Genetic and Epigenetic Biomarkers Linking Alzheimer’s Disease and Age-Related Macular Degeneration
Abstract
:1. Introduction
2. Visual Perception and Cognitive Function
3. Correlation between Alzheimer’s Disease and Age-Related Macular Degeneration
3.1. Pathophysiological Characteristics
3.2. Chronic Inflammation
3.3. Oxidative Stress
4. The Role of Susceptibility Genes in Age-Related Macular Degeneration and Alzheimer’s Pathogenesis
5. Role of Epigenetic Mechanisms in Age-Related Macular Degeneration and Alzheimer’s Pathogenesis
Similarities in miRNA Profiling
6. Future Perspectives
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zheng, C.; Zeng, R.; Wu, G.; Hu, Y.; Yu, H. Beyond Vision: A View from Eye to Alzheimer’s Disease and Dementia. J. Prev. Alzheimer’s Dis. 2023, 11, 469–483. [Google Scholar] [CrossRef]
- Gupta, V.B.; Chitranshi, N.; den Haan, J.; Mirzaei, M.; You, Y.; Lim, J.K.H.; Basavarajappa, D.; Godinez, A.; Di Angelantonio, S.; Sachdev, P.; et al. Retinal Changes in Alzheimer’s Disease—Integrated Prospects of Imaging, Functional and Molecular Advances. Prog. Retin. Eye Res. 2021, 82, 100899. [Google Scholar] [CrossRef]
- Hane, F.T.; Robinson, M.; Lee, B.Y.; Bai, O.; Leonenko, Z.; Albert, M.S. Recent Progress in Alzheimer’s Disease Research, Part 3: Diagnosis and Treatment. J. Alzheimer’s Dis. 2017, 57, 645–665. [Google Scholar] [CrossRef]
- Romaus-Sanjurjo, D.; Regueiro, U.; López-López, M.; Vázquez-Vázquez, L.; Ouro, A.; Lema, I.; Sobrino, T. Alzheimer’s Disease Seen through the Eye: Ocular Alterations and Neurodegeneration. Int. J. Mol. Sci. 2022, 23, 2486. [Google Scholar] [CrossRef]
- Król-Grzymała, A.; Sienkiewicz-Szłapka, E.; Fiedorowicz, E.; Rozmus, D.; Cieślińska, A.; Grzybowski, A. Tear Biomarkers in Alzheimer’s and Parkinson’s Diseases, and Multiple Sclerosis: Implications for Diagnosis (Systematic Review). Int. J. Mol. Sci. 2022, 23, 10123. [Google Scholar] [CrossRef]
- Whitwell, J.L.; Dickson, D.W.; Murray, M.E.; Weigand, S.D.; Tosakulwong, N.; Senjem, M.L.; Knopman, D.S.; Boeve, B.F.; Parisi, J.E.; Petersen, R.C.; et al. Neuroimaging Correlates of Pathologically Defined Subtypes of Alzheimer’s Disease: A Case-Control Study. Lancet Neurol. 2012, 11, 868–877. [Google Scholar] [CrossRef]
- Haller, S.; Jäger, H.R.; Vernooij, M.W.; Barkhof, F. Neuroimaging in Dementia: More than Typical Alzheimer Disease. Radiology 2023, 308, e230173. [Google Scholar] [CrossRef]
- Penny, L.K.; Lofthouse, R.; Arastoo, M.; Porter, A.; Palliyil, S.; Harrington, C.R.; Wischik, C.M. Considerations for Biomarker Strategies in Clinical Trials Investigating Tau-Targeting Therapeutics for Alzheimer’s Disease. Transl. Neurodegener. 2024, 13, 25. [Google Scholar] [CrossRef]
- Ausó, E.; Gómez-Vicente, V.; Esquiva, G. Biomarkers for Alzheimer’s Disease Early Diagnosis. J. Pers. Med. 2020, 10, 114. [Google Scholar] [CrossRef] [PubMed]
- Kaštelan, S.; Braš, M.; Pjevač, N.; Bakija, I.; Tomić, Z.; Pjevač Keleminić, N.; Gverović Antunica, A. Tear Biomarkers and Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 13429. [Google Scholar] [CrossRef] [PubMed]
- Rampa, A.; Gobbi, S.; Belluti, F.; Bisi, A. Tackling Alzheimer’s Disease with Existing Drugs: A Promising Strategy for Bypassing Obstacles. Curr. Med. Chem. 2021, 28, 2305–2327. [Google Scholar] [CrossRef]
- Cascella, R.; Strafella, C.; Caputo, V.; Errichiello, V.; Zampatti, S.; Milano, F.; Potenza, S.; Mauriello, S.; Novelli, G.; Ricci, F.; et al. Towards the Application of Precision Medicine in Age-Related Macular Degeneration. Prog. Retin. Eye Res. 2018, 63, 132–146. [Google Scholar] [CrossRef] [PubMed]
- Strafella, C.; Caputo, V.; Termine, A.; Fabrizio, C.; Ruffo, P.; Potenza, S.; Cusumano, A.; Ricci, F.; Caltagirone, C.; Giardina, E.; et al. Genetic Determinants Highlight the Existence of Shared Etiopathogenetic Mechanisms Characterizing Age-Related Macular Degeneration and Neurodegenerative Disorders. Front. Neurol. 2021, 12, 626066. [Google Scholar] [CrossRef]
- Zhang, M.; Gong, X.; Ma, W.; Wen, L.; Wang, Y.; Yao, H. A Study on the Correlation Between Age-Related Macular Degeneration and Alzheimer’s Disease Based on the Application of Artificial Neural Network. Front. Public. Health 2022, 10, 925147. [Google Scholar] [CrossRef]
- Ong, S.S.; Proia, A.D.; Whitson, H.E.; Farsiu, S.; Doraiswamy, P.M.; Lad, E.M. Ocular Amyloid Imaging at the Crossroad of Alzheimer’s Disease and Age-Related Macular Degeneration: Implications for Diagnosis and Therapy. J. Neurol. 2019, 266, 1566–1577. [Google Scholar] [CrossRef]
- Kaarniranta, K.; Salminen, A.; Haapasalo, A.; Soininen, H.; Hiltunen, M. Age-Related Macular Degeneration (AMD): Alzheimer’s Disease in the Eye? J. Alzheimer’s Dis. 2011, 24, 615–631. [Google Scholar] [CrossRef]
- Cerman, E.; Eraslan, M.; Cekic, O. Age-Related Macular Degeneration and Alzheimer Disease. Turk. J. Med. Sci. 2015, 45, 1004–1009. [Google Scholar] [CrossRef] [PubMed]
- Malek, G.; Johnson, L.V.; Mace, B.E.; Saloupis, P.; Schmechel, D.E.; Rickman, D.W.; Toth, C.A.; Sullivan, P.M.; Rickman, C.B. Apolipoprotein E Allele-Dependent Pathogenesis: A Model for Age-Related Retinal Degeneration. Proc. Natl. Acad. Sci. USA 2005, 102, 11900–11905. [Google Scholar] [CrossRef]
- Tsai, H.-R.; Lo, R.Y.; Liang, K.-H.; Chen, T.-L.; Huang, H.-K.; Wang, J.-H.; Lee, Y.-C. Risk of Subsequent Dementia or Alzheimer Disease Among Patients With Age-Related Macular Degeneration: A Systematic Review and Meta-Analysis. Am. J. Ophthalmol. 2023, 247, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.V.; Leitner, W.P.; Rivest, A.J.; Staples, M.K.; Radeke, M.J.; Anderson, D.H. The Alzheimer’s Aβ-Peptide Is Deposited at Sites of Complement Activation in Pathologic Deposits Associated with Aging and Age-Related Macular Degeneration. Proc. Natl. Acad. Sci. USA 2002, 99, 11830–11835. [Google Scholar] [CrossRef]
- Anderson, D.H.; Talaga, K.C.; Rivest, A.J.; Barron, E.; Hageman, G.S.; Johnson, L.V. Characterization of β Amyloid Assemblies in Drusen: The Deposits Associated with Aging and Age-Related Macular Degeneration. Exp. Eye Res. 2004, 78, 243–256. [Google Scholar] [CrossRef]
- Swaroop, A.; Chew, E.Y.; Bowes Rickman, C.; Abecasis, G.R. Unraveling a Multifactorial Late-Onset Disease: From Genetic Susceptibility to Disease Mechanisms for Age-Related Macular Degeneration. Annu. Rev. Genom. Hum. Genet. 2009, 10, 19–43. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J.; Madden, D.J.; Cunha, P.; Badea, A.; Davis, S.W.; Potter, G.G.; Lad, E.M.; Cousins, S.W.; Chen, N.-K.; Allen, K.; et al. Cerebral White Matter Connectivity, Cognition, and Age-Related Macular Degeneration. Neuroimage Clin. 2021, 30, 102594. [Google Scholar] [CrossRef] [PubMed]
- Stout, J.A.; Mahzarnia, A.; Dai, R.; Anderson, R.J.; Cousins, S.; Zhuang, J.; Lad, E.M.; Whitaker, D.B.; Madden, D.J.; Potter, G.G.; et al. Accelerated Brain Atrophy, Microstructural Decline and Connectopathy in Age-Related Macular Degeneration. Biomedicines 2024, 12, 147. [Google Scholar] [CrossRef]
- Yin Wong, T.; Klein, R.; Nieto, F.J.; Moraes, S.A.D.; Mosley, T.H.; Couper, D.J.; Klein, B.E.K.; Boland, L.L.; Hubbard, L.D.; Sharrett, A.R. Is Early Age-Related Maculopathy Related to Cognitive Function? The Atherosclerosis Risk in Communities Study. Am. J. Ophthalmol. 2002, 134, 828–835. [Google Scholar] [CrossRef] [PubMed]
- Rong, S.S.; Lee, B.Y.; Kuk, A.K.; Yu, X.T.; Li, S.S.; Li, J.; Guo, Y.; Yin, Y.; Osterbur, D.L.; Yam, J.C.S.; et al. Comorbidity of Dementia and Age-Related Macular Degeneration Calls for Clinical Awareness: A Meta-Analysis. Br. J. Ophthalmol. 2019, 103, 1777–1783. [Google Scholar] [CrossRef] [PubMed]
- Whitson, H.E.; Ansah, D.; Whitaker, D.; Potter, G.; Cousins, S.W.; MacDonald, H.; Pieper, C.F.; Landerman, L.; Steffens, D.C.; Cohen, H.J. Prevalence and Patterns of Comorbid Cognitive Impairment in Low Vision Rehabilitation for Macular Disease. Arch. Gerontol. Geriatr. 2010, 50, 209–212. [Google Scholar] [CrossRef]
- Hernowo, A.T.; Prins, D.; Baseler, H.A.; Plank, T.; Gouws, A.D.; Hooymans, J.M.M.; Morland, A.B.; Greenlee, M.W.; Cornelissen, F.W. Morphometric Analyses of the Visual Pathways in Macular Degeneration. Cortex 2014, 56, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Yoshimine, S.; Ogawa, S.; Horiguchi, H.; Terao, M.; Miyazaki, A.; Matsumoto, K.; Tsuneoka, H.; Nakano, T.; Masuda, Y.; Pestilli, F. Age-Related Macular Degeneration Affects the Optic Radiation White Matter Projecting to Locations of Retinal Damage. Brain Struct. Funct. 2018, 223, 3889–3900. [Google Scholar] [CrossRef] [PubMed]
- Beer, A.L.; Plank, T.; Greenlee, M.W. Aging and Central Vision Loss: Relationship between the Cortical Macro-Structure and Micro-Structure. Neuroimage 2020, 212, 116670. [Google Scholar] [CrossRef]
- Wittich, W.; Pichora-Fuller, M.K.; Johnson, A.; Joubert, S.; Kehayia, E.; Bachir, V.; Aubin, G.; Jaiswal, A.; Phillips, N. Effect of Reading Rehabilitation for Age-Related Macular Degeneration on Cognitive Functioning: Protocol for a Nonrandomized Pre-Post Intervention Study. JMIR Res. Protoc. 2021, 10, e19931. [Google Scholar] [CrossRef]
- Cheung, C.M.G.; Wong, T.Y. Is Age-related Macular Degeneration a Manifestation of Systemic Disease? New Prospects for Early Intervention and Treatment. J. Intern. Med. 2014, 276, 140–153. [Google Scholar] [CrossRef]
- Sivak, J.M. The Aging Eye: Common Degenerative Mechanisms Between the Alzheimer’s Brain and Retinal Disease. Investig. Ophthalmol. Vis. Sci. 2013, 54, 871. [Google Scholar] [CrossRef]
- Tan, H.; Lv, M.; Tan, X.; Su, G.; Chang, R.; Yang, P. Sharing of Genetic Association Signals by Age-Related Macular Degeneration and Alzheimer’s Disease at Multiple Levels. Mol. Neurobiol. 2020, 57, 4488–4499. [Google Scholar] [CrossRef]
- Zhao, Y.; Bhattacharjee, S.; Jones, B.M.; Hill, J.M.; Clement, C.; Sambamurti, K.; Dua, P.; Lukiw, W.J. Beta-Amyloid Precursor Protein (ΒAPP) Processing in Alzheimer’s Disease (AD) and Age-Related Macular Degeneration (AMD). Mol. Neurobiol. 2015, 52, 533–544. [Google Scholar] [CrossRef]
- Romano, G.L.; Platania, C.B.M.; Drago, F.; Salomone, S.; Ragusa, M.; Barbagallo, C.; Di Pietro, C.; Purrello, M.; Reibaldi, M.; Avitabile, T.; et al. Retinal and Circulating MiRNAs in Age-Related Macular Degeneration: An In Vivo Animal and Human Study. Front. Pharmacol. 2017, 8, 168. [Google Scholar] [CrossRef]
- Ohno-Matsui, K. Parallel Findings in Age-Related Macular Degeneration and Alzheimer’s Disease. Prog. Retin. Eye Res. 2011, 30, 217–238. [Google Scholar] [CrossRef]
- Klaver, C.C.W.; Ott, A.; Hofman, A.; Assink, J.J.M.; Breteler, M.M.B.; de Jong, P.T.V.M. Is Age-Related Maculopathy Associated with Alzheimer’s Disease?: The Rotterdam Study. Am. J. Epidemiol. 1999, 150, 963–968. [Google Scholar] [CrossRef]
- Woo, S.J.; Park, K.H.; Ahn, J.; Choe, J.Y.; Jeong, H.; Han, J.W.; Kim, T.H.; Kim, K.W. Cognitive Impairment in Age-Related Macular Degeneration and Geographic Atrophy. Ophthalmology 2012, 119, 2094–2101. [Google Scholar] [CrossRef]
- Logue, M.W.; Schu, M.; Vardarajan, B.N.; Farrell, J.; Lunetta, K.L.; Jun, G.; Baldwin, C.T.; DeAngelis, M.M.; Farrer, L.A. A Search for Age-Related Macular Degeneration Risk Variants in Alzheimer Disease Genes and Pathways. Neurobiol. Aging 2014, 35, 1510.e7–1510.e18. [Google Scholar] [CrossRef]
- Tsai, D.-C.; Chen, S.-J.; Huang, C.-C.; Yuan, M.-K.; Leu, H.-B. Age-Related Macular Degeneration and Risk of Degenerative Dementia among the Elderly in Taiwan. Ophthalmology 2015, 122, 2327–2335.e2. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.; Larson, E.B.; Gibbons, L.E.; Lee, A.Y.; McCurry, S.M.; Bowen, J.D.; McCormick, W.C.; Crane, P.K. Associations between Recent and Established Ophthalmic Conditions and Risk of Alzheimer’s Disease. Alzheimer’s Dement. 2019, 15, 34–41. [Google Scholar] [CrossRef]
- Choi, S.; Jahng, W.J.; Park, S.M.; Jee, D. Association of Age-Related Macular Degeneration on Alzheimer or Parkinson Disease: A Retrospective Cohort Study. Am. J. Ophthalmol. 2020, 210, 41–47. [Google Scholar] [CrossRef]
- Hwang, P.H.; Longstreth, W.T.; Thielke, S.M.; Francis, C.E.; Carone, M.; Kuller, L.H.; Fitzpatrick, A.L. Ophthalmic Conditions Associated with Dementia Risk: The Cardiovascular Health Study. Alzheimer’s Dement. 2021, 17, 1442–1451. [Google Scholar] [CrossRef] [PubMed]
- Le, J.T.; Agrón, E.; Keenan, T.D.L.; Clemons, T.E.; Brenowitz, W.D.; Yaffe, K.; Chew, E.Y. Assessing Bidirectional Associations between Cognitive Impairment and Late Age-related Macular Degeneration in the Age-Related Eye Disease Study 2. Alzheimer’s Dement. 2022, 18, 1296–1305. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Zhu, Z.; Huang, Y.; Zhang, X.; Wang, W.; Shi, D.; Jiang, Y.; Yang, X.; He, M. Associations of Ophthalmic and Systemic Conditions with Incident Dementia in the UK Biobank. Br. J. Ophthalmol. 2023, 107, 275–282. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, Z.; Huang, Y.; Shang, X.; O’Brien, T.J.; Kwan, P.; Ha, J.; Wang, W.; Liu, S.; Zhang, X.; et al. Shared Genetic Aetiology of Alzheimer’s Disease and Age-Related Macular Degeneration by APOC1 and APOE Genes. BMJ Neurol. Open 2024, 6, e000570. [Google Scholar] [CrossRef]
- Wen, L.-Y.; Wan, L.; Lai, J.-N.; Chen, C.S.; Chen, J.J.-Y.; Wu, M.-Y.; Hu, K.-C.; Chiu, L.-T.; Tien, P.-T.; Lin, H.-J. Increased Risk of Alzheimer’s Disease among Patients with Age-Related Macular Degeneration: A Nationwide Population-Based Study. PLoS ONE 2021, 16, e0250440. [Google Scholar] [CrossRef]
- Keenan, T.D.L.; Goldacre, R.; Goldacre, M.J. Associations Between Age-Related Macular Degeneration, Alzheimer Disease, and Dementia. JAMA Ophthalmol. 2014, 132, 63. [Google Scholar] [CrossRef]
- Schwaber, E.J.; Thompson, A.C.; Smilnak, G.; Stinnett, S.S.; Whitson, H.E.; Lad, E.M. Co-Prevalence of Alzheimer’s Disease and Age-Related Macular Degeneration Established by Histopathologic Diagnosis. J. Alzheimer’s Dis. 2020, 76, 207–215. [Google Scholar] [CrossRef]
- Kuźma, E.; Littlejohns, T.J.; Khawaja, A.P.; Llewellyn, D.J.; Ukoumunne, O.C.; Thiem, U. Visual Impairment, Eye Diseases, and Dementia Risk: A Systematic Review and Meta-Analysis. J. Alzheimer’s Dis. 2021, 83, 1073–1087. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Li, J.; Tang, B.; Guo, J.; Shen, L. Lack of Bidirectional Association between Age-related Macular Degeneration and Alzheimer’s Disease: A Mendelian Randomization Study. Alzheimer’s Dement. 2022, 18, 2725–2729. [Google Scholar] [CrossRef] [PubMed]
- Chua, J.; Zhang, Z.; Wong, D.; Tan, B.; Kulantayan, B.; Sng, C.C.A.; Hilal, S.; Venketasubramanian, N.; Tan, B.Y.; Cheung, C.Y.; et al. Age-Related Eye Diseases in Individuals With Mild Cognitive Impairment and Alzheimer’s Disease. Front. Aging Neurosci. 2022, 14, 933853. [Google Scholar] [CrossRef] [PubMed]
- Pameijer, E.M.; Heus, P.; Damen, J.A.A.; Spijker, R.; Hooft, L.; Ringens, P.J.; Imhof, S.M.; van Leeuwen, R. What Did We Learn in 35 Years of Research on Nutrition and Supplements for Age-related Macular Degeneration: A Systematic Review. Acta Ophthalmol. 2022, 100, E1541–E1552. [Google Scholar] [CrossRef]
- Chen, X.; Rong, S.S.; Xu, Q.; Tang, F.Y.; Liu, Y.; Gu, H.; Tam, P.O.S.; Chen, L.J.; Brelén, M.E.; Pang, C.P.; et al. Diabetes Mellitus and Risk of Age-Related Macular Degeneration: A Systematic Review and Meta-Analysis. PLoS ONE 2014, 9, e108196. [Google Scholar] [CrossRef] [PubMed]
- Shahid, H.; Khan, J.C.; Cipriani, V.; Sepp, T.; Matharu, B.K.; Bunce, C.; Harding, S.P.; Clayton, D.G.; Moore, A.T.; Yates, J.R.W. Age-Related Macular Degeneration: The Importance of Family History as a Risk Factor. Br. J. Ophthalmol. 2012, 96, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Fritsche, L.G.; Igl, W.; Bailey, J.N.C.; Grassmann, F.; Sengupta, S.; Bragg-Gresham, J.L.; Burdon, K.P.; Hebbring, S.J.; Wen, C.; Gorski, M.; et al. A Large Genome-Wide Association Study of Age-Related Macular Degeneration Highlights Contributions of Rare and Common Variants. Nat. Genet. 2016, 48, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.J.; Zeiss, C.; Chew, E.Y.; Tsai, J.-Y.; Sackler, R.S.; Haynes, C.; Henning, A.K.; SanGiovanni, J.P.; Mane, S.M.; Mayne, S.T.; et al. Complement Factor H Polymorphism in Age-Related Macular Degeneration. Science 2005, 308, 385–389. [Google Scholar] [CrossRef] [PubMed]
- DeWan, A.; Liu, M.; Hartman, S.; Zhang, S.S.-M.; Liu, D.T.L.; Zhao, C.; Tam, P.O.S.; Chan, W.M.; Lam, D.S.C.; Snyder, M.; et al. HTRA1 Promoter Polymorphism in Wet Age-Related Macular Degeneration. Science 2006, 314, 989–992. [Google Scholar] [CrossRef]
- Nagineni, C.N.; Kommineni, V.K.; Ganjbaksh, N.; Nagineni, K.K.; Hooks, J.J.; Detrick, B. Inflammatory Cytokines Induce Expression of Chemokines by Human Retinal Cells: Role in Chemokine Receptor Mediated Age-Related Macular Degeneration. Aging Dis. 2015, 6, 444. [Google Scholar] [CrossRef]
- Park, D.H.; Connor, K.M.; Lambris, J.D. The Challenges and Promise of Complement Therapeutics for Ocular Diseases. Front. Immunol. 2019, 10, 1007. [Google Scholar] [CrossRef] [PubMed]
- Weismann, D.; Hartvigsen, K.; Lauer, N.; Bennett, K.L.; Scholl, H.P.N.; Issa, P.C.; Cano, M.; Brandstätter, H.; Tsimikas, S.; Skerka, C.; et al. Complement Factor H Binds Malondialdehyde Epitopes and Protects from Oxidative Stress. Nature 2011, 478, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Mullins, R.F.; Warwick, A.N.; Sohn, E.H.; Lotery, A.J. From Compliment to Insult: Genetics of the Complement System in Physiology and Disease in the Human Retina. Hum. Mol. Genet. 2017, 26, R51–R57. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.K.; Gupta, A.; Prabhakar, S.; Singh, R.; Sharma, S.K.; Chen, W.; Anand, A. Association between CFH Y402H Polymorphism and Age Related Macular Degeneration in North Indian Cohort. PLoS ONE 2013, 8, e70193. [Google Scholar] [CrossRef] [PubMed]
- de Breuk, A.; Heesterbeek, T.J.; Bakker, B.; Verzijden, T.; Lechanteur, Y.T.E.; Klaver, C.C.W.; den Hollander, A.I.; Hoyng, C.B. Evaluating the Occurrence of Rare Variants in the Complement Factor H Gene in Patients With Early-Onset Drusen Maculopathy. JAMA Ophthalmol. 2021, 139, 1218. [Google Scholar] [CrossRef]
- Lorés-Motta, L.; van Beek, A.E.; Willems, E.; Zandstra, J.; van Mierlo, G.; Einhaus, A.; Mary, J.-L.; Stucki, C.; Bakker, B.; Hoyng, C.B.; et al. Common Haplotypes at the CFH Locus and Low-Frequency Variants in CFHR2 and CFHR5 Associate with Systemic FHR Concentrations and Age-Related Macular Degeneration. Am. J. Human. Genet. 2021, 108, 1367–1384. [Google Scholar] [CrossRef]
- Thakkinstian, A.; McKay, G.J.; McEvoy, M.; Chakravarthy, U.; Chakrabarti, S.; Silvestri, G.; Kaur, I.; Li, X.; Attia, J. Systematic Review and Meta-Analysis of the Association between Complement Component 3 and Age-Related Macular Degeneration: A HuGE Review and Meta-Analysis. Am. J. Epidemiol. 2011, 173, 1365–1379. [Google Scholar] [CrossRef]
- Qian-Qian, Y.; Yong, Y.; Jing, Z.; Xin, B.; Tian-Hua, X.; Chao, S.; Jia, C. Nonsynonymous Single Nucleotide Polymorphisms in the Complement Component 3 Gene Are Associated with Risk of Age-Related Macular Degeneration: A Meta-Analysis. Gene 2015, 561, 249–255. [Google Scholar] [CrossRef]
- Heesterbeek, T.J.; Lorés-Motta, L.; Hoyng, C.B.; Lechanteur, Y.T.E.; den Hollander, A.I. Risk Factors for Progression of Age-related Macular Degeneration. Ophthalmic Physiol. Opt. 2020, 40, 140–170. [Google Scholar] [CrossRef]
- den Hollander, A.I.; de Jong, E.K. Highly Penetrant Alleles in Age-Related Macular Degeneration. Cold Spring Harb. Perspect. Med. 2015, 5, a017202. [Google Scholar] [CrossRef]
- Yu, Q.; Zhu, J.; Yao, Y.; Sun, C. Complement Family Member CFI Polymorphisms and AMD Susceptibility from a Comprehensive Analysis. Biosci. Rep. 2020, 40, BSR20200406. [Google Scholar] [CrossRef]
- van de Ven, J.P.H.; Nilsson, S.C.; Tan, P.L.; Buitendijk, G.H.S.; Ristau, T.; Mohlin, F.C.; Nabuurs, S.B.; Schoenmaker-Koller, F.E.; Smailhodzic, D.; Campochiaro, P.A.; et al. A Functional Variant in the CFI Gene Confers a High Risk of Age-Related Macular Degeneration. Nat. Genet. 2013, 45, 813–817. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, H.S.; Li, L. Association between Complement Factor I Gene Polymorphisms and the Risk of Age-Related Macular Degeneration: A Meta-Analysis of Literature. Int. J. Ophthalmol. 2016, 9, 298–305. [Google Scholar] [CrossRef]
- Dong, Y.; Li, Z.D.; Fang, X.Y.; Shi, X.F.; Chen, S.; Tang, X. Associationbetween SERPING 1 Rs2511989polymorphism and Age-Related Macular Degeneration: Meta-Analysis. Int. J. Ophthalmol. 2015, 8, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Maloney, S.C.; Antecka, E.; Orellana, M.E.; Fernandes, B.F.; Odashiro, A.N.; Eghtedari, M.; Burnier, M.N., Jr. Choroidal Neovascular Membranes Express Toll-Like Receptor 3. Ophthalmic Res. 2010, 44, 237–241. [Google Scholar] [CrossRef]
- Mullins, R.F.; McGwin, G.; Searcey, K.; Clark, M.E.; Kennedy, E.L.; Curcio, C.A.; Stone, E.M.; Owsley, C. The ARMS2 A69S Polymorphism Is Associated with Delayed Rod-Mediated Dark Adaptation in Eyes at Risk for Incident Age-Related Macular Degeneration. Ophthalmology 2019, 126, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, Z.; Hu, S.; Qi, J. Meta-Analysis of the Pharmacogenetics of ARMS2 A69S Polymorphism and the Response to Advanced Age-Related Macular Degeneration. Ophthalmic Res. 2021, 64, 192–204. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jin, H.; Wei, D.; Li, W. HTRA1 Rs11200638 Variant and AMD Risk from a Comprehensive Analysis about 15,316 Subjects. BMC Med. Genet. 2020, 21, 107. [Google Scholar] [CrossRef]
- Kowalski, M.; Bielecka-Kowalska, A.; Oszajca, K.; Makandjou-Ola, E.; Jaworski, P.; Bartkowiak, J.; Szemraj, J. Manganese Superoxide Dismutase (MnSOD) Gene (Ala-9Val, Ile58Thr) Polymorphism in Patients with Age-Related Macular Degeneration (AMD). Med. Sci. Monit. 2010, 16, CR190–CR196. [Google Scholar]
- Hahn, P. Maculas Affected by Age-Related Macular Degeneration Contain Increased Chelatable Iron in the Retinal Pigment Epithelium and Bruch’s Membrane. Arch. Ophthalmol. 2003, 121, 1099. [Google Scholar] [CrossRef]
- Synowiec, E.; Szaflik, J.; Chmielewska, M.; Wozniak, K.; Sklodowska, A.; Waszczyk, M.; Dorecka, M.; Blasiak, J.; Szaflik, J.P. An Association between Polymorphism of the Heme Oxygenase-1 and -2 Genes and Age-Related Macular Degeneration. Mol. Biol. Rep. 2012, 39, 2081–2087. [Google Scholar] [CrossRef] [PubMed]
- Baird, P.N. The 2 and 4 Alleles of the Apolipoprotein Gene Are Associated with Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2004, 45, 1311–1315. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, M.; Han, Y.; Zhang, R.; Ma, L. ABCA1 Rs1883025 Polymorphism and Risk of Age-Related Macular Degeneration. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016, 254, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Endres, M.; Biniszkiewicz, D.; Sobol, R.W.; Harms, C.; Ahmadi, M.; Lipski, A.; Katchanov, J.; Mergenthaler, P.; Dirnagl, U.; Wilson, S.H.; et al. Increased Postischemic Brain Injury in Mice Deficient in Uracil-DNA Glycosylase. J. Clin. Investig. 2004, 113, 1711–1721. [Google Scholar] [CrossRef] [PubMed]
- Görgün, E.; Güven, M.; Ünal, M.; Batar, B.; Güven, G.S.; Yenerel, M.; Tatlipinar, S.; Seven, M.; Yüksel, A. Polymorphisms of the DNA Repair Genes XPD and XRCC1 and the Risk of Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2010, 51, 4732. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.P.O.; Ridley, C.; Jowitt, T.A.; Wang, M.-C.; Howard, M.; Bobola, N.; Wang, T.; Bishop, P.N.; Kielty, C.M.; Baldock, C.; et al. Structural Effects of Fibulin 5 Missense Mutations Associated with Age-Related Macular Degeneration and Cutis Laxa. Investig. Ophthalmol. Vis. Sci. 2010, 51, 2356. [Google Scholar] [CrossRef] [PubMed]
- Marmorstein, L.Y.; McLaughlin, P.J.; Peachey, N.S.; Sasaki, T.; Marmorstein, A.D. Formation and Progression of Sub-Retinal Pigment Epithelium Deposits in Efemp1 Mutation Knock-in Mice: A Model for the Early Pathogenic Course of Macular Degeneration. Hum. Mol. Genet. 2007, 16, 2423–2432. [Google Scholar] [CrossRef] [PubMed]
- Gorin, M.B. Genetic Insights into Age-Related Macular Degeneration: Controversies Addressing Risk, Causality, and Therapeutics. Mol. Asp. Med. 2012, 33, 467–486. [Google Scholar] [CrossRef] [PubMed]
- Long, J.M.; Holtzman, D.M. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell 2019, 179, 312–339. [Google Scholar] [CrossRef]
- 2022 Alzheimer’s Disease Facts and Figures. Alzheimer’s Dement. 2022, 18, 700–789. [CrossRef]
- Silva, M.V.F.; Loures, C.d.M.G.; Alves, L.C.V.; de Souza, L.C.; Borges, K.B.G.; Carvalho, M. das G. Alzheimer’s Disease: Risk Factors and Potentially Protective Measures. J. Biomed. Sci. 2019, 26, 33. [Google Scholar] [CrossRef] [PubMed]
- Manzine, P.R.; Ettcheto, M.; Cano, A.; Busquets, O.; Marcello, E.; Pelucchi, S.; Di Luca, M.; Endres, K.; Olloquequi, J.; Camins, A.; et al. ADAM10 in Alzheimer’s Disease: Pharmacological Modulation by Natural Compounds and Its Role as a Peripheral Marker. Biomed. Pharmacother. 2019, 113, 108661. [Google Scholar] [CrossRef] [PubMed]
- Maccioni, R.B.; González, A.; Andrade, V.; Cortés, N.; Tapia, J.P.; Guzmán-Martínez, L. Alzheimer’s Disease in the Perspective of Neuroimmunology. Open Neurol. J. 2018, 12, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Zhou, X.; Chen, Y.; Ip, F.C.F.; Chen, Y.; Lai, N.C.H.; Lo, R.M.N.; Tong, E.P.S.; Mok, V.C.T.; Kwok, T.C.Y.; et al. Association of SPI1 Haplotypes with Altered SPI1 Gene Expression and Alzheimer’s Disease Risk. J. Alzheimer’s Dis. 2022, 86, 1861–1873. [Google Scholar] [CrossRef] [PubMed]
- Wißfeld, J.; Nozaki, I.; Mathews, M.; Raschka, T.; Ebeling, C.; Hornung, V.; Brüstle, O.; Neumann, H. Deletion of Alzheimer’s Disease-associated CD33 Results in an Inflammatory Human Microglia Phenotype. Glia 2021, 69, 1393–1412. [Google Scholar] [CrossRef] [PubMed]
- Karch, C.M.; Goate, A.M. Alzheimer’s Disease Risk Genes and Mechanisms of Disease Pathogenesis. Biol. Psychiatry 2015, 77, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Cruchaga, C.; Kauwe, J.S.K.; Harari, O.; Jin, S.C.; Cai, Y.; Karch, C.M.; Benitez, B.A.; Jeng, A.T.; Skorupa, T.; Carrell, D.; et al. GWAS of Cerebrospinal Fluid Tau Levels Identifies Risk Variants for Alzheimer’s Disease. Neuron 2013, 78, 256–268. [Google Scholar] [CrossRef]
- Tao, Q.-Q.; Chen, Y.-C.; Wu, Z.-Y. The Role of CD2AP in the Pathogenesis of Alzheimer’s Disease. Aging Dis. 2019, 10, 901. [Google Scholar] [CrossRef] [PubMed]
- Sochocka, M.; Zwolińska, K.; Leszek, J. The Infectious Etiology of Alzheimer’s Disease. Curr. Neuropharmacol. 2017, 15, 996–1009. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, C.M.; Prokopenko, D.; Liang, Y.; Zhen, S.Y.; Weigle, I.Q.; Han, W.; Aryal, M.; Tanzi, R.E.; Sisodia, S.S. An APP Ectodomain Mutation Outside of the Aβ Domain Promotes Aβ Production in Vitro and Deposition in Vivo. J. Exp. Med. 2021, 218, e20210313. [Google Scholar] [CrossRef]
- Linard, M.; Letenneur, L.; Garrigue, I.; Doize, A.; Dartigues, J.; Helmer, C. Interaction between APOE4 and Herpes Simplex Virus Type 1 in Alzheimer’s Disease. Alzheimer’s Dement. 2020, 16, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Wang, H.; Zhang, F.; Zhang, M.; Wang, Q.; Wang, J. The Common Genes Involved in the Pathogenesis of Alzheimer’s Disease and Type 2 Diabetes and Their Implication for Drug Repositioning. Neuropharmacology 2023, 223, 109327. [Google Scholar] [CrossRef] [PubMed]
- Loera-Valencia, R.; Goikolea, J.; Parrado-Fernandez, C.; Merino-Serrais, P.; Maioli, S. Alterations in Cholesterol Metabolism as a Risk Factor for Developing Alzheimer’s Disease: Potential Novel Targets for Treatment. J. Steroid Biochem. Mol. Biol. 2019, 190, 104–114. [Google Scholar] [CrossRef]
- Gao, Y.; Tan, M.-S.; Wang, H.-F.; Zhang, W.; Wang, Z.-X.; Jiang, T.; Yu, J.-T.; Tan, L. ZCWPW1 Is Associated with Late-Onset Alzheimer’s Disease in Han Chinese: A Replication Study and Meta-Analyses. Oncotarget 2016, 7, 20305–20311. [Google Scholar] [CrossRef] [PubMed]
- Pathak, G.A.; Silzer, T.K.; Sun, J.; Zhou, Z.; Daniel, A.A.; Johnson, L.; O’Bryant, S.; Phillips, N.R.; Barber, R.C. Genome-Wide Methylation of Mild Cognitive Impairment in Mexican Americans Highlights Genes Involved in Synaptic Transport, Alzheimer’s Disease-Precursor Phenotypes, and Metabolic Morbidities. J. Alzheimer’s Dis. 2019, 72, 733–749. [Google Scholar] [CrossRef] [PubMed]
- Reagan, A.M.; Christensen, K.E.; Graham, L.C.; Bedwell, A.A.; Eldridge, K.; Speedy, R.; Figueiredo, L.L.; Persohn, S.C.; Bottiglieri, T.; Nho, K.; et al. The 677C > T Variant in Methylenetetrahydrofolate Reductase Causes Morphological and Functional Cerebrovascular Deficits in Mice. J. Cereb. Blood Flow. Metab. 2022, 42, 2333–2350. [Google Scholar] [CrossRef] [PubMed]
- Hunter, A.; Spechler, P.A.; Cwanger, A.; Song, Y.; Zhang, Z.; Ying, G.; Hunter, A.K.; de Zoeten, E.; Dunaief, J.L. DNA Methylation Is Associated with Altered Gene Expression in AMD. Investig. Ophthalmol. Vis. Sci. 2012, 53, 2089. [Google Scholar] [CrossRef] [PubMed]
- JARRETT, S.; LIN, H.; GODLEY, B.; BOULTON, M. Mitochondrial DNA Damage and Its Potential Role in Retinal Degeneration. Prog. Retin. Eye Res. 2008, 27, 596–607. [Google Scholar] [CrossRef]
- Wei, L.; Liu, B.; Tuo, J.; Shen, D.; Chen, P.; Li, Z.; Liu, X.; Ni, J.; Dagur, P.; Sen, H.N.; et al. Hypomethylation of the IL17RC Promoter Associates with Age-Related Macular Degeneration. Cell Rep. 2012, 2, 1151–1158. [Google Scholar] [CrossRef]
- Oliver, V.F.; Franchina, M.; Jaffe, A.E.; Branham, K.E.; Othman, M.; Heckenlively, J.R.; Swaroop, A.; Campochiaro, B.; Vote, B.J.; Craig, J.E.; et al. Hypomethylation of the IL17RC Promoter in Peripheral Blood Leukocytes Is Not A Hallmark of Age-Related Macular Degeneration. Cell Rep. 2013, 5, 1527–1535. [Google Scholar] [CrossRef]
- Klemm, S.L.; Shipony, Z.; Greenleaf, W.J. Chromatin Accessibility and the Regulatory Epigenome. Nat. Rev. Genet. 2019, 20, 207–220. [Google Scholar] [CrossRef] [PubMed]
- Ponnaluri, V.K.C.; Vadlapatla, R.K.; Vavilala, D.T.; Pal, D.; Mitra, A.K.; Mukherji, M. Hypoxia Induced Expression of Histone Lysine Demethylases: Implications in Oxygen-Dependent Retinal Neovascular Diseases. Biochem. Biophys. Res. Commun. 2011, 415, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Poulose, N.; Raju, R. Sirtuin Regulation in Aging and Injury. Biochim. Biophys. Acta Mol. Basis Dis. 2015, 1852, 2442–2455. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.-H.; Cherng, J.-Y.; Chiou, G.-Y.; Chen, Y.-C.; Chien, C.-H.; Kao, C.-L.; Chang, Y.-L.; Chien, Y.; Chen, L.-K.; Liu, J.; et al. Delivery of Oct4 and SirT1 with Cationic Polyurethanes-Short Branch PEI to Aged Retinal Pigment Epithelium. Biomaterials 2011, 32, 9077–9088. [Google Scholar] [CrossRef] [PubMed]
- Maloney, S.C.; Antecka, E.; Granner, T.; Fernandes, B.; Lim, L.-A.; Orellana, M.E.; Burnier, M.N. Expression of SIRT1 in choroidal neovascular membranes. Retina 2013, 33, 862–866. [Google Scholar] [CrossRef]
- Shewale, S.J.; Huebinger, R.M. The Potential Role of Epigenetics in Alzheimer’s Disease Etiology. Biol. Syst. Open Access 2012, 2, 2. [Google Scholar] [CrossRef]
- Mastroeni, D.; Chouliaras, L.; Van den Hove, D.L.; Nolz, J.; Rutten, B.P.F.; Delvaux, E.; Coleman, P.D. Increased 5-Hydroxymethylation Levels in the Sub Ventricular Zone of the Alzheimer’s Brain. Neuroepigenetics 2016, 6, 26–31. [Google Scholar] [CrossRef]
- Rao, J.S.; Keleshian, V.L.; Klein, S.; Rapoport, S.I. Epigenetic Modifications in Frontal Cortex from Alzheimer’s Disease and Bipolar Disorder Patients. Transl. Psychiatry 2012, 2, e132. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-L.; Wang, S.S.-S.; Yang, Y.-Y.; Yuan, R.-Y.; Chen, R.-M.; Hu, C.-J. The Epigenetic Effects of Amyloid-Β1–40 on Global DNA and Neprilysin Genes in Murine Cerebral Endothelial Cells. Biochem. Biophys. Res. Commun. 2009, 378, 57–61. [Google Scholar] [CrossRef]
- Taher, N.; McKenzie, C.; Garrett, R.; Baker, M.; Fox, N.; Isaacs, G.D. Amyloid-β Alters the DNA Methylation Status of Cell-Fate Genes in an Alzheimer’s Disease Model. J. Alzheimer’s Dis. 2013, 38, 831–844. [Google Scholar] [CrossRef]
- Chouliaras, L.; Mastroeni, D.; Delvaux, E.; Grover, A.; Kenis, G.; Hof, P.R.; Steinbusch, H.W.M.; Coleman, P.D.; Rutten, B.P.F.; van den Hove, D.L.A. Consistent Decrease in Global DNA Methylation and Hydroxymethylation in the Hippocampus of Alzheimer’s Disease Patients. Neurobiol. Aging 2013, 34, 2091–2099. [Google Scholar] [CrossRef] [PubMed]
- Mendioroz, M.; Celarain, N.; Altuna, M.; Sánchez-Ruiz de Gordoa, J.; Zelaya, M.V.; Roldán, M.; Rubio, I.; Larumbe, R.; Erro, M.E.; Méndez, I.; et al. CRTC1 Gene Is Differentially Methylated in the Human Hippocampus in Alzheimer’s Disease. Alzheimers Res. Ther. 2016, 8, 15. [Google Scholar] [CrossRef] [PubMed]
- Lardenoije, R.; van den Hove, D.L.A.; Havermans, M.; van Casteren, A.; Le, K.X.; Palmour, R.; Lemere, C.A.; Rutten, B.P.F. Age-Related Epigenetic Changes in Hippocampal Subregions of Four Animal Models of Alzheimer’s Disease. Mol. Cell. Neurosci. 2018, 86, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Perrone, L.; Matrone, C.; Singh, L.P. Epigenetic Modifications and Potential New Treatment Targets in Diabetic Retinopathy. J. Ophthalmol. 2014, 2014, 1–10. [Google Scholar] [CrossRef]
- Guan, J.-S.; Haggarty, S.J.; Giacometti, E.; Dannenberg, J.-H.; Joseph, N.; Gao, J.; Nieland, T.J.F.; Zhou, Y.; Wang, X.; Mazitschek, R.; et al. HDAC2 Negatively Regulates Memory Formation and Synaptic Plasticity. Nature 2009, 459, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Dolan, P.J.; Johnson, G.V.W. Histone Deacetylase 6 Interacts with the Microtubule-associated Protein Tau. J. Neurochem. 2008, 106, 2119–2130. [Google Scholar] [CrossRef] [PubMed]
- Myung, N.-H.; Zhu, X.; Kruman, I.I.; Castellani, R.J.; Petersen, R.B.; Siedlak, S.L.; Perry, G.; Smith, M.A.; Lee, H. Evidence of DNA Damage in Alzheimer Disease: Phosphorylation of Histone H2AX in Astrocytes. Age 2008, 30, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Kim, S.Y.; Artis, S.; Molfese, D.L.; Schumacher, A.; Sweatt, J.D.; Paylor, R.E.; Lubin, F.D. Histone Methylation Regulates Memory Formation. J. Neurosci. 2010, 30, 3589–3599. [Google Scholar] [CrossRef]
- Marzi, S.J.; Meaburn, E.L.; Dempster, E.L.; Lunnon, K.; Paya-Cano, J.L.; Smith, R.G.; Volta, M.; Troakes, C.; Schalkwyk, L.C.; Mill, J. Tissue-Specific Patterns of Allelically-Skewed DNA Methylation. Epigenetics 2016, 11, 24–35. [Google Scholar] [CrossRef]
- Zhang, K.; Schrag, M.; Crofton, A.; Trivedi, R.; Vinters, H.; Kirsch, W. Targeted Proteomics for Quantification of Histone Acetylation in Alzheimer’s Disease. Proteomics 2012, 12, 1261–1268. [Google Scholar] [CrossRef]
- Narayan, P.J.; Lill, C.; Faull, R.; Curtis, M.A.; Dragunow, M. Increased Acetyl and Total Histone Levels in Post-Mortem Alzheimer’s Disease Brain. Neurobiol. Dis. 2015, 74, 281–294. [Google Scholar] [CrossRef]
- Lithner, C.U.; Hernandez, C.M.; Nordberg, A.; Sweatt, J.D. P2-146: Epigenetic Changes Related to Beta-amyloid-implications for Alzheimer’s Disease. Alzheimer’s Dement. 2009, 5, P304. [Google Scholar] [CrossRef]
- Lee, J.-H.; Ryu, H. Epigenetic Modification Is Linked to Alzheimer’s Disease: Is It a Maker or a Marker? BMB Rep. 2010, 43, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.-P.; Feng, Y.; Liu, T.; Wu, Y.-C. Epigenetic Modification and Its Role in Alzheimer’s Disease. Integr. Med. Int. 2015, 2, 63–72. [Google Scholar] [CrossRef]
- Lukiw, W.J.; Surjyadipta, B.; Dua, P.; Alexandrov, P.N. Common Micro RNAs (MiRNAs) Target Complement Factor H (CFH) Regulation in Alzheimer’s Disease (AD) and in Agerelated Macular Degeneration (AMD). Int. J. Biochem. Mol. Biol. 2012, 3, 105–116. [Google Scholar]
- Pogue, A.I.; Lukiw, W.J. Up-Regulated Pro-Inflammatory MicroRNAs (MiRNAs) in Alzheimer’s Disease (AD) and Age-Related Macular Degeneration (AMD). Cell Mol. Neurobiol. 2018, 38, 1021–1031. [Google Scholar] [CrossRef]
- Madelaine, R.; Sloan, S.A.; Huber, N.; Notwell, J.H.; Leung, L.C.; Skariah, G.; Halluin, C.; Paşca, S.P.; Bejerano, G.; Krasnow, M.A.; et al. MicroRNA-9 Couples Brain Neurogenesis and Angiogenesis. Cell Rep. 2017, 20, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Shahriari, F.; Satarian, L.; Moradi, S.; Zarchi, A.S.; Günther, S.; Kamal, A.; Totonchi, M.; Mowla, S.-J.; Braun, T.; Baharvand, H. MicroRNA Profiling Reveals Important Functions of MiR-125b and Let-7a during Human Retinal Pigment Epithelial Cell Differentiation. Exp. Eye Res. 2020, 190, 107883. [Google Scholar] [CrossRef]
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.G.; Klein, R.; Cheng, C.-Y.; Wong, T.Y. Global Prevalence of Age-Related Macular Degeneration and Disease Burden Projection for 2020 and 2040: A Systematic Review and Meta-Analysis. Lancet Glob Health 2014, 2, e106–e116. [Google Scholar] [CrossRef]
- Singh, A.; Verma, S. Use of Ocular Biomarkers as a Potential Tool for Early Diagnosis of Alzheimer’s Disease. Indian. J. Ophthalmol. 2020, 68, 555. [Google Scholar] [CrossRef]
- Guo, X.; Yan, L.; Zhang, D.; Zhao, Y. Passive Immunotherapy for Alzheimer’s Disease. Ageing Res. Rev. 2024, 94, 102192. [Google Scholar] [CrossRef] [PubMed]
- Valiukas, Z.; Ephraim, R.; Tangalakis, K.; Davidson, M.; Apostolopoulos, V.; Feehan, J. Immunotherapies for Alzheimer’s Disease—A Review. Vaccines 2022, 10, 1527. [Google Scholar] [CrossRef]
- Khalili, H.; Kashkoli, H.H.; Weyland, D.E.; Pirkalkhoran, S.; Grabowska, W.R. Advanced Therapy Medicinal Products for Age-Related Macular Degeneration; Scaffold Fabrication and Delivery Methods. Pharmaceuticals 2023, 16, 620. [Google Scholar] [CrossRef]
Characteristics | Alzheimer’s Disease | Age-Related Macular Degeneration |
---|---|---|
Risk factors | aging, genetic susceptibility, female sex, atherosclerosis, hypertension, diabetes, obesity, unhealthy diet, smoking, sleep disturbances, traumatic brain injury, social isolation | aging, genetic susceptibility, female sex, atherosclerosis, hypertension, diabetes, obesity, unhealthy diet, smoking, UV light, obstructive sleep apnea, sleep disturbances |
Histopathological findings | senile plaques: extracellular Aβ deposits neurofibrillary tangles: intracellular accumulation of p-Tau protein and vitronectin | drusen: focal extracellular deposits, accumulate between the RPE and Bruch’s membrane containing Aβ, clusterin, vitronectin, amyloid P, apolipoprotein E, complement regulatory proteins, and inflammatory mediators |
Aβ protein | the main component of senile plaques | component of subretinal drusen |
p-Tau deposits | component of neurofibrillary tangles | mildly increased in the RPE |
Oxidative and metabolic stress | associated with mental deficiencies and neuronal damage | associated with visual cycle and drusen formation |
Glial reactivity | astrocytes and microglia around senile plaques | microglia in the subretinal space and surrounding the drusen |
Non-visual disturbances | cognitive deficits (memory loss, aphasia, apraxia, agnosia), depression, behavioral disturbances, inability for self-care | decreased verbal fluency and verbal memory, reduced visuospatial processing and attention, cognitive decline, higher risk of dementia |
Cause of visual disturbances | the loss of GCC | photoreceptor layer damage |
Location of retinal damage | GCC, RNFL | RPE, photoreceptors |
Location of brain damage | atrophy of brain frontal, temporal, and parietal lobes, entorhinal cortex, amygdala, and hippocampus | optic tract volume reduction loss of cerebral white matter connectivity in areas responsible for verbal fluency and memory |
Diagnostic procedures | clinical examination, neuropsychological testing CSF sampling brain imaging: MRI, fMRI, CT PET-CR, amyloid imaging | ophthalmological examination OCT, OCTA FA, ICGA |
OCT findings | reduced GCC, GC-IPL, peripapillary RNFL | nonexudative AMD: drusen under the RPE, PED exudative AMD: subretinal fluid, CNV |
Pleiotropic genes | APOC1–increased risk APOE2 allele–reduced risk APOE4 allele–increased risk | APOC1–increased risk APOE2 allele–increased risk APOE4 allele–reduced risk |
Positive Correlations | ||||
---|---|---|---|---|
Author (Year) Ref. | Study Design | Country | Sample Size | Main Findings |
Klaver et al. (1999) [38] | Prospective population-based study | Netherlands | 1438 participants; 627 with AMD 811 without AMD | Increased risk of AD among patients with advanced AMD (RR: 2.1). The risk decreased after adjustment for smoking and atherosclerosis (RR = 1.5) |
Woo et al. (2012) [39] | Case–control study | South Korea | 170 AMD 190 non-AMD patients | Patients with AMD, especially those with geographic atrophy had a greater risk of cognitive impairment compared with non-AMD controls. The severity of AMD was positively correlated with the worsening of cognition function. AMD patients with poor VA have a six times greater risk of mild cognitive impairment compared with AMD patients with good or moderate VA. |
Logue et al. (2013) [40] | Genome-wide association study | Multicentric | ADGC sample: 11,840 cases and 10,931 controls from 15 different studies AMDG sample: >7600 cases and 50,000 controls from 14 different studies | Genetic overlap between late-onset AD and AMD. Genetic variants located on chromosome 7 (PILRA, ZCWPW1, ABCA7) linked to AD also contribute to AMD. Shared biological pathways and mechanisms in the development of AD and AMD indicate potential common molecular underpinnings (HGS, involved in the clathrin-mediated endocytosis signaling pathway; TNF, involved in atherosclerosis signaling pathways and LXR/RXR activation pathways). |
Tsai et al. (2015) [41] | Longitudinal case–control study | Taiwan | 4993 patients newly diagnosed with AMD and 24,965 controls | AMD, particularly nonexudative AMD, was independently associated with an increased risk of AD or senile dementia (HR: 1.55). |
Lee et al. (2019) [42] | Retrospective cohort study | USA | 3877 participants with 792 AD cases | Ophthalmic conditions such as glaucoma, diabetic retinopathy, and AMD were associated with an increased risk of AD (HR: 1.50). |
Rong et al. (2019) [26] | Meta-analysis | Multicentric | 21 studies with 7,876,499 study subjects | Increased risk of AMD among patients with cognitive impairment and AD. Increased risk of cognitive impairment and AD among patients with AMD. Patients with AMD had poorer cognitive function compared to controls. |
Choi et al. (2020) [43] | Retrospective cohort study | South Korea | 308,340 participants | Patients with AMD had a higher risk of AD, with a 1.48-fold higher incidence, even among those with healthy lifestyle behaviors. |
Tan et al. (2020) [34] | Genome-wide association study | Multicentric | Data from the Gene Expression Omnibus | Using FUMA, co-localization analysis, and weighted gene co-expression network analysis, 10 genes on chromosome 7, 10 pathways, and 105 biological processes were found to be associated with AD and AMD. This suggests that these 10 genes and the hub genes of these modules associated with shared pathophysiological pathways could potentially serve as diagnostic markers for both diseases. |
Hwang et al. (2021) [44] | Population-based prospective study | USA | 3375 participants | Increased risk of all types of dementia and AD is associated with AMD. AMD is linked to an 87% greater risk of AD. |
Wen et al. (2021) [48] | Population-based retrospective cohort study | Taiwan | 10,578 newly diagnosed patients with AMD and 10,578 non-AMD individuals | AMD patients have a 1.23 times higher risk of developing AD. Early onset of AMD correlates with an increased probability of AD development. |
Le et al. (2022) [45] | Prospective multicenter randomized study | USA | 3157 participants | Cognitive impairment is associated with an increased risk of AMD at 5 years (HR = 1.24) and 10 years (HR = 1.20). |
Shang et al. (2023) [46] | Population-based cohort study | UK | 2304 cases of dementia | AMD is linked to a heightened risk of dementia. Individuals with AMD and any systemic disease have a higher incidence of dementia compared to either AMD or a systemic disease alone. AMD and diabetes present the highest risk for incident dementia. |
Zhang et al. (2024) [47] | Genome-wide association study | China | 17,008 patients with AD and 30,178 patients with AMD | The study confirmed genetic pleiotropy between AD and AMD, identifying APOC1 and APOE as pleiotropic genes. ZNF131, ADNP2, and HINFP were identified as novel diagnostic biomarkers for AD and AMD. |
Negative Correlations | ||||
Author (Year) Ref. | Study Design | Country | Sample Size | Main Findings |
Keenan et al. (2014) [49] | Retrospective cohort study | UK | 65,894 participants with AMD, 168,092 participants with dementia | People admitted to the hospital for AMD do not have an increased risk of subsequently developing dementia or AD. No evidence has been found linking AMD to an increased risk of developing dementia or AD. |
Schwaber et al. (2020) [50] | Cross-sectional study | USA | 157 autopsy ocular and brain specimens | Histopathologic findings failed to support an increased prevalence of AD among patients with AMD. |
Kuźma et al. (2021) [51] | Meta-analysis | Multicentric | 2559 participants | No evidence of a significant association between AD and AMD based on pooled estimation. |
Jiang et al. (2022) [52] | Two-sample bidirectional Mendelian randomization study | Multicentric | NA | The genetic predisposition for advanced AMD did not show a statistically significant causal association with the risk of AD. Reverse Mendelian randomization analysis provided limited evidence supporting a causal effect of AD on advanced AMD. |
Pathway | Gene | Polymorphism | References |
---|---|---|---|
Immune response and complement genes | CFH | rs1061170, rs10922109, rs121913059 | [57,61] |
C3 | rs2230199, rs1047286 | [65] | |
CFB | rs641153, rs415667 | [67] | |
C9 | rs62358361, rs34882957 | [57,68] | |
other | PLEKHA/ARMS2/HTRA-1 | rs10490924, rs11200638 | [74,77] |
Oxidative stress genes | MnSOD | Ala-9Val, Ile58Thr | [78,80] |
HMOX1 HMOX2 | rs2071747, rs2270363 | [82] | |
Lipid metabolism genes | ApoE | rs429358 | [57] |
ABCA1 | rs2740488 | [57] | |
LIPC | rs0468017, rs493258, rs2043085 | [57] | |
Neovascularisation genes | VEGF | rs943080 | [76] |
Gene | Physiological Role | Molecular Mechanisms Implicated in AD | Ref. |
---|---|---|---|
PSEN1 | Presenilin 1 plays an essential role in neural progenitor maintenance, neurogenesis, neurite outgrowth, synaptic function, neuronal function, myelination, and plasticity. | Presenilin mutations are the main cause of familial Alzheimer’s disease. From a genetic point of view, these mutations seem to result in a gain of toxic function; however, biochemically, they result in a partial loss of function in the γ-secretase complex, which affects several downstream signaling pathways. | [89] |
PSEN2 | Presenilin 2 processes proteins that transmit chemical signals from the cell membrane into the nucleus. Once in the nucleus, these signals activate genes that are important for cell growth and maturation. | AD-related presenilin mutations can alter intracellular calcium signaling, which leads to Aβ aggregation to form brain plaques and neuronal cell death. | [89] |
APOE | The major component of HDL-like particles in the brain, ApoE facilitates the transfer of cholesterol and phospholipids between cells. ApoE serves as a ligand in the receptor-mediated endocytosis of HDL-like particles through the LDL receptor family. | ApoE–lipoproteins bind to several cell-surface receptors to deliver lipids and also to hydrophobic amyloid-β (Aβ) peptide, which is thought to initiate toxic events that lead to synaptic dysfunction and neurodegeneration in AD. | [90] |
CLU | Role of CLU in regulating several essential physiological processes, including programmed cell death, metastasis, invasion, proliferation, and cell growth | CLU or apolipoprotein J transporter, can be linked to AD, causing oxidative stress. Therefore, its activity can affect various functions involving complement system inactivation, lipid transport, chaperone activity, neuronal transmission, and cellular survival pathways. | [92] |
ADAM10 | It is the most important α-secretase in the brain and contributes to the non-amyloidogenic pathway of APP metabolism. | Alteration in APP metabolism (through non-amyloidogenic pathway), synaptic plasticity, and hippocampal neurogenesis. | [91] |
BIN1 | Participates in immune response, calcium homeostasis, apoptosis, endocytosis of synaptic vesicles, and plasma membrane dynamic. | Contributes to Amyloid (through β-secretase activity) and Tau pathology and is associated with inflammation, apoptosis, and calcium homeostasis. | [95] |
APP | APP has important physiological functions during brain development and in neuronal plasticity, memory, and neuroprotection in the mature and aging brain. | APP encodes amyloid precursor protein, a transmembrane protein that is cleaved to form amyloidogenic Aβ peptides. Mutations in APP are associated with familial forms of early-onset Alzheimer’s disease as well as with Cerebral Amyloid Angiopathy (CAA). | [92] |
CD2AP | Regulates actin cytoskeleton and membrane trafficking through endocytosis and cytokinesis. | Associated with increased Aβ production, Tau neurotoxicity, abnormal modulation of the neurite structure, and altered integrity of the BBB. | [97] |
PICALM | Modulates autophagy, membrane metabolism, internalization of cell receptors, synaptic transmission, removal of apoptotic cells, and endocytic pathways for APP processing. | Associated with increased Aβ production, Tau neurotoxicity, abnormal modulation of the neurite structure, and altered integrity of the BBB. | [92] |
ZCWPW1 | Regulation of the DNA metabolic process. Additionally, it is involved in epigenetic modulation. | Suppresses insulin resistance. It may activate the PI3K signaling pathway in neurons. | [103] |
SPI1 | Regulates the immune response and learning-related neuronal activity in the cerebral cortex | Alters the microglial phenotype and transcriptome involving interferon pathways. | [93] |
CD33 | Involved in the inhibition of immune cell function and cytokine production. | Modulates microglial activation (neuroinflammation) and Aβ clearance through microglial cells. | [94] |
TREM2 | This microglia receptor regulates proliferation. | Modulates microglial activation (neuroinflammation) and Aβ clearance through microglial cells. | [96] |
SLC10A2 | Has an important role in encoding the sodium/bile acid cotransporter, as well as in cholesterol metabolism. | Associated with LOAD by dysfunctional cholesterol metabolism, neuronal death, memory impairment, and increased Aβ generation. | [102] |
Target | Disorder | Effect and Epigenetic Impact | Tissue | Refs. |
---|---|---|---|---|
GSTM1, GSTM5 gene | AMD | Reduced expression; Hypermethylation in GSTM1 promoter | retinal pigment epithelial (RPE) cells | [106] |
IL17RC gene | AMD | Increased expression; hypomethylation | peripheral blood, retina, and choroid | [107] |
HIF1α, VEGF genes | AMD | Reduced expression; Histone deacetylase inhibitor (HDACi | Retinal endothelial cells | [111] |
SIRT1 gene | AMD | Reduced expression; Histone deacetylase inhibitor (HDACi) | RPE cells | [114] |
CRTC1 gene | AD | Increased expression; Hypomethylation | human hippocampus | [119] |
Global DNA | AD | Age-related hypomethylation | Mouse J20 model dentate gyrus and cornu ammonis | [24] |
Global DNA | AD | hypermethylation | 3xTg–Alzheimer’s disease model | [122] |
Transcriptional activation of memory and learning-related genes | AD | overexpression of histone deacetylase 2 | Mouse dendritic spine | [124,127] |
Histone H2AX | AD | phosphorylated at Ser139 | Human hippocampal astrocytes | [126] |
Histone H3K27 | AD | lysine H3K27 acetylation | entorhinal cortex | [128] |
Histones | AD | Decreased acetylation | temporal lobes of the brains of Alzheimer’s subjects | [129] |
Histones | AD | Increased acetylation | postmortem brains of Alzheimer’s disease patients | [130] |
Histone H3 | AD | increased acetylation and phosphorylation | Tg2576 mice; prefrontal cortex | [131] |
Hhistone H4 | AD | Increased acetylation | Tg2576 mice CA1 region of the hippocampus | [131] |
miRNA-9, miRNA-125b, miRNA-146a, and miRNA-155 | AMD | dysregulation | retina | [134] |
AD | dysregulation | Age-related degeneration of the brain | ||
miRNA-7 and the Let-7 cluster, miRNA-23a and the miRNA-27a cluster, miRNA-9, miRNA-34a, miRNA-125b, miRNA-155, and miRNA-146a | AMD | dysregulation | pooled macular tissue | [135] |
AD | dysregulation | pooled temporal lobe neocortex | ||
miR-9, miR-23a, miR-27a, miR-34a, miR-146a, and miR-155 | AMD | dysregulation | Serum of AD patient | [37] |
AD | dysregulation | Serum of AMD patients |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaštelan, S.; Nikuševa-Martić, T.; Pašalić, D.; Antunica, A.G.; Zimak, D.M. Genetic and Epigenetic Biomarkers Linking Alzheimer’s Disease and Age-Related Macular Degeneration. Int. J. Mol. Sci. 2024, 25, 7271. https://doi.org/10.3390/ijms25137271
Kaštelan S, Nikuševa-Martić T, Pašalić D, Antunica AG, Zimak DM. Genetic and Epigenetic Biomarkers Linking Alzheimer’s Disease and Age-Related Macular Degeneration. International Journal of Molecular Sciences. 2024; 25(13):7271. https://doi.org/10.3390/ijms25137271
Chicago/Turabian StyleKaštelan, Snježana, Tamara Nikuševa-Martić, Daria Pašalić, Antonela Gverović Antunica, and Danijela Mrazovac Zimak. 2024. "Genetic and Epigenetic Biomarkers Linking Alzheimer’s Disease and Age-Related Macular Degeneration" International Journal of Molecular Sciences 25, no. 13: 7271. https://doi.org/10.3390/ijms25137271
APA StyleKaštelan, S., Nikuševa-Martić, T., Pašalić, D., Antunica, A. G., & Zimak, D. M. (2024). Genetic and Epigenetic Biomarkers Linking Alzheimer’s Disease and Age-Related Macular Degeneration. International Journal of Molecular Sciences, 25(13), 7271. https://doi.org/10.3390/ijms25137271