated with Atherosclerotic Burden in People with HIV on Antiretroviral Therapy. AIDS 2023, 37, 1177–1179. [Google Scholar] [CrossRef]
- Nordell, A.D.; McKenna, M.; Borges, Á.H.; Duprez, D.; Neuhaus, J.; Neaton, J.D.; INSIGHT SMART, ESPRIT Study Groups. SILCAAT Scientific Committee Severity of Cardiovascular Disease Outcomes among Patients with HIV Is Related to Markers of Inflammation and Coagulation. J. Am. Heart Assoc. 2014, 3, e000844. [Google Scholar] [CrossRef]
- Kuller, L.H.; Tracy, R.; Belloso, W.; De Wit, S.; Drummond, F.; Lane, H.C.; Ledergerber, B.; Lundgren, J.; Neuhaus, J.; Nixon, D.; et al. Inflammatory and Coagulation Biomarkers and Mortality in Patients with HIV Infection. PLoS Med. 2008, 5, e203. [Google Scholar] [CrossRef] [PubMed]
- Tenorio, A.R.; Zheng, Y.; Bosch, R.J.; Krishnan, S.; Rodriguez, B.; Hunt, P.W.; Plants, J.; Seth, A.; Wilson, C.C.; Deeks, S.G.; et al. Soluble Markers of Inflammation and Coagulation but Not T-Cell Activation Predict Non-AIDS-Defining Morbid Events during Suppressive Antiretroviral Treatment. J. Infect. Dis. 2014, 210, 1248–1259. [Google Scholar] [CrossRef]
- So-Armah, K.A.; Tate, J.P.; Chang, C.-C.H.; Butt, A.A.; Gerschenson, M.; Gibert, C.L.; Leaf, D.; Rimland, D.; Rodriguez-Barradas, M.C.; Budoff, M.J.; et al. Do Biomarkers of Inflammation, Monocyte Activation, and Altered Coagulation Explain Excess Mortality Between HIV Infected and Uninfected People? J. Acquir. Immune Defic. Syndr. 2016, 72, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Wada, N.I.; Bream, J.H.; Martínez-Maza, O.; Macatangay, B.; Galvin, S.R.; Margolick, J.B.; Jacobson, L.P. Inflammatory Biomarkers and Mortality Risk among HIV-Suppressed Men: A Multisite Prospective Cohort Study. Clin. Infect. Dis. 2016, 63, 984–990. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.V.; Sharma, S.; Grund, B.; Rupert, A.; Metcalf, J.A.; Schechter, M.; Munderi, P.; Aho, I.; Emery, S.; Babiker, A.; et al. Systemic Inflammation, Coagulation, and Clinical Risk in the START Trial. Open Forum Infect. Dis. 2017, 4, ofx262. [Google Scholar] [CrossRef] [PubMed]
- Graham, S.M.; Nance, R.M.; Chen, J.; Wurfel, M.M.; Hunt, P.W.; Heckbert, S.R.; Budoff, M.J.; Moore, R.D.; Jacobson, J.M.; Martin, J.N.; et al. Plasma Interleukin-6 (IL-6), Angiopoietin-2, and C-Reactive Protein Levels Predict Subsequent Type 1 Myocardial Infarction in Persons with Treated HIV Infection. J. Acquir. Immune Defic. Syndr. 2023, 93, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.S.; Greenwald, J.H.; Richterman, A.G.; Rupert, A.; Dutcher, L.; Badralmaa, Y.; Natarajan, V.; Rehm, C.; Hadigan, C.; Sereti, I. Traditional Risk Factors and D-Dimer Predict Incident Cardiovascular Disease Events in Chronic HIV Infection. AIDS 2010, 24, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
- Werede, A.T.; Terry, J.G.; Nair, S.; Temu, T.M.; Shepherd, B.E.; Bailin, S.S.; Mashayekhi, M.; Gabriel, C.L.; Lima, M.; Woodward, B.O.; et al. Mean Coronary Cross-Sectional Area as a Measure of Arterial Remodeling Using Noncontrast CT Imaging in Persons with HIV. J. Am. Heart Assoc. 2022, 11, e025768. [Google Scholar] [CrossRef] [PubMed]
- Mallat, Z.; Besnard, S.; Duriez, M.; Deleuze, V.; Emmanuel, F.; Bureau, M.F.; Soubrier, F.; Esposito, B.; Duez, H.; Fievet, C.; et al. Protective Role of Interleukin-10 in Atherosclerosis. Circ. Res. 1999, 85, e17–e24. [Google Scholar] [CrossRef]
- Lu, M.T.; Ribaudo, H.; Foldyna, B.; Zanni, M.V.; Mayrhofer, T.; Karady, J.; Taron, J.; Fitch, K.V.; McCallum, S.; Burdo, T.H.; et al. Effects of Pitavastatin on Coronary Artery Disease and Inflammatory Biomarkers in HIV: Mechanistic Substudy of the REPRIEVE Randomized Clinical Trial. JAMA Cardiol. 2024, 9, 323–334. [Google Scholar] [CrossRef]
- Butcher, M.; Galkina, E. Current Views on the Functions of Interleukin-17A-Producing Cells in Atherosclerosis. Thromb. Haemost. 2011, 106, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Wanjalla, C.N.; Temu, T.M.; Mashayekhi, M.; Warren, C.M.; Shepherd, B.E.; Gangula, R.; Fuseini, H.; Bailin, S.; Gabriel, C.L.; Gangula, P.; et al. Interleukin-17A Is Associated with Flow-Mediated Dilation and Interleukin-4 with Carotid Plaque in Persons with HIV. AIDS 2022, 36, 963–973. [Google Scholar] [CrossRef] [PubMed]
- Boyd, A.; Boccara, F.; Meynard, J.-L.; Ichou, F.; Bastard, J.-P.; Fellahi, S.; Samri, A.; Sauce, D.; Haddour, N.; Autran, B.; et al. Serum Tryptophan-Derived Quinolinate and Indole-3-Acetate Are Associated with Carotid Intima-Media Thickness and Its Evolution in HIV-Infected Treated Adults. Open Forum Infect. Dis. 2019, 6, ofz516. [Google Scholar] [CrossRef] [PubMed]
- Gelpi, M.; Hartling, H.J.; Ueland, P.M.; Ullum, H.; Trøseid, M.; Nielsen, S.D. Tryptophan Catabolism and Immune Activation in Primary and Chronic HIV Infection. BMC Infect. Dis. 2017, 17, 349. [Google Scholar] [CrossRef]
- Butcher, M.J.; Gjurich, B.N.; Phillips, T.; Galkina, E.V. The IL-17A/IL-17RA Axis Plays a Proatherogenic Role via the Regulation of Aortic Myeloid Cell Recruitment. Circ. Res. 2012, 110, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Kearns, A.C.; Liu, F.; Dai, S.; Robinson, J.A.; Kiernan, E.; Tesfaye Cheru, L.; Peng, X.; Gordon, J.; Morgello, S.; Abuova, A.; et al. Caspase-1 Activation Is Related with HIV-Associated Atherosclerosis in an HIV Transgenic Mouse Model and HIV Patient Cohort. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 1762–1775. [Google Scholar] [CrossRef]
- Caocci, M.; Niu, M.; Fox, H.S.; Burdo, T.H. HIV Infection Drives Foam Cell Formation via NLRP3 Inflammasome Activation. Int. J. Mol. Sci. 2024, 25, 2367. [Google Scholar] [CrossRef] [PubMed]
- Charo, I.F.; Ransohoff, R.M. The Many Roles of Chemokines and Chemokine Receptors in Inflammation. N. Engl. J. Med. 2006, 354, 610–621. [Google Scholar] [CrossRef] [PubMed]
- Glass, C.K.; Witztum, J.L. Atherosclerosis. the Road Ahead. Cell 2001, 104, 503–516. [Google Scholar] [CrossRef]
- Dragic, T.; Litwin, V.; Allaway, G.P.; Martin, S.R.; Huang, Y.; Nagashima, K.A.; Cayanan, C.; Maddon, P.J.; Koup, R.A.; Moore, J.P.; et al. HIV-1 Entry into CD4+ Cells Is Mediated by the Chemokine Receptor CC-CKR-5. Nature 1996, 381, 667–673. [Google Scholar] [CrossRef]
- Garin, A.; Tarantino, N.; Faure, S.; Daoudi, M.; Lécureuil, C.; Bourdais, A.; Debré, P.; Deterre, P.; Combadiere, C. Two Novel Fully Functional Isoforms of CX3CR1 Are Potent HIV Coreceptors. J. Immunol. 2003, 171, 5305–5312. [Google Scholar] [CrossRef] [PubMed]
- Combadière, B.; Faure, S.; Autran, B.; Debré, P.; Combadière, C. The Chemokine Receptor CX3CR1 Controls Homing and Anti-Viral Potencies of CD8 Effector-Memory T Lymphocytes in HIV-Infected Patients. AIDS 2003, 17, 1279–1290. [Google Scholar] [CrossRef] [PubMed]
- Mudd, J.C.; Panigrahi, S.; Kyi, B.; Moon, S.H.; Manion, M.M.; Younes, S.-A.; Sieg, S.F.; Funderburg, N.T.; Zidar, D.A.; Lederman, M.M.; et al. Inflammatory Function of CX3CR1+ CD8+ T Cells in Treated HIV Infection Is Modulated by Platelet Interactions. J. Infect. Dis. 2016, 214, 1808–1816. [Google Scholar] [CrossRef] [PubMed]
- Eugenin, E.A.; Osiecki, K.; Lopez, L.; Goldstein, H.; Calderon, T.M.; Berman, J.W. CCL2/Monocyte Chemoattractant Protein-1 Mediates Enhanced Transmigration of Human Immunodeficiency Virus (HIV)-Infected Leukocytes across the Blood-Brain Barrier: A Potential Mechanism of HIV-CNS Invasion and NeuroAIDS. J. Neurosci. Off. J. Soc. Neurosci. 2006, 26, 1098–1106. [Google Scholar] [CrossRef] [PubMed]
- Zanni, M.V.; Toribio, M.; Robbins, G.K.; Burdo, T.H.; Lu, M.T.; Ishai, A.E.; Feldpausch, M.N.; Martin, A.; Melbourne, K.; Triant, V.A.; et al. Effects of Antiretroviral Therapy on Immune Function and Arterial Inflammation in Treatment-Naive Patients with Human Immunodeficiency Virus Infection. JAMA Cardiol. 2016, 1, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Tarancon-Diez, L.; De Pablo-Bernal, R.S.; Álvarez-Rios, A.I.; Rosado-Sánchez, I.; Dominguez-Molina, B.; Genebat, M.; Pacheco, Y.M.; Jiménez, J.L.; Muñoz-Fernández, M.Á.; Ruiz-Mateos, E.; et al. CCR5+ CD8 T-Cell Levels and Monocyte Activation Precede the Onset of Acute Coronary Syndrome in HIV-Infected Patients on Antiretroviral Therapy. Thromb. Haemost. 2017, 117, 1141–1149. [Google Scholar] [CrossRef] [PubMed]
- Westhorpe, C.L.V.; Maisa, A.; Spelman, T.; Hoy, J.F.; Dewar, E.M.; Karapanagiotidis, S.; Hearps, A.C.; Cheng, W.-J.; Trevillyan, J.; Lewin, S.R.; et al. Associations between Surface Markers on Blood Monocytes and Carotid Atherosclerosis in HIV-Positive Individuals. Immunol. Cell Biol. 2014, 92, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Sacre, K.; Hunt, P.W.; Hsue, P.Y.; Maidji, E.; Martin, J.N.; Deeks, S.G.; Autran, B.; McCune, J.M. A Role for Cytomegalovirus-Specific CD4+CX3CR1+ T Cells and Cytomegalovirus-Induced T-Cell Immunopathology in HIV-Associated Atherosclerosis. AIDS 2012, 26, 805–814. [Google Scholar] [CrossRef]
- van den Borne, P.; Quax, P.H.A.; Hoefer, I.E.; Pasterkamp, G. The Multifaceted Functions of CXCL10 in Cardiovascular Disease. BioMed Res. Int. 2014, 2014, 893106. [Google Scholar] [CrossRef]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef]
- Hsue, P.Y.; Li, D.; Ma, Y.; Ishai, A.; Manion, M.; Nahrendorf, M.; Ganz, P.; Ridker, P.M.; Deeks, S.G.; Tawakol, A. IL-1β Inhibition Reduces Atherosclerotic Inflammation in HIV Infection. J. Am. Coll. Cardiol. 2018, 72, 2809–2811. [Google Scholar] [CrossRef] [PubMed]
- Broch, K.; Anstensrud, A.K.; Woxholt, S.; Sharma, K.; Tøllefsen, I.M.; Bendz, B.; Aakhus, S.; Ueland, T.; Amundsen, B.H.; Damås, J.K.; et al. Randomized Trial of Interleukin-6 Receptor Inhibition in Patients with Acute ST-Segment Elevation Myocardial Infarction. J. Am. Coll. Cardiol. 2021, 77, 1845–1855. [Google Scholar] [CrossRef] [PubMed]
- Funderburg, N.T.; Shive, C.L.; Chen, Z.; Tatsuoka, C.; Bowman, E.R.; Longenecker, C.T.; McComsey, G.A.; Clagett, B.M.; Dorazio, D.; Freeman, M.L.; et al. Interleukin 6 Blockade with Tocilizumab Diminishes Indices of Inflammation That Are Linked to Mortality in Treated Human Immunodeficiency Virus Infection. Clin. Infect. Dis. 2023, 77, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Everett, B.M.; Pradhan, A.; MacFadyen, J.G.; Solomon, D.H.; Zaharris, E.; Mam, V.; Hasan, A.; Rosenberg, Y.; Iturriaga, E.; et al. Low-Dose Methotrexate for the Prevention of Atherosclerotic Events. N. Engl. J. Med. 2019, 380, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Hsue, P.Y.; Ribaudo, H.J.; Deeks, S.G.; Bell, T.; Ridker, P.M.; Fichtenbaum, C.; Daar, E.S.; Havlir, D.; Yeh, E.; Tawakol, A.; et al. Safety and Impact of Low-Dose Methotrexate on Endothelial Function and Inflammation in Individuals with Treated Human Immunodeficiency Virus: AIDS Clinical Trials Group Study A5314. Clin. Infect. Dis. 2019, 68, 1877–1886. [Google Scholar] [CrossRef] [PubMed]
- Tardif, J.-C.; Kouz, S.; Waters, D.D.; Bertrand, O.F.; Diaz, R.; Maggioni, A.P.; Pinto, F.J.; Ibrahim, R.; Gamra, H.; Kiwan, G.S.; et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N. Engl. J. Med. 2019, 381, 2497–2505. [Google Scholar] [CrossRef] [PubMed]
- Nidorf, S.M.; Fiolet, A.T.L.; Mosterd, A.; Eikelboom, J.W.; Schut, A.; Opstal, T.S.J.; The, S.H.K.; Xu, X.-F.; Ireland, M.A.; Lenderink, T.; et al. Colchicine in Patients with Chronic Coronary Disease. N. Engl. J. Med. 2020, 383, 1838–1847. [Google Scholar] [CrossRef]
- Bouabdallaoui, N.; Tardif, J.-C.; Waters, D.D.; Pinto, F.J.; Maggioni, A.P.; Diaz, R.; Berry, C.; Koenig, W.; Lopez-Sendon, J.; Gamra, H.; et al. Time-to-Treatment Initiation of Colchicine and Cardiovascular Outcomes after Myocardial Infarction in the Colchicine Cardiovascular Outcomes Trial (COLCOT). Eur. Heart J. 2020, 41, 4092–4099. [Google Scholar] [CrossRef]
- Hennessy, T.; Soh, L.; Bowman, M.; Kurup, R.; Schultz, C.; Patel, S.; Hillis, G.S. The Low Dose Colchicine after Myocardial Infarction (LoDoCo-MI) Study: A Pilot Randomized Placebo Controlled Trial of Colchicine Following Acute Myocardial Infarction. Am. Heart J. 2019, 215, 62–69. [Google Scholar] [CrossRef]
- Tong, D.C.; Quinn, S.; Nasis, A.; Hiew, C.; Roberts-Thomson, P.; Adams, H.; Sriamareswaran, R.; Htun, N.M.; Wilson, W.; Stub, D.; et al. Colchicine in Patients with Acute Coronary Syndrome: The Australian COPS Randomized Clinical Trial. Circulation 2020, 142, 1890–1900. [Google Scholar] [CrossRef]
- Hays, A.G.; Schär, M.; Barditch-Crovo, P.; Bagchi, S.; Bonanno, G.; Meyer, J.; Afework, Y.; Streeb, V.; Stradley, S.; Kelly, S.; et al. A Randomized, Placebo-Controlled, Double-Blinded Clinical Trial of Colchicine to Improve Vascular Health in People Living with HIV. AIDS 2021, 35, 1041–1050. [Google Scholar] [CrossRef] [PubMed]
- Chou, R.; Cantor, A.; Dana, T.; Wagner, J.; Ahmed, A.Y.; Fu, R.; Ferencik, M. Statin Use for the Primary Prevention of Cardiovascular Disease in Adults: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2022, 328, 754–771. [Google Scholar] [CrossRef] [PubMed]
- Grinspoon, S.K.; Fitch, K.V.; Zanni, M.V.; Fichtenbaum, C.J.; Umbleja, T.; Aberg, J.A.; Overton, E.T.; Malvestutto, C.D.; Bloomfield, G.S.; Currier, J.S.; et al. Pitavastatin to Prevent Cardiovascular Disease in HIV Infection. N. Engl. J. Med. 2023, 389, 687–699. [Google Scholar] [CrossRef] [PubMed]
- Longenecker, C.T.; Hileman, C.O.; Funderburg, N.T.; McComsey, G.A. Rosuvastatin Preserves Renal Function and Lowers Cystatin C in HIV-Infected Subjects on Antiretroviral Therapy: The SATURN-HIV Trial. Clin. Infect. Dis. 2014, 59, 1148–1156. [Google Scholar] [CrossRef]
- Aberg, J.A.; Sponseller, C.A.; Ward, D.J.; Kryzhanovski, V.A.; Campbell, S.E.; Thompson, M.A. Pitavastatin versus Pravastatin in Adults with HIV-1 Infection and Dyslipidaemia (INTREPID): 12 Week and 52 Week Results of a Phase 4, Multicentre, Randomised, Double-Blind, Superiority Trial. Lancet HIV 2017, 4, e284–e294. [Google Scholar] [CrossRef] [PubMed]
- Bedimo, R.J.; Mar, H.; Bosch, R.J.; Drechsler, H.; Cyktor, J.C.; Macatangay, B.J.C.; Lalama, C.; Rinaldo, C.; Collier, A.; Godfrey, C.; et al. Brief Report: No Evidence for an Association between Statin Use and Lower Biomarkers of HIV Persistence or Immune Activation/Inflammation during Effective ART. J. Acquir. Immune Defic. Syndr. 2019, 82, e27–e31. [Google Scholar] [CrossRef] [PubMed]
- Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N. Engl. J. Med. 2017, 376, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Leucker, T.M.; Gerstenblith, G.; Schär, M.; Brown, T.T.; Jones, S.R.; Afework, Y.; Weiss, R.G.; Hays, A.G. Evolocumab, a PCSK9-Monoclonal Antibody, Rapidly Reverses Coronary Artery Endothelial Dysfunction in People Living with HIV and People with Dyslipidemia. J. Am. Heart Assoc. 2020, 9, e016263. [Google Scholar] [CrossRef]
- O’Brien, M.P.; Hunt, P.W.; Kitch, D.W.; Klingman, K.; Stein, J.H.; Funderburg, N.T.; Berger, J.S.; Tebas, P.; Clagett, B.; Moisi, D.; et al. A Randomized Placebo Controlled Trial of Aspirin Effects on Immune Activation in Chronically Human Immunodeficiency Virus-Infected Adults on Virologically Suppressive Antiretroviral Therapy. Open Forum Infect. Dis. 2017, 4, ofw278. [Google Scholar] [CrossRef]
- Macatangay, B.J.C.; Jackson, E.K.; Abebe, K.Z.; Comer, D.; Cyktor, J.; Klamar-Blain, C.; Borowski, L.; Gillespie, D.G.; Mellors, J.W.; Rinaldo, C.R.; et al. A Randomized, Placebo-Controlled, Pilot Clinical Trial of Dipyridamole to Decrease Human Immunodeficiency Virus-Associated Chronic Inflammation. J. Infect. Dis. 2020, 221, 1598–1606. [Google Scholar] [CrossRef]
- Erbel, C.; Akhavanpoor, M.; Okuyucu, D.; Wangler, S.; Dietz, A.; Zhao, L.; Stellos, K.; Little, K.M.; Lasitschka, F.; Doesch, A.; et al. IL-17A Influences Essential Functions of the Monocyte/Macrophage Lineage and Is Involved in Advanced Murine and Human Atherosclerosis. J. Immunol. 2014, 193, 4344–4355. [Google Scholar] [CrossRef] [PubMed]
- Bowman, E.R.; Cameron, C.M.; Richardson, B.; Kulkarni, M.; Gabriel, J.; Cichon, M.J.; Riedl, K.M.; Mustafa, Y.; Cartwright, M.; Snyder, B.; et al. Macrophage Maturation from Blood Monocytes Is Altered in People with HIV, and Is Linked to Serum Lipid Profiles and Activation Indices: A Model for Studying Atherogenic Mechanisms. PLoS Pathog. 2020, 16, e1008869. [Google Scholar] [CrossRef] [PubMed]
- von Stebut, E.; Boehncke, W.-H.; Ghoreschi, K.; Gori, T.; Kaya, Z.; Thaci, D.; Schäffler, A. IL-17A in Psoriasis and Beyond: Cardiovascular and Metabolic Implications. Front. Immunol. 2019, 10, 3096. [Google Scholar] [CrossRef] [PubMed]
- Tenger, C.; Sundborger, A.; Jawien, J.; Zhou, X. IL-18 Accelerates Atherosclerosis Accompanied by Elevation of IFN-Gamma and CXCL16 Expression Independently of T Cells. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 791–796. [Google Scholar] [CrossRef] [PubMed]
- Francisci, D.; Pirro, M.; Schiaroli, E.; Mannarino, M.R.; Cipriani, S.; Bianconi, V.; Alunno, A.; Bagaglia, F.; Bistoni, O.; Falcinelli, E.; et al. Maraviroc Intensification Modulates Atherosclerotic Progression in HIV-Suppressed Patients at High Cardiovascular Risk. A Randomized, Crossover Pilot Study. Open Forum Infect. Dis. 2019, 6, ofz112. [Google Scholar] [CrossRef] [PubMed]
- Kelly, K.M.; Tocchetti, C.G.; Lyashkov, A.; Tarwater, P.M.; Bedja, D.; Graham, D.R.; Beck, S.E.; Metcalf Pate, K.A.; Queen, S.E.; Adams, R.J.; et al. CCR5 Inhibition Prevents Cardiac Dysfunction in the SIV/Macaque Model of HIV. J. Am. Heart Assoc. 2014, 3, e000874. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Hao, Z.; Zheng, H.; Wang, H.; Zhang, L.; Yan, M.; Tuerhong, R.; Zhou, Y.; Wang, Y.; Pang, T.; et al. Repurposing of Rilpivirine for Preventing Platelet Β3 Integrin-Dependent Thrombosis by Targeting c-Src Active Autophosphorylation. Thromb. Res. 2023, 229, 53–68. [Google Scholar] [CrossRef]
- Ytterberg, S.R.; Bhatt, D.L.; Mikuls, T.R.; Koch, G.G.; Fleischmann, R.; Rivas, J.L.; Germino, R.; Menon, S.; Sun, Y.; Wang, C.; et al. Cardiovascular and Cancer Risk with Tofacitinib in Rheumatoid Arthritis. N. Engl. J. Med. 2022, 386, 316–326. [Google Scholar] [CrossRef]
- Marconi, V.C.; Moser, C.; Gavegnano, C.; Deeks, S.G.; Lederman, M.M.; Overton, E.T.; Tsibris, A.; Hunt, P.W.; Kantor, A.; Sekaly, R.-P.; et al. Randomized Trial of Ruxolitinib in Antiretroviral-Treated Adults with Human Immunodeficiency Virus. Clin. Infect. Dis. 2022, 74, 95–104. [Google Scholar] [CrossRef]
- Syngle, A.; Garg, N.; Chauhan, K. Pos0205 Amelioration of Endothelial Dysfunction with Jak Inhibition in Rheumatoid Arthritis: Jak Cv-Risk Reduction Study. Ann. Rheum. Dis. 2021, 80, 318–319. [Google Scholar] [CrossRef]
- Lu, W.; Arraes, L.C.; Ferreira, W.T.; Andrieu, J.-M. Therapeutic Dendritic-Cell Vaccine for Chronic HIV-1 Infection. Nat. Med. 2004, 10, 1359–1365. [Google Scholar] [CrossRef] [PubMed]
- García, F.; Lejeune, M.; Climent, N.; Gil, C.; Alcamí, J.; Morente, V.; Alós, L.; Ruiz, A.; Setoain, J.; Fumero, E.; et al. Therapeutic Immunization with Dendritic Cells Loaded with Heat-Inactivated Autologous HIV-1 in Patients with Chronic HIV-1 Infection. J. Infect. Dis. 2005, 191, 1680–1685. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, H.; Miller, V.; Jennings, S.R.; Wigdahl, B.; Krebs, F.C. The Evolution of Dendritic Cell Immunotherapy against HIV-1 Infection: Improvements and Outlook. J. Immunol. Res. 2020, 2020, 9470102. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.; Zhang, X.; Sangji, H.; Liu, Y.; Allen, S.D.; Xiao, B.; Bobbala, S.; Braverman, C.L.; Cai, L.; Hecker, P.I.; et al. Surface Engineered Polymersomes for Enhanced Modulation of Dendritic Cells during Cardiovascular Immunotherapy. Adv. Funct. Mater. 2019, 29, 1904399. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Dong, M.; Wu, Y.; Gong, F.; Wang, Z.; Xue, L.; Su, Z. An Elastase-Inhibiting, Plaque-Targeting and Neutrophil-Hitchhiking Liposome against Atherosclerosis. Acta Biomater. 2024, 173, 470–481. [Google Scholar] [CrossRef] [PubMed]
- Mu, W.; Sharma, M.; Heymans, R.; Ritou, E.; Rezek, V.; Hamid, P.; Kossyvakis, A.; Sen Roy, S.; Grijalva, V.; Chattopadhyay, A.; et al. Apolipoprotein A-I Mimetics Attenuate Macrophage Activation in Chronic Treated HIV. AIDS 2021, 35, 543–553. [Google Scholar] [CrossRef] [PubMed]
- Wolska, A.; Reimund, M.; Sviridov, D.O.; Amar, M.J.; Remaley, A.T. Apolipoprotein Mimetic Peptides: Potential New Therapies for Cardiovascular Diseases. Cells 2021, 10, 597. [Google Scholar] [CrossRef]
- Walker, J.A.; Miller, A.D.; Burdo, T.H.; McGrath, M.S.; Williams, K.C. Direct Targeting of Macrophages with Methylglyoxal-Bis-Guanylhydrazone Decreases SIV-Associated Cardiovascular Inflammation and Pathology. J. Acquir. Immune Defic. Syndr. 2017, 74, 583–592. [Google Scholar] [CrossRef]
- Walker, J.A.; Beck, G.A.; Campbell, J.H.; Miller, A.D.; Burdo, T.H.; Williams, K.C. Anti-A4 Integrin Antibody Blocks Monocyte/Macrophage Traffic to the Heart and Decreases Cardiac Pathology in a SIV Infection Model of AIDS. J. Am. Heart Assoc. 2015, 4, e001932. [Google Scholar] [CrossRef]
- Moccia, M.; Albero, R.; Lanzillo, R.; Saccà, F.; De Rosa, A.; Russo, C.V.; Carotenuto, A.; Palladino, R.; Brescia Morra, V. Cardiovascular Profile Improvement during Natalizumab Treatment. Metab. Brain Dis. 2018, 33, 981–986. [Google Scholar] [CrossRef]
- Aranguren, M.; Doyon-Laliberté, K.; El-Far, M.; Chartrand-Lefebvre, C.; Routy, J.-P.; Barril, J.-G.; Trottier, B.; Tremblay, C.; Durand, M.; Poudrier, J.; et al. Subclinical Atherosclerosis Is Associated with Discrepancies in BAFF and APRIL Levels and Altered Breg Potential of Precursor-like Marginal Zone B-Cells in Long-Term HIV Treated Individuals. Vaccines 2022, 11, 81. [Google Scholar] [CrossRef] [PubMed]
- Sage, A.P.; Tsiantoulas, D.; Binder, C.J.; Mallat, Z. The Role of B Cells in Atherosclerosis. Nat. Rev. Cardiol. 2019, 16, 180–196. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.; Orecchioni, M.; Ley, K. How the Immune System Shapes Atherosclerosis: Roles of Innate and Adaptive Immunity. Nat. Rev. Immunol. 2022, 22, 251–265. [Google Scholar] [CrossRef]
- Campbell, J.H.; Hearps, A.C.; Martin, G.E.; Williams, K.C.; Crowe, S.M. The Importance of Monocytes and Macrophages in HIV Pathogenesis, Treatment, and Cure. AIDS 2014, 28, 2175–2187. [Google Scholar] [CrossRef] [PubMed]
- Wacleche, V.S.; Tremblay, C.L.; Routy, J.-P.; Ancuta, P. The Biology of Monocytes and Dendritic Cells: Contribution to HIV Pathogenesis. Viruses 2018, 10, 65. [Google Scholar] [CrossRef]
- Soehnlein, O. Multiple Roles for Neutrophils in Atherosclerosis. Circ. Res. 2012, 110, 875–888. [Google Scholar] [CrossRef]
- Silvestre-Roig, C.; Braster, Q.; Ortega-Gomez, A.; Soehnlein, O. Neutrophils as Regulators of Cardiovascular Inflammation. Nat. Rev. Cardiol. 2020, 17, 327–340. [Google Scholar] [CrossRef]
- Hensley-McBain, T.; Klatt, N.R. The Dual Role of Neutrophils in HIV Infection. Curr. HIV/AIDS Rep. 2018, 15, 1–10. [Google Scholar] [CrossRef]
- Flø, R.W.; Naess, A.; Nilsen, A.; Harthug, S.; Solberg, C.O. A Longitudinal Study of Phagocyte Function in HIV-Infected Patients. AIDS 1994, 8, 771–777. [Google Scholar] [CrossRef]
- Elbim, C.; Prevot, M.H.; Bouscarat, F.; Franzini, E.; Chollet-Martin, S.; Hakim, J.; Gougerot-Pocidalo, M.A. Polymorphonuclear Neutrophils from Human Immunodeficiency Virus-Infected Patients Show Enhanced Activation, Diminished fMLP-Induced L-Selectin Shedding, and an Impaired Oxidative Burst after Cytokine Priming. Blood 1994, 84, 2759–2766. [Google Scholar] [CrossRef]
- Ellis, M.; Gupta, S.; Galant, S.; Hakim, S.; VandeVen, C.; Toy, C.; Cairo, M.S. Impaired Neutrophil Function in Patients with AIDS or AIDS-Related Complex: A Comprehensive Evaluation. J. Infect. Dis. 1988, 158, 1268–1276. [Google Scholar] [CrossRef] [PubMed]
- Hanna, D.B.; Lin, J.; Post, W.S.; Hodis, H.N.; Xue, X.; Anastos, K.; Cohen, M.H.; Gange, S.J.; Haberlen, S.A.; Heath, S.L.; et al. Association of Macrophage Inflammation Biomarkers with Progression of Subclinical Carotid Artery Atherosclerosis in HIV-Infected Women and Men. J. Infect. Dis. 2017, 215, 1352–1361. [Google Scholar] [CrossRef]
- Crowe, S.M.; Westhorpe, C.L.V.; Mukhamedova, N.; Jaworowski, A.; Sviridov, D.; Bukrinsky, M. The Macrophage: The Intersection between HIV Infection and Atherosclerosis. J. Leukoc. Biol. 2010, 87, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, S.; Tawakol, A.; Burdo, T.H.; Abbara, S.; Wei, J.; Vijayakumar, J.; Corsini, E.; Abdelbaky, A.; Zanni, M.V.; Hoffmann, U.; et al. Arterial Inflammation in Patients with HIV. JAMA 2012, 308, 379–386. [Google Scholar] [CrossRef] [PubMed]
- McKibben, R.A.; Margolick, J.B.; Grinspoon, S.; Li, X.; Palella, F.J.; Kingsley, L.A.; Witt, M.D.; George, R.T.; Jacobson, L.P.; Budoff, M.; et al. Elevated Levels of Monocyte Activation Markers Are Associated with Subclinical Atherosclerosis in Men with and Those without HIV Infection. J. Infect. Dis. 2015, 211, 1219–1228. [Google Scholar] [CrossRef] [PubMed]
- Appay, V.; Boutboul, F.; Autran, B. The HIV Infection and Immune Activation: “To Fight and Burn”. Curr. Infect. Dis. Rep. 2005, 7, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Rossen, R.D.; Smith, C.W.; Laughter, A.H.; Noonan, C.A.; Anderson, D.C.; McShan, W.M.; Hurvitz, M.Y.; Orson, F.M. HIV-1-Stimulated Expression of CD11/CD18 Integrins and ICAM-1: A Possible Mechanism for Extravascular Dissemination of HIV-1-Infected Cells. Trans. Assoc. Am. Physicians 1989, 102, 117–130. [Google Scholar] [PubMed]
- Birdsall, H.H.; Porter, W.J.; Green, D.M.; Rubio, J.; Trial, J.; Rossen, R.D. Impact of Fibronectin Fragments on the Transendothelial Migration of HIV-Infected Leukocytes and the Development of Subendothelial Foci of Infectious Leukocytes. J. Immunol. 2004, 173, 2746–2754. [Google Scholar] [CrossRef]
- Westhorpe, C.L.V.; Zhou, J.; Webster, N.L.; Kalionis, B.; Lewin, S.R.; Jaworowski, A.; Muller, W.A.; Crowe, S.M. Effects of HIV-1 Infection in Vitro on Transendothelial Migration by Monocytes and Monocyte-Derived Macrophages. J. Leukoc. Biol. 2009, 85, 1027–1035. [Google Scholar] [CrossRef]
- Mukhamedova, N.; Hoang, A.; Dragoljevic, D.; Dubrovsky, L.; Pushkarsky, T.; Low, H.; Ditiatkovski, M.; Fu, Y.; Ohkawa, R.; Meikle, P.J.; et al. Exosomes Containing HIV Protein Nef Reorganize Lipid Rafts Potentiating Inflammatory Response in Bystander Cells. PLoS Pathog. 2019, 15, e1007907. [Google Scholar] [CrossRef]
- Renga, B.; Francisci, D.; D’Amore, C.; Schiaroli, E.; Carino, A.; Baldelli, F.; Fiorucci, S. HIV-1 Infection Is Associated with Changes in Nuclear Receptor Transcriptome, pro-Inflammatory and Lipid Profile of Monocytes. BMC Infect. Dis. 2012, 12, 274. [Google Scholar] [CrossRef] [PubMed]
- Yudkin, J.S.; Kumari, M.; Humphries, S.E.; Mohamed-Ali, V. Inflammation, Obesity, Stress and Coronary Heart Disease: Is Interleukin-6 the Link? Atherosclerosis 2000, 148, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Bernard, M.A.; Han, X.; Inderbitzin, S.; Agbim, I.; Zhao, H.; Koziel, H.; Tachado, S.D. HIV-Derived ssRNA Binds to TLR8 to Induce Inflammation-Driven Macrophage Foam Cell Formation. PLoS ONE 2014, 9, e104039. [Google Scholar] [CrossRef]
- Zernecke, A. Dendritic Cells in Atherosclerosis: Evidence in Mice and Humans. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Engelen, S.E.; Robinson, A.J.B.; Zurke, Y.-X.; Monaco, C. Therapeutic Strategies Targeting Inflammation and Immunity in Atherosclerosis: How to Proceed? Nat. Rev. Cardiol. 2022, 19, 522–542. [Google Scholar] [CrossRef] [PubMed]
- Smed-Sörensen, A.; Loré, K. Dendritic Cells at the Interface of Innate and Adaptive Immunity to HIV-1. Curr. Opin. HIV AIDS 2011, 6, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Tosello-Trampont, A.; Surette, F.A.; Ewald, S.E.; Hahn, Y.S. Immunoregulatory Role of NK Cells in Tissue Inflammation and Regeneration. Front. Immunol. 2017, 8, 301. [Google Scholar] [CrossRef]
- Yang, C.; Siebert, J.R.; Burns, R.; Gerbec, Z.J.; Bonacci, B.; Rymaszewski, A.; Rau, M.; Riese, M.J.; Rao, S.; Carlson, K.-S.; et al. Heterogeneity of Human Bone Marrow and Blood Natural Killer Cells Defined by Single-Cell Transcriptome. Nat. Commun. 2019, 10, 3931. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Rodríguez, J.E.; Munné-Collado, J.; Rasal, R.; Cuadrado, E.; Roig, L.; Ois, A.; Muntasell, A.; Baro, T.; Alameda, F.; Roquer, J.; et al. Expansion of the NKG2C+ Natural Killer-Cell Subset Is Associated with High-Risk Carotid Atherosclerotic Plaques in Seropositive Patients for Human Cytomegalovirus. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 2653–2659. [Google Scholar] [CrossRef]
- Alles, M.; Gunasena, M.; Kettelhut, A.; Ailstock, K.; Musiime, V.; Kityo, C.; Richardson, B.; Mulhern, W.; Tamilselvan, B.; Rubsamen, M.; et al. Activated NK Cells with Pro-Inflammatory Features Are Associated with Atherogenesis in Perinatally HIV-Acquired Adolescents. medRxiv 2023. [Google Scholar] [CrossRef]
- Nording, H.M.; Seizer, P.; Langer, H.F. Platelets in Inflammation and Atherogenesis. Front. Immunol. 2015, 6, 98. [Google Scholar] [CrossRef]
- Weber, C. Platelets and Chemokines in Atherosclerosis: Partners in Crime. Circ. Res. 2005, 96, 612–616. [Google Scholar] [CrossRef] [PubMed]
- O’Halloran, J.A.; Dunne, E.; Gurwith, M.; Lambert, J.S.; Sheehan, G.J.; Feeney, E.R.; Pozniak, A.; Reiss, P.; Kenny, D.; Mallon, P. The Effect of Initiation of Antiretroviral Therapy on Monocyte, Endothelial and Platelet Function in HIV-1 Infection. HIV Med. 2015, 16, 608–619. [Google Scholar] [CrossRef]
- Mayne, E.; Funderburg, N.T.; Sieg, S.F.; Asaad, R.; Kalinowska, M.; Rodriguez, B.; Schmaier, A.H.; Stevens, W.; Lederman, M.M. Increased Platelet and Microparticle Activation in HIV Infection: Upregulation of P-Selectin and Tissue Factor Expression. J. Acquir. Immune Defic. Syndr. 2012, 59, 340–346. [Google Scholar] [CrossRef]
- Sarma, J.; Laan, C.A.; Alam, S.; Jha, A.; Fox, K.A.A.; Dransfield, I. Increased Platelet Binding to Circulating Monocytes in Acute Coronary Syndromes. Circulation 2002, 105, 2166–2171. [Google Scholar] [CrossRef]
- Nkambule, B.B.; Mxinwa, V.; Mkandla, Z.; Mutize, T.; Mokgalaboni, K.; Nyambuya, T.M.; Dludla, P.V. Platelet Activation in Adult HIV-Infected Patients on Antiretroviral Therapy: A Systematic Review and Meta-Analysis. BMC Med. 2020, 18, 357. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, E.C.; Hottz, E.D.; Amancio, R.T.; Carneiro, A.B.; Palhinha, L.; Coelho, L.E.; Grinsztejn, B.; Zimmerman, G.A.; Rondina, M.T.; Weyrich, A.S.; et al. Persistent Platelet Activation and Apoptosis in Virologically Suppressed HIV-Infected Individuals. Sci. Rep. 2018, 8, 14999. [Google Scholar] [CrossRef] [PubMed]
- Tunjungputri, R.N.; Van Der Ven, A.J.; Schonsberg, A.; Mathan, T.S.; Koopmans, P.; Roest, M.; Fijnheer, R.; Groot, P.G.D.E.; de Mast, Q. Reduced Platelet Hyperreactivity and Platelet-Monocyte Aggregation in HIV-Infected Individuals Receiving a Raltegravir-Based Regimen. AIDS 2014, 28, 2091–2096. [Google Scholar] [CrossRef] [PubMed]
- Loelius, S.G.; Lannan, K.L.; Blumberg, N.; Phipps, R.P.; Spinelli, S.L. The HIV Protease Inhibitor, Ritonavir, Dysregulates Human Platelet Function in Vitro. Thromb. Res. 2018, 169, 96–104. [Google Scholar] [CrossRef]
- Falcinelli, E.; Francisci, D.; Belfiori, B.; Petito, E.; Guglielmini, G.; Malincarne, L.; Mezzasoma, A.; Sebastiano, M.; Conti, V.; Giannini, S.; et al. In Vivo Platelet Activation and Platelet Hyperreactivity in Abacavir-Treated HIV-Infected Patients. Thromb. Haemost. 2013, 110, 349–357. [Google Scholar] [CrossRef]
- Satchell, C.S.; O’Halloran, J.A.; Cotter, A.G.; Peace, A.J.; O’Connor, E.F.; Tedesco, A.F.; Feeney, E.R.; Lambert, J.S.; Sheehan, G.J.; Kenny, D.; et al. Increased Platelet Reactivity in HIV-1-Infected Patients Receiving Abacavir-Containing Antiretroviral Therapy. J. Infect. Dis. 2011, 204, 1202–1210. [Google Scholar] [CrossRef] [PubMed]
- Trautmann, L.; Janbazian, L.; Chomont, N.; Said, E.A.; Gimmig, S.; Bessette, B.; Boulassel, M.-R.; Delwart, E.; Sepulveda, H.; Balderas, R.S.; et al. Upregulation of PD-1 Expression on HIV-Specific CD8+ T Cells Leads to Reversible Immune Dysfunction. Nat. Med. 2006, 12, 1198–1202. [Google Scholar] [CrossRef] [PubMed]
- Paiardini, M.; Müller-Trutwin, M. HIV-Associated Chronic Immune Activation. Immunol. Rev. 2013, 254, 78–101. [Google Scholar] [CrossRef]
- Hunt, P.W.; Martin, J.N.; Sinclair, E.; Bredt, B.; Hagos, E.; Lampiris, H.; Deeks, S.G. T Cell Activation Is Associated with Lower CD4+ T Cell Gains in Human Immunodeficiency Virus-Infected Patients with Sustained Viral Suppression during Antiretroviral Therapy. J. Infect. Dis. 2003, 187, 1534–1543. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Jiang, W.; Zhang, X.; Qin, L.; Su, B.; Li, Z.; Sun, J.; Zhang, Y.; Zhang, T.; Lu, X.; et al. Elevated Level of CD4+ T Cell Immune Activation in Acutely HIV-1-Infected Stage Associates with Increased IL-2 Production and Cycling Expression, and Subsequent CD4+ T Cell Preservation. Front. Immunol. 2018, 9, 616. [Google Scholar] [CrossRef]
- Lederman, M.M.; Calabrese, L.; Funderburg, N.T.; Clagett, B.; Medvik, K.; Bonilla, H.; Gripshover, B.; Salata, R.A.; Taege, A.; Lisgaris, M.; et al. Immunologic Failure despite Suppressive Antiretroviral Therapy Is Related to Activation and Turnover of Memory CD4 Cells. J. Infect. Dis. 2011, 204, 1217–1226. [Google Scholar] [CrossRef] [PubMed]
- Hunt, P.W.; Landay, A.L.; Sinclair, E.; Martinson, J.A.; Hatano, H.; Emu, B.; Norris, P.J.; Busch, M.P.; Martin, J.N.; Brooks, C.; et al. A Low T Regulatory Cell Response May Contribute to Both Viral Control and Generalized Immune Activation in HIV Controllers. PLoS ONE 2011, 6, e15924. [Google Scholar] [CrossRef] [PubMed]
- Hunt, P.W.; Cao, H.L.; Muzoora, C.; Ssewanyana, I.; Bennett, J.; Emenyonu, N.; Kembabazi, A.; Neilands, T.B.; Bangsberg, D.R.; Deeks, S.G.; et al. Impact of CD8+ T-Cell Activation on CD4+ T-Cell Recovery and Mortality in HIV-Infected Ugandans Initiating Antiretroviral Therapy. AIDS 2011, 25, 2123–2131. [Google Scholar] [CrossRef] [PubMed]
- Hsue, P.Y.; Hunt, P.W.; Sinclair, E.; Bredt, B.; Franklin, A.; Killian, M.; Hoh, R.; Martin, J.N.; McCune, J.M.; Waters, D.D.; et al. Increased Carotid Intima-Media Thickness in HIV Patients Is Associated with Increased Cytomegalovirus-Specific T-Cell Responses. AIDS 2006, 20, 2275–2283. [Google Scholar] [CrossRef]
- Kaplan, R.C.; Sinclair, E.; Landay, A.L.; Lurain, N.; Sharrett, A.R.; Gange, S.J.; Xue, X.; Hunt, P.; Karim, R.; Kern, D.M.; et al. T Cell Activation and Senescence Predict Subclinical Carotid Artery Disease in HIV-Infected Women. J. Infect. Dis. 2011, 203, 452–463. [Google Scholar] [CrossRef]
- Lichtenstein, K.A.; Armon, C.; Buchacz, K.; Chmiel, J.S.; Buckner, K.; Tedaldi, E.M.; Wood, K.; Holmberg, S.D.; Brooks, J.T.; HIV Outpatient Study (HOPS) Investigators. Low CD4+ T Cell Count Is a Risk Factor for Cardiovascular Disease Events in the HIV Outpatient Study. Clin. Infect. Dis. 2010, 51, 435–447. [Google Scholar] [CrossRef]
- Kaplan, R.C.; Kingsley, L.A.; Gange, S.J.; Benning, L.; Jacobson, L.P.; Lazar, J.; Anastos, K.; Tien, P.C.; Sharrett, A.R.; Hodis, H.N. Low CD4+ T-Cell Count as a Major Atherosclerosis Risk Factor in HIV-Infected Women and Men. AIDS 2008, 22, 1615–1624. [Google Scholar] [CrossRef]
- Freiberg, M.S.; Chang, C.-C.H.; Kuller, L.H.; Skanderson, M.; Lowy, E.; Kraemer, K.L.; Butt, A.A.; Bidwell Goetz, M.; Leaf, D.; Oursler, K.A.; et al. HIV Infection and the Risk of Acute Myocardial Infarction. JAMA Intern. Med. 2013, 173, 614–622. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.E.; Deeks, S.G.; Hecht, F.M.; Xie, Y.; Schnell, A.; Martin, J.N.; Ganz, P.; Hsue, P.Y. Initiation of Antiretroviral Therapy at Higher Nadir CD4+ T-Cell Counts Is Associated with Reduced Arterial Stiffness in HIV-Infected Individuals. AIDS 2010, 24, 1897–1905. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, W.; Zhao, T.; Zou, Y.; Deng, T.; Yang, Z.; Yuan, Z.; Ma, L.; Yu, R.; Wang, T.; et al. Interleukin-17-Producing CD4+ T Cells Promote Inflammatory Response and Foster Disease Progression in Hyperlipidemic Patients and Atherosclerotic Mice. Front. Cardiovasc. Med. 2021, 8, 667768. [Google Scholar] [CrossRef]
- Kundu, S.; Freiberg, M.S.; Tracy, R.P.; So-Armah, K.A.; Koethe, J.R.; Duncan, M.S.; Tindle, H.A.; Beckman, J.A.; Feinstein, M.J.; McDonnell, W.J.; et al. Circulating T Cells and Cardiovascular Risk in People with and without HIV Infection. J. Am. Coll. Cardiol. 2022, 80, 1633–1644. [Google Scholar] [CrossRef]
- Tse, K.; Tse, H.; Sidney, J.; Sette, A.; Ley, K. T Cells in Atherosclerosis. Int. Immunol. 2013, 25, 615–622. [Google Scholar] [CrossRef]
- Taleb, S.; Tedgui, A.; Mallat, Z. Adaptive T Cell Immune Responses and Atherogenesis. Curr. Opin. Pharmacol. 2010, 10, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Saigusa, R.; Winkels, H.; Ley, K. T Cell Subsets and Functions in Atherosclerosis. Nat. Rev. Cardiol. 2020, 17, 387–401. [Google Scholar] [CrossRef]
- Wiche Salinas, T.R.; Zhang, Y.; Gosselin, A.; Rosario, N.F.; El-Far, M.; Filali-Mouhim, A.; Routy, J.-P.; Chartrand-Lefebvre, C.; Landay, A.L.; Durand, M.; et al. Alterations in Th17 Cells and Non-Classical Monocytes as a Signature of Subclinical Coronary Artery Atherosclerosis during ART-Treated HIV-1 Infection. Cells 2024, 13, 157. [Google Scholar] [CrossRef]
- Yero, A.; Shi, T.; Farnos, O.; Routy, J.-P.; Tremblay, C.; Durand, M.; Tsoukas, C.; Costiniuk, C.T.; Jenabian, M.-A. Dynamics and Epigenetic Signature of Regulatory T-Cells Following Antiretroviral Therapy Initiation in Acute HIV Infection. EBioMedicine 2021, 71, 103570. [Google Scholar] [CrossRef]
- Rothan, C.; Yero, A.; Shi, T.; Farnos, O.; Chartrand-Lefebvre, C.; El-Far, M.; Costiniuk, C.T.; Tsoukas, C.; Tremblay, C.; Durand, M.; et al. Antiretroviral Therapy-Treated HIV-Infected Adults with Coronary Artery Disease Are Characterized by a Distinctive Regulatory T-Cell Signature. AIDS 2021, 35, 1003–1014. [Google Scholar] [CrossRef]
- Chen, B.; Morris, S.R.; Panigrahi, S.; Michaelson, G.M.; Wyrick, J.M.; Komissarov, A.A.; Potashnikova, D.; Lebedeva, A.; Younes, S.-A.; Harth, K.; et al. Cytomegalovirus Coinfection Is Associated with Increased Vascular-Homing CD57+ CD4 T Cells in HIV Infection. J. Immunol. 2020, 204, 2722–2733. [Google Scholar] [CrossRef]
- Wanjalla, C.N.; Mashayekhi, M.; Bailin, S.; Gabriel, C.L.; Meenderink, L.M.; Temu, T.; Fuller, D.T.; Guo, L.; Kawai, K.; Virmani, R.; et al. Anticytomegalovirus CD4+ T Cells Are Associated with Subclinical Atherosclerosis in Persons with HIV. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 1459–1473. [Google Scholar] [CrossRef]
- Wanjalla, C.N.; Gabriel, C.L.; Fuseini, H.; Bailin, S.S.; Mashayekhi, M.; Simmons, J.; Warren, C.M.; Glass, D.R.; Oakes, J.; Gangula, R.; et al. CD4+ T Cells Expressing CX3CR1, GPR56, with Variable CD57 Are Associated with Cardiometabolic Diseases in Persons with HIV. Front. Immunol. 2023, 14, 1099356. [Google Scholar] [CrossRef]
- Abana, C.O.; Pilkinton, M.A.; Gaudieri, S.; Chopra, A.; McDonnell, W.J.; Wanjalla, C.; Barnett, L.; Gangula, R.; Hager, C.; Jung, D.K.; et al. Cytomegalovirus (CMV) Epitope-Specific CD4+ T Cells Are Inflated in HIV+ CMV+ Subjects. J. Immunol. 2017, 199, 3187–3201. [Google Scholar] [CrossRef]
- Bernal, E.; Martinez, M.; Torres, A.; Guillamón, C.F.; Alcaraz, A.; Alcaraz, M.J.; Muñoz, A.; Valero, S.; Botella, C.; Campillo, J.A.; et al. T Cell Senescence Predicts Subclinical Atherosclerosis in HIV-Infected Patients Similarly to Traditional Cardiovascular Risk Factors. Antiviral Res. 2019, 162, 163–170. [Google Scholar] [CrossRef]
- Pera, A.; Caserta, S.; Albanese, F.; Blowers, P.; Morrow, G.; Terrazzini, N.; Smith, H.E.; Rajkumar, C.; Reus, B.; Msonda, J.R.; et al. CD28null Pro-Atherogenic CD4 T-Cells Explain the Link between CMV Infection and an Increased Risk of Cardiovascular Death. Theranostics 2018, 8, 4509–4519. [Google Scholar] [CrossRef]
- Liuzzo, G.; Biasucci, L.M.; Trotta, G.; Brugaletta, S.; Pinnelli, M.; Digianuario, G.; Rizzello, V.; Rebuzzi, A.G.; Rumi, C.; Maseri, A.; et al. Unusual CD4+CD28null T Lymphocytes and Recurrence of Acute Coronary Events. J. Am. Coll. Cardiol. 2007, 50, 1450–1458. [Google Scholar] [CrossRef]
- Zal, B.; Kaski, J.C.; Arno, G.; Akiyu, J.P.; Xu, Q.; Cole, D.; Whelan, M.; Russell, N.; Madrigal, J.A.; Dodi, I.A.; et al. Heat-Shock Protein 60-Reactive CD4+CD28null T Cells in Patients with Acute Coronary Syndromes. Circulation 2004, 109, 1230–1235. [Google Scholar] [CrossRef]
- Bailin, S.S.; Kundu, S.; Wellons, M.; Freiberg, M.S.; Doyle, M.F.; Tracy, R.P.; Justice, A.C.; Wanjalla, C.N.; Landay, A.L.; So-Armah, K.; et al. Circulating CD4+ TEMRA and CD4+ CD28- T Cells and Incident Diabetes among Persons with and without HIV. AIDS 2022, 36, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Villar, S.; Pérez-Elías, M.J.; Dronda, F.; Casado, J.L.; Moreno, A.; Royuela, A.; Pérez-Molina, J.A.; Sainz, T.; Navas, E.; Hermida, J.M.; et al. Increased Risk of Serious Non-AIDS-Related Events in HIV-Infected Subjects on Antiretroviral Therapy Associated with a Low CD4/CD8 Ratio. PLoS ONE 2014, 9, e85798. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, M.; Bowman, E.; Gabriel, J.; Amburgy, T.; Mayne, E.; Zidar, D.A.; Maierhofer, C.; Turner, A.N.; Bazan, J.A.; Koletar, S.L.; et al. Altered Monocyte and Endothelial Cell Adhesion Molecule Expression Is Linked to Vascular Inflammation in Human Immunodeficiency Virus Infection. Open Forum Infect. Dis. 2016, 3, ofw224. [Google Scholar] [CrossRef] [PubMed]
- McDermott, D.H.; Halcox, J.P.; Schenke, W.H.; Waclawiw, M.A.; Merrell, M.N.; Epstein, N.; Quyyumi, A.A.; Murphy, P.M. Association between Polymorphism in the Chemokine Receptor CX3CR1 and Coronary Vascular Endothelial Dysfunction and Atherosclerosis. Circ. Res. 2001, 89, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Moatti, D.; Faure, S.; Fumeron, F.; Amara, M.E.-W.; Seknadji, P.; McDermott, D.H.; Debré, P.; Aumont, M.C.; Murphy, P.M.; de Prost, D.; et al. Polymorphism in the Fractalkine Receptor CX3CR1 as a Genetic Risk Factor for Coronary Artery Disease. Blood 2001, 97, 1925–1928. [Google Scholar] [CrossRef] [PubMed]
- Ikejima, H.; Imanishi, T.; Tsujioka, H.; Kashiwagi, M.; Kuroi, A.; Tanimoto, T.; Kitabata, H.; Ishibashi, K.; Komukai, K.; Takeshita, T.; et al. Upregulation of Fractalkine and Its Receptor, CX3CR1, Is Associated with Coronary Plaque Rupture in Patients with Unstable Angina Pectoris. Circ. J. 2010, 74, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Panigrahi, S.; Freeman, M.L.; Funderburg, N.T.; Mudd, J.C.; Younes, S.A.; Sieg, S.F.; Zidar, D.A.; Paiardini, M.; Villinger, F.; Calabrese, L.H.; et al. SIV/SHIV Infection Triggers Vascular Inflammation, Diminished Expression of Krüppel-like Factor 2 and Endothelial Dysfunction. J. Infect. Dis. 2016, 213, 1419–1427. [Google Scholar] [CrossRef] [PubMed]
- Panigrahi, S.; Chen, B.; Fang, M.; Potashnikova, D.; Komissarov, A.A.; Lebedeva, A.; Michaelson, G.M.; Wyrick, J.M.; Morris, S.R.; Sieg, S.F.; et al. CX3CL1 and IL-15 Promote CD8 T Cell Chemoattraction in HIV and in Atherosclerosis. PLoS Pathog. 2020, 16, e1008885. [Google Scholar] [CrossRef] [PubMed]
- Grivel, J.-C.; Ivanova, O.; Pinegina, N.; Blank, P.S.; Shpektor, A.; Margolis, L.B.; Vasilieva, E. Activation of T Lymphocytes in Atherosclerotic Plaques. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 2929–2937. [Google Scholar] [CrossRef]
- Freeman, M.L.; Panigrahi, S.; Chen, B.; Juchnowski, S.; Sieg, S.F.; Lederman, M.M.; Funderburg, N.T.; Zidar, D.A. CD8+ T-Cell-Derived Tumor Necrosis Factor Can Induce Tissue Factor Expression on Monocytes. J. Infect. Dis. 2019, 220, 73–77. [Google Scholar] [CrossRef]
- van Duijn, J.; Kritikou, E.; Benne, N.; van der Heijden, T.; van Puijvelde, G.H.; Kröner, M.J.; Schaftenaar, F.H.; Foks, A.C.; Wezel, A.; Smeets, H.; et al. CD8+ T-Cells Contribute to Lesion Stabilization in Advanced Atherosclerosis by Limiting Macrophage Content and CD4+ T-Cell Responses. Cardiovasc. Res. 2019, 115, 729–738. [Google Scholar] [CrossRef]
- Adamo, L.; Rocha-Resende, C.; Mann, D.L. The Emerging Role of B Lymphocytes in Cardiovascular Disease. Annu. Rev. Immunol. 2020, 38, 99–121. [Google Scholar] [CrossRef]
- Pattarabanjird, T.; Li, C.; McNamara, C. B Cells in Atherosclerosis: Mechanisms and Potential Clinical Applications. JACC Basic Transl. Sci. 2021, 6, 546–563. [Google Scholar] [CrossRef]
- Obare, L.M.; Bonami, R.H.; Doran, A.C.; Wanjalla, C.N. B Cells and Atherosclerosis: A HIV Perspective. J. Cell. Physiol. 2024, 239, 31270. [Google Scholar] [CrossRef]
- LeBien, T.W.; Tedder, T.F. B Lymphocytes: How They Develop and Function. Blood 2008, 112, 1570–1580. [Google Scholar] [CrossRef]
- Moir, S.; Fauci, A.S. B Cells in HIV Infection and Disease. Nat. Rev. Immunol. 2009, 9, 235–245. [Google Scholar] [CrossRef]
- Moir, S.; Ho, J.; Malaspina, A.; Wang, W.; DiPoto, A.C.; O’Shea, M.A.; Roby, G.; Kottilil, S.; Arthos, J.; Proschan, M.A.; et al. Evidence for HIV-Associated B Cell Exhaustion in a Dysfunctional Memory B Cell Compartment in HIV-Infected Viremic Individuals. J. Exp. Med. 2008, 205, 1797–1805. [Google Scholar] [CrossRef]
- Pillai, S.; Cariappa, A. The Follicular versus Marginal Zone B Lymphocyte Cell Fate Decision. Nat. Rev. Immunol. 2009, 9, 767–777. [Google Scholar] [CrossRef]
- Porsch, F.; Mallat, Z.; Binder, C.J. Humoral Immunity in Atherosclerosis and Myocardial Infarction: From B Cells to Antibodies. Cardiovasc. Res. 2021, 117, 2544–2562. [Google Scholar] [CrossRef]
- Kyaw, T.; Tay, C.; Krishnamurthi, S.; Kanellakis, P.; Agrotis, A.; Tipping, P.; Bobik, A.; Toh, B.-H. B1a B Lymphocytes Are Atheroprotective by Secreting Natural IgM That Increases IgM Deposits and Reduces Necrotic Cores in Atherosclerotic Lesions. Circ. Res. 2011, 109, 830–840. [Google Scholar] [CrossRef]
- Kyaw, T.; Tay, C.; Khan, A.; Dumouchel, V.; Cao, A.; To, K.; Kehry, M.; Dunn, R.; Agrotis, A.; Tipping, P.; et al. Conventional B2 B Cell Depletion Ameliorates Whereas Its Adoptive Transfer Aggravates Atherosclerosis. J. Immunol. 2010, 185, 4410–4419. [Google Scholar] [CrossRef] [PubMed]
- Ait-Oufella, H.; Herbin, O.; Bouaziz, J.-D.; Binder, C.J.; Uyttenhove, C.; Laurans, L.; Taleb, S.; Van Vré, E.; Esposito, B.; Vilar, J.; et al. B Cell Depletion Reduces the Development of Atherosclerosis in Mice. J. Exp. Med. 2010, 207, 1579–1587. [Google Scholar] [CrossRef] [PubMed]
- Kyaw, T.; Tay, C.; Hosseini, H.; Kanellakis, P.; Gadowski, T.; MacKay, F.; Tipping, P.; Bobik, A.; Toh, B.-H. Depletion of B2 but Not B1a B Cells in BAFF Receptor-Deficient ApoE Mice Attenuates Atherosclerosis by Potently Ameliorating Arterial Inflammation. PLoS ONE 2012, 7, e29371. [Google Scholar] [CrossRef]
- Samson, S.; Mundkur, L.; Kakkar, V.V. Immune Response to Lipoproteins in Atherosclerosis. Cholesterol 2012, 2012, 571846. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, X.; Han, Y.; Qiu, Z.; Song, X.; Li, B.; Zhang, H.; Wang, H.; Feng, K.; Liu, L.; et al. High APRIL Levels Are Associated with Slow Disease Progression and Low Immune Activation in Chronic HIV-1-Infected Patients. Front. Med. 2020, 7, 299. [Google Scholar] [CrossRef]
- Tsiantoulas, D.; Sage, A.P.; Göderle, L.; Ozsvar-Kozma, M.; Murphy, D.; Porsch, F.; Pasterkamp, G.; Menche, J.; Schneider, P.; Mallat, Z.; et al. B Cell-Activating Factor Neutralization Aggravates Atherosclerosis. Circulation 2018, 138, 2263–2273. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.I.; Obeid, M.T.; Jouma, M.J.; Moasis, G.A.; Al-Richane, W.L.; Kindermann, I.; Boehm, M.; Roemer, K.; Mueller-Lantzsch, N.; Gärtner, B.C. Detection of Herpes Simplex Virus, Cytomegalovirus and Epstein-Barr Virus DNA in Atherosclerotic Plaques and in Unaffected Bypass Grafts. J. Clin. Virol. 2005, 32, 29–32. [Google Scholar] [CrossRef]
- Hechter, R.C.; Budoff, M.; Hodis, H.N.; Rinaldo, C.R.; Jenkins, F.J.; Jacobson, L.P.; Kingsley, L.A.; Taiwo, B.; Post, W.S.; Margolick, J.B.; et al. Herpes Simplex Virus Type 2 (HSV-2) as a Coronary Atherosclerosis Risk Factor in HIV-Infected Men: Multicenter AIDS Cohort Study. Atherosclerosis 2012, 223, 433–436. [Google Scholar] [CrossRef] [PubMed]
- Masiá, M.; Robledano, C.; Ortiz de la Tabla, V.; Antequera, P.; López, N.; Gutiérrez, F. Increased Carotid Intima-Media Thickness Associated with Antibody Responses to Varicella-Zoster Virus and Cytomegalovirus in HIV-Infected Patients. PLoS ONE 2013, 8, e64327. [Google Scholar] [CrossRef]
- Castellon, X.; Bogdanova, V. Chronic Inflammatory Diseases and Endothelial Dysfunction. Aging Dis. 2016, 7, 81–89. [Google Scholar] [CrossRef]
- Weis, M.; Kledal, T.N.; Lin, K.Y.; Panchal, S.N.; Gao, S.Z.; Valantine, H.A.; Mocarski, E.S.; Cooke, J.P. Cytomegalovirus Infection Impairs the Nitric Oxide Synthase Pathway: Role of Asymmetric Dimethylarginine in Transplant Arteriosclerosis. Circulation 2004, 109, 500–505. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, S.P.H.; Pardieck, I.N.; Lanfermeijer, J.; Sauce, D.; Klenerman, P.; van Baarle, D.; Arens, R. The Hallmarks of CMV-Specific CD8 T-Cell Differentiation. Med. Microbiol. Immunol. 2019, 208, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Heybar, H.; Alavi, S.M.; Farashahi Nejad, M.; Latifi, M. Cytomegalovirus Infection and Atherosclerosis in Candidate of Coronary Artery Bypass Graft. Jundishapur J. Microbiol. 2015, 8, e15476. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Tokunaga, O. Herpesvirus (HSV-1, EBV and CMV) Infections in Atherosclerotic Compared with Non-Atherosclerotic Aortic Tissue. Pathol. Int. 2002, 52, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Hunt, P.W.; Martin, J.N.; Sinclair, E.; Epling, L.; Teague, J.; Jacobson, M.A.; Tracy, R.P.; Corey, L.; Deeks, S.G. Valganciclovir Reduces T Cell Activation in HIV-Infected Individuals with Incomplete CD4+ T Cell Recovery on Antiretroviral Therapy. J. Infect. Dis. 2011, 203, 1474–1483. [Google Scholar] [CrossRef] [PubMed]
- Wanjalla, C.N.; McDonnell, W.J.; Barnett, L.; Simmons, J.D.; Furch, B.D.; Lima, M.C.; Woodward, B.O.; Fan, R.; Fei, Y.; Baker, P.G.; et al. Adipose Tissue in Persons with HIV Is Enriched for CD4+ T Effector Memory and T Effector Memory RA+ Cells, Which Show Higher CD69 Expression and CD57, CX3CR1, GPR56 Co-Expression with Increasing Glucose Intolerance. Front. Immunol. 2019, 10, 408. [Google Scholar] [CrossRef]
- National Institute of Allergy and Infectious Diseases (NIAID). Randomized, Controlled Trial to Evaluate the Anti-Inflammatory Efficacy of Letermovir (Prevymis) in Adults with Human Immunodeficiency Virus (HIV)-1 and Asymptomatic Cytomegalovirus (CMV) Who Are on Suppressive ART and Its Effect on Chronic Inflammation, HIV Persistence, and Other Clinical Outcomes; NIAID: Bethesda, MD, USA, 2024. [Google Scholar]
- Weibel, S.G.; Kitch, D.W.; Beck-Engeser, G.B.; Meneses, M.; Letendre, S.L.; Dube, M.; Fox, L.; Koethe, J.; Hsue, P.Y.; Tawakol, A.A.; et al. Suppressing Asymptomatic CMV with Letermovir Reshapes Cardiometabolic Proteome in Treated HIV. In Proceedings of the Conference on Retroviruses and Opportunistic Infections, Denver, CO, USA, 3–6 March 2024. [Google Scholar]
- De Backer, J.; Mak, R.; De Bacquer, D.; Van Renterghem, L.; Verbraekel, E.; Kornitzer, M.; De Backer, G. Parameters of Inflammation and Infection in a Community Based Case-Control Study of Coronary Heart Disease. Atherosclerosis 2002, 160, 457–463. [Google Scholar] [CrossRef]
- Lobzin, I.V.; Boĭtsov, S.A.; Filippov, A.E.; Linchak, R.M.; Mangutov, D.A. Effect of respiratory infections on the clinical course of coronary artery disease. Klin. Med. 2005, 83, 22–26. [Google Scholar]
- Papagno, L.; Spina, C.A.; Marchant, A.; Salio, M.; Rufer, N.; Little, S.; Dong, T.; Chesney, G.; Waters, A.; Easterbrook, P.; et al. Immune Activation and CD8+ T-Cell Differentiation towards Senescence in HIV-1 Infection. PLoS Biol. 2004, 2, E20. [Google Scholar] [CrossRef]
- Sutherland, M.R.; Raynor, C.M.; Leenknegt, H.; Wright, J.F.; Pryzdial, E.L. Coagulation Initiated on Herpesviruses. Proc. Natl. Acad. Sci. USA 1997, 94, 13510–13514. [Google Scholar] [CrossRef]
- Grahame-Clarke, C.; Alber, D.G.; Lucas, S.B.; Miller, R.; Vallance, P. Association between Kaposi’s Sarcoma and Atherosclerosis: Implications for Gammaherpesviruses and Vascular Disease. AIDS 2001, 15, 1902–1904. [Google Scholar] [CrossRef]
- Masiá, M.; Robledano, C.; Ortiz de la Tabla, V.; Antequera, P.; Lumbreras, B.; Hernández, I.; Gutiérrez, F. Coinfection with Human Herpesvirus 8 Is Associated with Persistent Inflammation and Immune Activation in Virologically Suppressed HIV-Infected Patients. PLoS ONE 2014, 9, e105442. [Google Scholar] [CrossRef] [PubMed]
- Lidón, F.; Padilla, S.; García, J.A.; Fernández, M.; García, J.; Ortiz de la Tabla, V.; Gutiérrez, F.; Masiá, M. Contribution of Human Herpesvirus 8 and Herpes Simplex Type 2 to Progression of Carotid Intima-Media Thickness in People Living with HIV. Open Forum Infect. Dis. 2019, 6, ofz041. [Google Scholar] [CrossRef] [PubMed]
- Curhan, S.G.; Kawai, K.; Yawn, B.; Rexrode, K.M.; Rimm, E.B.; Curhan, G.C. Herpes Zoster and Long-Term Risk of Cardiovascular Disease. J. Am. Heart Assoc. 2022, 11, e027451. [Google Scholar] [CrossRef]
- Nagel, M.A.; Bubak, A.N. Varicella Zoster Virus Vasculopathy. J. Infect. Dis. 2018, 218, S107–S112. [Google Scholar] [CrossRef] [PubMed]
- Yawn, B.P.; Wollan, P.C.; Nagel, M.A.; Gilden, D. Risk of Stroke and Myocardial Infarction After Herpes Zoster in Older Adults in a US Community Population. Mayo Clin. Proc. 2016, 91, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Ba’Omar, M.; Chhetri, S.; Pandak, N.; Khamis, F.; Al-Balushi, Z.; Al-Hajri, A.; Abouelhamd, H.; Al-Fahdi, Z. Varicella Zoster Virus Vasculopathy; An HIV Adult Presenting with Multiple Strokes. IDCases 2022, 30, e01641. [Google Scholar] [CrossRef] [PubMed]
- Marais, G.; Naidoo, M.; McMullen, K.; Stanley, A.; Bryer, A.; van der Westhuizen, D.; Bateman, K.; Hardie, D.R. Varicella-Zoster Virus Reactivation Is Frequently Detected in HIV-Infected Individuals Presenting with Stroke. J. Med. Virol. 2022, 94, 2675–2683. [Google Scholar] [CrossRef] [PubMed]
- Ku, H.-C.; Tsai, Y.-T.; Konara-Mudiyanselage, S.-P.; Wu, Y.-L.; Yu, T.; Ko, N.-Y. Incidence of Herpes Zoster in HIV-Infected Patients Undergoing Antiretroviral Therapy: A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 2300. [Google Scholar] [CrossRef]
- Fiordelisi, D.; Poliseno, M.; De Gennaro, N.; Milano, E.; Santoro, C.R.; Segala, F.V.; Franco, C.F.; Manco Cesari, G.; Frallonardo, L.; Guido, G.; et al. Varicella-Zoster Virus Reactivation and Increased Vascular Risk in People Living with HIV: Data from a Retrospective Cohort Study. Viruses 2023, 15, 2217. [Google Scholar] [CrossRef]
- Wang, J.P.; Kurt-Jones, E.A.; Shin, O.S.; Manchak, M.D.; Levin, M.J.; Finberg, R.W. Varicella-Zoster Virus Activates Inflammatory Cytokines in Human Monocytes and Macrophages via Toll-like Receptor 2. J. Virol. 2005, 79, 12658–12666. [Google Scholar] [CrossRef] [PubMed]
- Eleftheriou, D.; Moraitis, E.; Hong, Y.; Turmaine, M.; Venturini, C.; Ganesan, V.; Breuer, J.; Klein, N.; Brogan, P. Microparticle-Mediated VZV Propagation and Endothelial Activation: Mechanism of VZV Vasculopathy. Neurology 2020, 94, e474–e480. [Google Scholar] [CrossRef] [PubMed]
- Petruzziello, A.; Marigliano, S.; Loquercio, G.; Cozzolino, A.; Cacciapuoti, C. Global Epidemiology of Hepatitis C Virus Infection: An up-Date of the Distribution and Circulation of Hepatitis C Virus Genotypes. World J. Gastroenterol. 2016, 22, 7824–7840. [Google Scholar] [CrossRef] [PubMed]
- André, P.; Komurian-Pradel, F.; Deforges, S.; Perret, M.; Berland, J.L.; Sodoyer, M.; Pol, S.; Bréchot, C.; Paranhos-Baccalà, G.; Lotteau, V. Characterization of Low- and Very-Low-Density Hepatitis C Virus RNA-Containing Particles. J. Virol. 2002, 76, 6919–6928. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.K.; Stelzle, D.; Bing, R.; Anwar, M.; Strachan, F.; Bashir, S.; Newby, D.E.; Shah, J.S.; Chung, M.H.; Bloomfield, G.S.; et al. Global Burden of Atherosclerotic Cardiovascular Disease in People with Hepatitis C Virus Infection: A Systematic Review, Meta-Analysis, and Modelling Study. Lancet Gastroenterol. Hepatol. 2019, 4, 794–804. [Google Scholar] [CrossRef] [PubMed]
- Chew, K.W.; Hua, L.; Bhattacharya, D.; Butt, A.A.; Bornfleth, L.; Chung, R.T.; Andersen, J.W.; Currier, J.S. The Effect of Hepatitis C Virologic Clearance on Cardiovascular Disease Biomarkers in Human Immunodeficiency Virus/Hepatitis C Virus Coinfection. Open Forum Infect. Dis. 2014, 1, ofu104. [Google Scholar] [CrossRef]
- Babiker, A.; Jeudy, J.; Kligerman, S.; Khambaty, M.; Shah, A.; Bagchi, S. Risk of Cardiovascular Disease Due to Chronic Hepatitis C Infection: A Review. J. Clin. Transl. Hepatol. 2017, 5, 343–362. [Google Scholar] [CrossRef]
- Roed, T.; Kristoffersen, U.S.; Knudsen, A.; Wiinberg, N.; Lebech, A.-M.; Almdal, T.; Thomsen, R.W.; Kjær, A.; Weis, N. Increased Prevalence of Coronary Artery Disease Risk Markers in Patients with Chronic Hepatitis C—A Cross-Sectional Study. Vasc. Health Risk Manag. 2014, 10, 55–62. [Google Scholar] [CrossRef]
- Al-Jiffri, O.H. Adhesive Molecules and Inflammatory Markers among Hepatitis C Virus Saudi Patients. Electron. J. Gen. Med. 2017, 14, 89–93. [Google Scholar] [CrossRef]
- Kaplanski, G.; Farnarier, C.; Payan, M.J.; Bongrand, P.; Durand, J.M. Increased Levels of Soluble Adhesion Molecules in the Serum of Patients with Hepatitis C. Correlation with Cytokine Concentrations and Liver Inflammation and Fibrosis. Dig. Dis. Sci. 1997, 42, 2277–2284. [Google Scholar] [CrossRef]
- Babiker, A.; Hassan, M.; Muhammed, S.; Taylor, G.; Poonia, B.; Shah, A.; Bagchi, S. Inflammatory and Cardiovascular Diseases Biomarkers in Chronic Hepatitis C Virus Infection: A Review. Clin. Cardiol. 2019, 43, 222–234. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, S.; Burrowes, S.A.; Fantry, L.E.; Hossain, M.B.; Tollera, G.H.; Kottilil, S.; Pauza, C.D.; Miller, M.; Baumgarten, M.; Redfield, R.R. Factors Associated with High Cardiovascular Risk in a Primarily African American, Urban HIV-Infected Population. SAGE Open Med. 2017, 5, 2050312117725644. [Google Scholar] [CrossRef] [PubMed]
- Freiberg, M.S.; Chang, C.-C.H.; Skanderson, M.; McGinnis, K.; Kuller, L.H.; Kraemer, K.L.; Rimland, D.; Goetz, M.B.; Butt, A.A.; Rodriguez Barradas, M.C.; et al. The Risk of Incident Coronary Heart Disease among Veterans with and without HIV and Hepatitis C. Circ. Cardiovasc. Qual. Outcomes 2011, 4, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Kushner, L.E.; Wendelboe, A.M.; Lazzeroni, L.C.; Chary, A.; Winters, M.A.; Osinusi, A.; Kottilil, S.; Polis, M.A.; Holodniy, M. Immune Biomarker Differences and Changes Comparing HCV Mono-Infected, HIV/HCV Co-Infected, and HCV Spontaneously Cleared Patients. PLoS ONE 2013, 8, e60387. [Google Scholar] [CrossRef] [PubMed]
- Kohli, P.; Ganz, P.; Ma, Y.; Scherzer, R.; Hur, S.; Weigel, B.; Grunfeld, C.; Deeks, S.; Wasserman, S.; Scott, R.; et al. HIV and Hepatitis C-Coinfected Patients Have Lower Low-Density Lipoprotein Cholesterol Despite Higher Proprotein Convertase Subtilisin Kexin 9 (PCSK9): An Apparent “PCSK9-Lipid Paradox”. J. Am. Heart Assoc. 2016, 5, e002683. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, M.M.; Nguyen, K.-L.; Lake, J.E.; Liao, D.; Khodabakhshian, A.; Guerrero, M.; Shufelt, C.L.; Bairey Merz, C.N.; Jordan, W.C.; Daar, E.S.; et al. Proprotein Convertase Subtisilin/Kexin 9 Levels Decline with Hepatitis C Virus Therapy in People with HIV/Hepatitis C Virus and Correlate with Inflammation. AIDS 2024, 38, 317–327. [Google Scholar] [CrossRef]
- Carrero, A.; Berenguer, J.; Hontañón, V.; Navarro, J.; Hernández-Quero, J.; Galindo, M.J.; Quereda, C.; Santos, I.; Téllez, M.J.; Ortega, E.; et al. Effects of Eradication of HCV on Cardiovascular Risk and Preclinical Atherosclerosis in HIV/HCV-Coinfected Patients. J. Acquir. Immune Defic. Syndr. 2020, 83, 292–300. [Google Scholar] [CrossRef]
- Masiá, M.; Robledano, C.; López, N.; Escolano, C.; Gutiérrez, F. Treatment for Hepatitis C Virus with Pegylated Interferon-α plus Ribavirin Induces Anti-Atherogenic Effects on Cardiovascular Risk Biomarkers in HIV-Infected and -Uninfected Patients. J. Antimicrob. Chemother. 2011, 66, 1861–1868. [Google Scholar] [CrossRef]
Therapeutic Interventions Targeting the Immune System That Have Been Assessed for ASCVD Prevention and MACE Reduction | |||||
---|---|---|---|---|---|
Therapeutic Intervention | Target Cytokine/Cell Line/Inflammatory Marker | Mechanism of Action | Evidence in Persons without HIV | Experience in Persons with HIV | References |
Canakinumab | IL-1β | Monoclonal antibody neutralizes IL-1β signaling | In the CANTOS trial, interleukin-1β blockade with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent CVD events than placebo, independent of lipid-level lowering. | 8 weeks of canakinumab treatment significantly lowered inflammatory biomarkers, including hs-CRP and sCD163. Additionally, leukopoiesis as measured by bone marrow FDG-PET signal and arterial inflammation decreased. | [100,101] |
Tocilizumab | IL-6 receptor (IL-6R) | Monoclonal antibody targets and blocks IL-6R | In the ASSAIL-MI randomized control trial (RCT), tocilizumab increased salvage of viable myocardium in persons with acute STEMI. | In a small RCT, tocilizumab was found to be safe and decreased IL-6, but significantly increased cholesterol levels. | [102,103] |
Methotrexate (MTX) | IL-1β, IL-6, CRP | Modulates inflammation by promoting adenosine uptake and inhibiting transmethylation reactions, subsequently reducing inflammatory biomarkers like CRP, IL-6, and TNF-α | In the CIRT trial, among persons with stable atherosclerosis, low-dose MTX did not reduce levels of IL-1β, IL-6, or CRP and did not result in fewer CVD events than placebo. | In a small study of PLWH with increased ASCVD risk, low-dose MTX had more adverse safety events than placebo. Additionally, low-dose MTX had no significant effect on endothelial function or inflammatory markers, but was associated with a significant decrease in CD8+ T cells. | [104,105] |
Colchicine | IL-8, NLR3 inflammasome related cytokines (e.g., IL1-β) | Diminishes neutrophil inflammatory function and migration | In the COLCOT and LoDOCo2 trials, colchicine led to a significantly lower risk of ischemic CVD events than placebo. In the COPS Trial, no significant reductions in acute coronary syndromes or non-cardiometabolic stroke were observed, indicating that effects may be dependent on specific study population. | A small study examining colchicine’s effect on coronary endothelial function and serum inflammatory markers in PLWH without coronary artery disease (CAD) did not show improvement on endothelial function or inflammatory markers. | [106,107,108,109,110,111] |
Statins | HMG-CoA reductase enzyme | Multiple: inhibits cholesterol synthesis in liver; inhibits NF-κB, an important transcription regulatory protein in inflammatory response; activates NOS gene transcription to stimulate production of nitric oxide | United States Preventive Services Task Force (USPSTF) recommends statins for primary prevention of ASCVD in adults aged 40 to 75 years with a 10-year ASCVD risk of 10% or greater and a nuanced approach among those with 10-year ASCVD risk of 7.5% to 10% based on multiple randomized trials and meta-analyses of cohort studies demonstrating benefit in reducing ASCVD. | REPRIEVE trial found that pitavastatin reduced risk of MACE by 35% compared to placebo in PLWH with low-moderate ASCVD risk. The REPRIEVE mechanistic sub-study demonstrated reduction in markers of vascular inflammation in those who received statin. Similar findings have been reported in smaller observational studies like INTREPID, SATURN-HIV, and ACTG A5255. | [80,112,113,114,115,116] |
PCSK9 inhibitors | LDL receptors | Binds to PCSK9 protein preventing its interaction with LDL receptors, and stops their degradation, allowing more uptake of cholesterol from the blood into the liver | PCSK9 inhibition with evolocumab with concurrent statin therapy lowered LDL cholesterol levels by an additional 15–20% and reduced the risk of cardiovascular events. | In a small study, evocolumab reversed coronary artery dysfunction, but had no effect on reducing markers. | [117,118] |
Aspirin | Platelets | Cyclo-oxygenase-1 pathway | Based on multiple clinical studies, USPSTF guidelines recommend aspirin use for the primary prevention of CVD events in adults aged 40 to 59 years who have a 10% or greater 10-year CVD risk, with moderate certainty; has a small net benefit. | Aspirin treatment for 12 weeks had no major impact on sCD14, IL-6, sCD163, D-dimer, T-cell or monocyte activation, or flow-mediated dilation. | [119] |
Dipyridamole | Platelets | Inhibits adenosine re-uptake | Older anti-platelet agent not currently recommended for primary prevention of ASCVD. | In a small RCT, dipyridamole increased extracellular adenosine levels and decreased T-cell activation significantly among PLWH virally suppressed on ART. | [120] |
Novel Therapeutic Strategies Targeting the Immune System to Reduce ASCVD and MACE | |||||
Therapeutic Intervention | Target Cytokine/Cell Line/Inflammatory Marker | Mechanism of Action | Evidence in Persons without HIV | Experience in Persons with HIV | References |
IL-17a Blockade | IL-17a | Inhibit effect of IL-17a on monocyte and macrophage function, chemokine expression, and leukocyte migration | Functional blockade of IL-17a in vitro has been shown to prevent atherosclerotic lesion progression and promote plaque stabilization in murine models of ASCVD. Clinical studies of persons treated for psoriasis with IL-17a antagonists have shown reduction in early indicators of CVD. | Not widely studied. | [121,122,123] |
IL-18 antagonists | IL-18 | Inhibit effects of IL-18 on monocyte and macrophage activation, thus reducing production of interferon gamma and enhancing Th1 responses | Pro-atherogenic effects of IL-18 demonstrated in murine model of atherosclerosis. | HIV-infected macrophages had increased foam cell formation, expression of NLRP3 inflammasome components, and production of downstream cytokines including IL-18. | [86,87,124] |
Maraviroc | CCR5 chemokine receptor | CCR5 receptor antagonist | Not studied for ASCVD prevention or MACE reduction. | In non-human primate studies of simian immunodeficiency virus (SIV), maraviroc led to fewer activated CD163+ macrophages in the heart and preserved diastolic function. ART intensification studies with maraviroc showed decreased expression of vascular cellular adhesion molecule-1 (VCAM-1) compared to controls. | [125,126] |
Rilpivirine | Platelet activation markers (P-selectin, CD40 ligand) | Inhibits thrombin and ADP-triggered platelet aggregation, degranulation, and activation | Not studied for ASCVD prevention or MACE reduction. | Rilpivirine was found to prevent the progression of thrombotic CVD by inhibiting thrombin and ADP-triggered platelet aggregation, degranulation, and activation without increasing risk of bleeding in murine models of ASCVD. | [127] |
Janus kinase (JAK) inhibitors | JAK-STAT signaling pathway | Inhibits specific enzymes in the JAK family including JAK1, JAK2, JAK3, and TYK2, which are involved in the signaling pathways that regulate hematopoiesis and immune activation | Tofacitinib has been shown to increase risk of MACE in persons with rheumatoid arthritis (RA) compared to TNF-α antagonists in a RCT. In a smaller study, tofacitinib reduced markers of endothelial dysfunction among persons with RA. | Ruxolitinib has been shown to be safe in a phase 2 study and reduced IL-6 and sCD14 in ART-treated PLWH. | [128,129,130] |
HIV vaccines | Dendritic cells (DCs) | Inactivated HIV-1 virus introduced to autologous monocyte-derived DCs, leading to enhanced HIV-1-specific T cell responses | Not studied for ASCVD prevention or MACE reduction. | Potential decrease in HIV-mediated chronic inflammation. | [131,132,133] |
Anti-inflammatory nanoparticles and antigenic peptides | Atheroma-specific dendritic dells | Induces an anti-inflammatory milieu facilitated by DCs | Targeted delivery of engineered anti-inflammatory nanoparticles and antigenic peptides to atheroma-specific DCs has been shown to reduce atherosclerotic lesions and induce a more anti-inflammatory milieu. | Not studied. | [134] |
Sivelestat | Neutrophil elastase inhibitor | Inhibits neutrophil extracellular trap (NET) formation | Delivering sivelestat utilizing a plaque-targeting, neutrophil-hitchhiking liposome (cRGD-SVT-Lipo) reduced CAD plaque area and increased plaque stabilization in a murine model of ASCVD. | Not studied. | [135] |
MCC950 | NLRP3 inflammasome | Downregulates NLRP3 pro-inflammatory activity, which is implicated in foam cell formation and pro-inflammatory cytokine production | Selective inhibition of NLRP3 with MCC950 downregulates inflammasome pro-inflammatory activity. | Inhibition of NLRP3 with MCC950 in HIV-infected macrophages reduced foam cell formation in vitro. | [87] |
Apolipoprotein A-I mimetic peptides | Macrophages | Reduces biomarkers of macrophage activation | Small and short-term early stage trials, mostly based on imaging endpoints, have shown a favorable effect of rapidly reducing atherosclerotic plaque volume. However, larger clinical studies have failed to show significant benefit. | Apolipoprotein A-I mimetic peptides reduced biomarkers of macrophage activation in a murine model of treated HIV. | [136,137] |
Methylglyoxal-bis-guanylhydrazone (MGBG) | Macrophages | Inhibits biosynthesis of polyamines, which are necessary for macrophage activation, proliferation and differentiation | Not extensively studied for ASCVD prevention or MACE reduction. | In a nonhuman primate model of SIV, MGBG has been demonstrated to reduce cardiovascular inflammation, carotid artery intima-media thickness, and fibrosis. | [138] |
Natalizumab | α4 integrin | Monoclonal antibody against α4 integrin decreases macrophage traffic to cardiac tissue | Persons receiving natalizumab for treatment of multiple sclerosis have beneficial changes in lipid profiles and antioxidant uric acid levels. | Decreased trafficking of macrophages to cardiac tissue and decreased cardiac pathology in nonhuman primate model of SIV. | [139,140] |
B cell activation factors | APRIL (a proliferation-inducing ligand), BAFF (B-cell activating factor) | Reduces B cell activation and associated cytokines | Not extensively studied for ASCVD prevention or MACE reduction. | Increased levels of APRIL have been associated with the development of atherosclerosis. Increased levels of BAFF are associated with increased risk of ASCVD. | [141,142] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hmiel, L.; Zhang, S.; Obare, L.M.; Santana, M.A.d.O.; Wanjalla, C.N.; Titanji, B.K.; Hileman, C.O.; Bagchi, S. Inflammatory and Immune Mechanisms for Atherosclerotic Cardiovascular Disease in HIV. Int. J. Mol. Sci. 2024, 25, 7266. https://doi.org/10.3390/ijms25137266
Hmiel L, Zhang S, Obare LM, Santana MAdO, Wanjalla CN, Titanji BK, Hileman CO, Bagchi S. Inflammatory and Immune Mechanisms for Atherosclerotic Cardiovascular Disease in HIV. International Journal of Molecular Sciences. 2024; 25(13):7266. https://doi.org/10.3390/ijms25137266
Chicago/Turabian StyleHmiel, Laura, Suyu Zhang, Laventa M. Obare, Marcela Araujo de Oliveira Santana, Celestine N. Wanjalla, Boghuma K. Titanji, Corrilynn O. Hileman, and Shashwatee Bagchi. 2024. "Inflammatory and Immune Mechanisms for Atherosclerotic Cardiovascular Disease in HIV" International Journal of Molecular Sciences 25, no. 13: 7266. https://doi.org/10.3390/ijms25137266
APA StyleHmiel, L., Zhang, S., Obare, L. M., Santana, M. A. d. O., Wanjalla, C. N., Titanji, B. K., Hileman, C. O., & Bagchi, S. (2024). Inflammatory and Immune Mechanisms for Atherosclerotic Cardiovascular Disease in HIV. International Journal of Molecular Sciences, 25(13), 7266. https://doi.org/10.3390/ijms25137266