Verification of Outer Hair Cell Motor Protein, Prestin, as a Serological Biomarker for Mouse Cochlear Damage
Abstract
:1. Introduction
2. Results
2.1. Confirm the Positive and Negative Control Samples for Prestin-ELISA: Prestin Is Expressed in OHCs from WT but Not from Prestin-KO Mice
2.2. Test Sensitivities and Specificity of Different Prestin-ELISA Kits
2.3. Establish an OHC Damage Mouse Model to Test Whether Prestin from Cochleae Can Be Detected in the Bloodstream
2.4. Prestin Levels Show No Undetectable Difference in the Bloodstream of WT and Prestin-KO Mice Regardless of Whether OHCs Were Stressed or Damaged
2.5. The Severities of Hemolysis Influence Prestin Quantification Measured by ELISA
3. Discussion
4. Materials and Methods
4.1. Animal
4.2. Cochlear Stress Treatment
4.3. Prestin and Hemoglobin Measurement
4.4. Immunofluorescence
4.5. Cochlear Lysate
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. World Report on Hearing: Executive Summary; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Zheng, J.; Shen, W.; He, D.Z.; Long, K.B.; Madison, L.D.; Dallos, P. Prestin is the motor protein of cochlear outer hair cells. Nature 2000, 405, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Dallos, P.; Wu, X.; Cheatham, M.A.; Gao, J.; Zheng, J.; Anderson, C.T.; Jia, S.; Wang, X.; Cheng, W.H.Y.; Sengupta, S.; et al. Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification. Neuron 2008, 58, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Elferich, J.; Dehghani-Ghahnaviyeh, S.; Zhao, Z.; Meadows, M.; von Gersdorff, H.; Tajkhorshid, E.; Gouaux, E. Molecular mechanism of prestin electromotive signal amplification. Cell 2021, 184, 4669–4679.e13. [Google Scholar] [CrossRef] [PubMed]
- Butan, C.; Song, Q.; Bai, J.-P.; Tan, W.J.T.; Navaratnam, D.; Santos-Sacchi, J. Single particle cryo-EM structure of the outer hair cell motor protein prestin. bioRxiv 2021. [Google Scholar] [CrossRef] [PubMed]
- Bavi, N.; Clark, M.D.; Contreras, G.F.; Shen, R.; Reddy, B.; Milewski, W.; Perozo, E. Cryo-EM Structures of Prestin and the Molecular Basis of Outer Hair Cell Electromotility. bioRxiv 2021. [Google Scholar] [CrossRef]
- Futamata, H.; Fukuda, M.; Umeda, R.; Yamashita, K.; Tomita, A.; Takahashi, S.; Shikakura, T.; Hayashi, S.; Kusakizako, T.; Nishizawa, T.; et al. Cryo-EM structures of thermostabilized prestin provide mechanistic insights underlying outer hair cell electromotility. Nat. Commun. 2022, 13, 6208. [Google Scholar] [CrossRef] [PubMed]
- Kuwabara, M.F.; Haddad, B.G.; Lenz-Schwab, D.; Hartmann, J.; Longo, P.; Huckschlag, B.-M.; Fuß, A.; Questino, A.; Berger, T.K.; Machtens, J.-P.; et al. Elevator-like movements of prestin mediate outer hair cell electromotility. Nat. Commun. 2023, 14, 7145. [Google Scholar] [CrossRef] [PubMed]
- Liberman, M.C.; Gao, J.; He, D.Z.; Wu, X.; Jia, S.; Zuo, J. Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 2002, 419, 300–304. [Google Scholar] [CrossRef]
- Cheatham, M.A.; Huynh, K.H.; Gao, J.; Zuo, J.; Dallos, P. Cochlear function in Prestin knockout mice. J. Physiol. 2004, 560 Pt 3, 821–830. [Google Scholar] [CrossRef]
- Cheatham, M.A.; Zheng, J.; Huynh, K.H.; Du, G.G.; Edge, R.M.; Anderson, C.T.; Zuo, J.; Ryan, A.F.; Dallos, P. Evaluation of an independent prestin mouse model derived from the 129S1 strain. Audiol. Neuro-Otol. 2007, 12, 378–390. [Google Scholar] [CrossRef]
- Cheatham, M.A.; Edge, R.M.; Homma, K.; Leserman, E.L.; Dallos, P.; Zheng, J. Prestin-Dependence of Outer Hair Cell Survival and Partial Rescue of Outer Hair Cell Loss in Prestin(V499G/Y501H) Knockin Mice. PLoS ONE 2015, 10, e0145428. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Xuan, X.; Zhou, Z.; Yuan, Y.; Xue, F. A Preliminary Report on the Investigation of Prestin as a Biomarker for Idiopathic Sudden Sensorineural Hearing Loss. Ear Nose Throat J. 2020, 99, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Tovi, H.; Ovadia, H.; Eliashar, R.; de Jong, M.A.; Gross, M. Prestin autoantibodies screening in idiopathic sudden sensorineural hearing loss. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2019, 136, 99–101. [Google Scholar] [CrossRef]
- Saadat, F.; Jalali, M.M.; Akbari, M. Assessment of prestin level changes as an inner-ear biomarker in patients with idiopathic sudden sensorineural hearing loss. J. Laryngol. Otol. 2022, 136, 1039–1043. [Google Scholar] [CrossRef] [PubMed]
- Parham, K.; Dyhrfjeld-Johnsen, J. Outer Hair Cell Molecular Protein, Prestin, as a Serum Biomarker for Hearing Loss: Proof of Concept. Otol. Neurotol. 2016, 37, 1217–1222. [Google Scholar] [CrossRef] [PubMed]
- Parham, K.; Sohal, M.; Petremann, M.; Romanet, C.; Broussy, A.; Tran Van Ba, C.; Dyhrfjeld-Johnsen, J. Noise-induced trauma produces a temporal pattern of change in blood levels of the outer hair cell biomarker prestin. Hear. Res. 2019, 371, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Naples, J.; Cox, R.; Bonaiuto, G.; Parham, K. Prestin as an Otologic Biomarker of Cisplatin Ototoxicity in a Guinea Pig Model. Otolaryngol. Head Neck Surg. 2018, 158, 541–546. [Google Scholar] [CrossRef]
- Liba, B.; Naples, J.; Bezyk, E.; Campbell, C.; Mei, M.; Parham, K. Changes in Serum Prestin Concentration after Exposure to Cisplatin. Otol. Neurotol. 2017, 38, e501–e505. [Google Scholar] [CrossRef]
- Generotti, C.; Cox, B.C.; Singh, J.; Hamilton, D.; McKenzie, E.; O’Malley, B.W.; Li, D. Subclinical diagnosis of cisplatin-induced ototoxicity with biomarkers. Sci. Rep. 2022, 12, 18032. [Google Scholar] [CrossRef]
- Yilmazer, A.B.; Tanrısever, O.; Alagoz, M.H.; Yilmazer, R.; Goker, A.E.; Tutar, B.; Uyar, Y. Evaluation of inner ear damage by mastoid drilling with measurement of serum prestin (SLC26A5) levels. Braz. J. Otorhinolaryngol. 2023, 90, 101380. [Google Scholar] [CrossRef]
- Santosa, A.; Suastika, K.; Saraswasti, M.R.; Suardana, W.; Sujaya, I.N. Potential diagnostic biomarkers for early detection of idiopathic sensorineural hearing loss in type 2 diabetes mellitus patients. Indones. J. Biomed. Sci. 2022, 16, 37–42. [Google Scholar] [CrossRef]
- Parker, A.; Parham, K.; Skoe, E. Noise exposure levels predict blood levels of the inner ear protein prestin. Sci. Rep. 2022, 12, 1154. [Google Scholar] [CrossRef] [PubMed]
- Parker, A.; Parham, K.; Skoe, E. Reliability of Serological Prestin Levels in Humans and its Relation to Otoacoustic Emissions, a Functional Measure of Outer Hair Cells. Ear Hear. 2021, 42, 1151–1162. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Gonzalez, S.; Cazevieille, C. N-Acetylcysteine Treatment Reduces Noise-Induced Hearing Loss in Guinea Pig. J. Community Prev. Med. 2020, 3, 1. [Google Scholar] [CrossRef]
- Emre, S.; Karlidag, T.; Aydın, S.; Kaygusuz, I.; Keles, E.; Akyigit, A.; Yalcin, S. Can prestin level be a biomarker for determining sensorineural hearing loss? Auris Nasus Larynx 2022, 49, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Asli, R.H.; Akbarpour, M.; Lahiji, M.R.; Leyli, E.K.; Pastadast, M.; Ramezani, H.; Nemati, S. Evaluation of the relationship between prestin serum biomarker and sensorineural hearing loss: A case-control study. Eur. Arch. Otorhinolaryngol. 2023, 280, 1147–1153. [Google Scholar] [CrossRef]
- Solis-Angeles, S.; Juárez-Pérez, C.A.; Jiménez-Ramírez, C.; Cabello-López, A.; Aguilar-Madrid, G.; Del Razo, L.M. Prestin and otolin-1 proteins in the hearing loss of adults chronically exposed to lead. Toxicol. Appl. Pharmacol. 2021, 426, 115651. [Google Scholar] [CrossRef]
- Parker, A.; Parham, K.; Skoe, E. Age-related declines to serum prestin levels in humans. Hear. Res. 2022, 426, 108640. [Google Scholar] [CrossRef]
- Harrison, M.S.; Driscoll, B.G.; Farnsworth, J.; Hinton, A.; Peppi, M.; McLean, W.; Parham, K. Automated Western Blot Analysis of Ototoxin-Induced Prestin Burst in the Blood after Cyclodextrin Exposure. Otol. Neurotol. 2023, 44, e653–e659. [Google Scholar] [CrossRef]
- Jalali, M.M.; Saedi, H.S.; Saadat, F. Effect of cisplatin chemotherapy on the inner ear function and serum prestin concentration. Eur. Arch. Oto-Rhino-Laryngol. 2022, 279, 2783–2789. [Google Scholar] [CrossRef]
- Naples, J.G.; Soda, D.; Rahman, K.; Ruckenstein, M.J.; Parham, K. Evaluating the Role of Otologic Biomarkers to Differentiate Meniere’s Disease and Vestibular Migraine. Ear Hear. 2022, 43, 699–702. [Google Scholar] [CrossRef] [PubMed]
- Turan, M.; Alp, H.H.; Yildiz, H.; Baran, A.İ.; Ekin, S.; Akin, R.; Arisoy, A.; Çetin, Y.S.; Turan, A.; Bozan, N. Blood prestin levels in COVID-19 patients. J. Chin. Med. Assoc. 2023, 86, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Solis-Angeles, S.; Juárez-Pérez, C.A.; Cabello-López, A.; Fascinetto-Dorantes, L.; Amparo, G.; Torres-Valenzuela, A.; Aguilar-Madrid, G.; RAZO, L.M.D. Evaluation of serum prestin as a new potential biomarker for hearing damage due to lead exposure in population from Tlaxcala, Mexico. In Proceedings of the ISEE Conference Abstracts, Virtual, 24 August 2020. [Google Scholar]
- Takahashi, S.; Homma, K.; Zhou, Y.J.; Nishimura, S.; Duan, C.W.; Chen, J.; Ahmad, A.; Cheatham, M.A.; Zheng, J. Susceptibility of outer hair cells to cholesterol chelator 2-hydroxypropyl-beta-cyclodextrine is prestin-dependent. Sci. Rep. 2016, 6, 21973. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Takahashi, S.; Homma, K.; Duan, C.; Zheng, J.; Cheatham, M.A.; Zheng, J. The susceptibility of cochlear outer hair cells to cyclodextrin is not related to their electromotile activity. Acta Neuropathol. Commun. 2018, 6, 98. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Du, G.G.; Anderson, C.T.; Keller, J.P.; Orem, A.; Dallos, P.; Cheatham, M.A. Analysis of the oligomeric structure of the motor protein prestin. J. Biol. Chem. 2006, 281, 19916–19924. [Google Scholar] [CrossRef]
- Crumling, M.A.; Liu, L.; Thomas, P.V.; Benson, J.; Kanicki, A.; Kabara, L.; Halsey, K.; Dolan, D.; Duncan, R.K. Hearing loss and hair cell death in mice given the cholesterol-chelating agent hydroxypropyl-beta-cyclodextrin. PLoS ONE 2012, 7, e53280. [Google Scholar] [CrossRef] [PubMed]
- King, K.; Zalewski, C.; Farhat, N.; Keener, L.A.; Hoa, M.; Bianconi, S.; Porter, F.D.; Brewer, C.C. HPβCD Therapy in Humans with NPC1 Disease: Audiological Outcomes. In Proceedings of the Abstract of 38th meeting of the Association for Research in Otolaryngology, Baltimore, MD, USA, 25 February 2015. [Google Scholar]
- Cronin, S.; Lin, A.; Thompson, K.; Hoenerhoff, M.; Duncan, R.K. Hearing Loss and Otopathology Following Systemic and Intracerebroventricular Delivery of 2-Hydroxypropyl-Beta-Cyclodextrin. J. Assoc. Res. Otolaryngol. 2015, 16, 599–611. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Zhou, Y.; Agarwal, A.; Lim, M.; Xu, Y.; Zhu, Y.; O’Brien, J.; Tran, E.; Zheng, J.; Gius, D.; et al. Systemic application of honokiol prevents cisplatin ototoxicity without compromising its antitumor effect. Am. J. Cancer Res. 2020, 10, 4416–4434. [Google Scholar] [PubMed]
- Zhang, X.D.; Thai, P.N.; Ren, L.; Perez Flores, M.C.; Ledford, H.A.; Park, S.; Lee, J.H.; Sihn, C.R.; Chang, C.W.; Chen, W.C.; et al. Prestin amplifies cardiac motor functions. Cell Rep. 2021, 35, 109097. [Google Scholar] [CrossRef]
- Yamashita, T.; Hakizimana, P.; Wu, S.; Hassan, A.; Jacob, S.; Temirov, J.; Fang, J.; Mellado-Lagarde, M.; Gursky, R.; Horner, L.; et al. Outer Hair Cell Lateral Wall Structure Constrains the Mobility of Plasma Membrane Proteins. PLoS Genet. 2015, 11, e1005500. [Google Scholar] [CrossRef]
- Mahendrasingam, S.; Beurg, M.; Fettiplace, R.; Hackney, C.M. The ultrastructural distribution of prestin in outer hair cells: A post-embedding immunogold investigation of low-frequency and high-frequency regions of the rat cochlea. Eur. J. Neurosci. 2010, 31, 1595–1605. [Google Scholar] [CrossRef]
- Ashmore, J. Biophysics of the cochlea–biomechanics and ion channelopathies. Br. Med. Bull. 2002, 63, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Ehret, G.; Frankenreiter, M. Quantitative analysis of cochlear structures in the house mouse in relation to mechanisms of acoustical information processing. J. Comp. Physiol. 1977, 122, 65–85. [Google Scholar] [CrossRef]
- Zheng, Q.Y.; Johnson, K.R.; Erway, L.C. Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses. Hear. Res. 1999, 130, 94–107. [Google Scholar] [CrossRef] [PubMed]
- Dépreux, F.; Czech, L.; Young, H.; Richter, C.-P.; Zhou, Y.; Whitlon, D.S. Statins protect mice from high-decibel noise-induced hearing loss. Biomed. Pharmacother. 2023, 163, 114674. [Google Scholar] [CrossRef]
- Kirschner, M.B.; Kao, S.C.; Edelman, J.J.; Armstrong, N.J.; Vallely, M.P.; van Zandwijk, N.; Reid, G. Haemolysis during Sample Preparation Alters microRNA Content of Plasma. PLoS ONE 2011, 6, e24145. [Google Scholar] [CrossRef]
- Zheng, J.; Du, G.G.; Matsuda, K.; Orem, A.; Aguinaga, S.; Deak, L.; Navarrete, E.; Madison, L.D.; Dallos, P. The C-terminus of prestin influences nonlinear capacitance and plasma membrane targeting. J. Cell Sci. 2005, 118, 2987–2996. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, K.; Zheng, J.; Du, G.G.; Klocker, N.; Madison, L.D.; Dallos, P. N-linked glycosylation sites of the motor protein prestin: Effects on membrane targeting and electrophysiological function. J. Neurochem. 2004, 89, 928–938. [Google Scholar] [CrossRef]
- Muller, M.; von Hunerbein, K.; Hoidis, S.; Smolders, J.W. A physiological place-frequency map of the cochlea in the CBA/J mouse. Hear. Res. 2005, 202, 63–73. [Google Scholar] [CrossRef]
- Johnson, K.R.; Tian, C.; Gagnon, L.H.; Jiang, H.; Ding, D.; Salvi, R. Effects of Cdh23 single nucleotide substitutions on age-related hearing loss in C57BL/6 and 129S1/Sv mice and comparisons with congenic strains. Sci. Rep. 2017, 7, 44450. [Google Scholar] [CrossRef]
- Ding, D.; McFadden, S.; Salvi, R. Cochlear hair cell densities and inner ear staining techniques. In Handbook of Mouse Auditory Research from Behavior to Molecular Biology; Willott, J.F., Ed.; CRC Press: Boca Raton, FL, USA, 2001; pp. 189–204. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Zhou, Y.; Fuentes, R.J.; Tan, X. Verification of Outer Hair Cell Motor Protein, Prestin, as a Serological Biomarker for Mouse Cochlear Damage. Int. J. Mol. Sci. 2024, 25, 7285. https://doi.org/10.3390/ijms25137285
Zheng J, Zhou Y, Fuentes RJ, Tan X. Verification of Outer Hair Cell Motor Protein, Prestin, as a Serological Biomarker for Mouse Cochlear Damage. International Journal of Molecular Sciences. 2024; 25(13):7285. https://doi.org/10.3390/ijms25137285
Chicago/Turabian StyleZheng, Jing, Yingjie Zhou, Robert J. Fuentes, and Xiaodong Tan. 2024. "Verification of Outer Hair Cell Motor Protein, Prestin, as a Serological Biomarker for Mouse Cochlear Damage" International Journal of Molecular Sciences 25, no. 13: 7285. https://doi.org/10.3390/ijms25137285
APA StyleZheng, J., Zhou, Y., Fuentes, R. J., & Tan, X. (2024). Verification of Outer Hair Cell Motor Protein, Prestin, as a Serological Biomarker for Mouse Cochlear Damage. International Journal of Molecular Sciences, 25(13), 7285. https://doi.org/10.3390/ijms25137285