Investigating the Interplay: Periodontal Disease and Type 1 Diabetes Mellitus—A Comprehensive Review of Clinical Studies
Abstract
:1. Introduction
2. Type 1 Diabetes Mellitus
3. Clinical Phenotype of T1DM
4. Pathogenesis of Type 1 Diabetes Mellitus
5. Preclinical and Clinical Evidence
6. Type 1 Diabetes Mellitus and Oral Microbiota
7. Type I Diabetes Mellitus and Host Immune Response
8. Oxidative Stress
9. Host Immune Markers
10. General Conclusions and Future Suggestions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Atkinson, M.A. The Pathogenesis and Natural History of Type 1 Diabetes. Cold Spring Harb. Perspect. Med. 2012, 2, a007641. [Google Scholar] [CrossRef]
- Ziukaite, L.; Slot, D.E.; Van der Weijden, F.A. Prevalence of diabetes mellitus in people clinically diagnosed with periodontitis: A systematic review and meta-analysis of epidemiologic studies. J. Clin. Periodontol. 2018, 45, 650–662. [Google Scholar] [CrossRef] [PubMed]
- Löe, H. Periodontal Disease: The sixth complication of diabetes mellitus. Diabetes Care 1993, 16, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Taylor, G.W. Bidirectional Interrelationships Between Diabetes and Periodontal Diseases: An Epidemiologic Perspective. Ann. Periodontol. 2001, 6, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Păunică, I.; Giurgiu, M.; Dumitriu, A.S.; Păunică, S.; Stoian, A.M.P.; Martu, M.-A.; Serafinceanu, C. The Bidirectional Relationship between Periodontal Disease and Diabetes Mellitus—A Review. Diagnostics 2023, 13, 681. [Google Scholar] [CrossRef]
- Maahs, D.M.; West, N.A.; Lawrence, J.M.; Mayer-Davis, E.J. Epidemiology of Type 1 Diabetes. Endocrinol. Metab. Clin. North Am. 2010, 39, 481–497. [Google Scholar] [CrossRef]
- Mobasseri, M.; Shirmohammadi, M.; Amiri, T.; Vahed, N.; Fard, H.H.; Ghojazadeh, M. Prevalence and incidence of type 1 diabetes in the world: A systematic review and meta-analysis. Health Promot. Perspect. 2020, 10, 98–115. [Google Scholar] [CrossRef]
- Gregory, G.A.; Robinson, T.I.G.; Linklater, S.E. Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: A modelling study (vol 10, pg 741, 2022). Lancet Diabetes Endo. 2022, 10, E11. [Google Scholar]
- A DiMeglio, L.; Evans-Molina, C.; A Oram, R. Type 1 diabetes. Lancet 2018, 391, 2449–2462. [Google Scholar] [CrossRef]
- Harding, J.L.; Wander, P.L.; Zhang, X.; Li, X.; Karuranga, S.; Chen, H.; Sun, H.; Xie, Y.; Oram, R.A.; Magliano, D.J.; et al. The Incidence of Adult-Onset Type 1 Diabetes: A Systematic Review From 32 Countries and Regions. Diabetes Care 2022, 45, 994–1006. [Google Scholar] [CrossRef]
- Ikegami, H. Which comes first in type 1 diabetes: Autoimmunity or dysglycemia? J. Diabetes Investig. 2023, 14, 645–647. [Google Scholar] [CrossRef] [PubMed]
- Zajec, A.; Podkrajšek, K.T.; Tesovnik, T.; Šket, R.; Kern, B.; Bizjan, B.J.; Schweiger, D.; Battelino, T.; Kovač, J. Pathogenesis of Type 1 Diabetes: Established Facts and New Insights. Genes 2022, 13, 706. [Google Scholar] [CrossRef] [PubMed]
- Powers, A.C. Type 1 diabetes mellitus: Much progress, many opportunities. J. Clin. Investig. 2021, 131. [Google Scholar] [CrossRef] [PubMed]
- Insel, R.A.; Dunne, J.L.; Ziegler, A.-G. General population screening for type 1 diabetes. Curr. Opin. Endocrinol. Diabetes 2015, 22, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Pietropaolo, M.; Towns, R.; Eisenbarth, G.S. Humoral Autoimmunity in Type 1 Diabetes: Prediction, Significance, and Detection of Distinct Disease Subtypes. Cold Spring Harb. Perspect. Med. 2012, 2, a012831. [Google Scholar] [CrossRef]
- Alkanani, A.K.; Hara, N.; Gottlieb, P.A.; Ir, D.; Robertson, C.E.; Wagner, B.D.; Frank, D.N.; Zipris, D. Alterations in Intestinal Microbiota Correlate with Susceptibility to Type 1 Diabetes. Diabetes 2015, 64, 3510–3520. [Google Scholar] [CrossRef] [PubMed]
- Houeiss, P.; Luce, S.; Boitard, C. Environmental Triggering of Type 1 Diabetes Autoimmunity. Front. Endocrinol. 2022, 13, 933965. [Google Scholar] [CrossRef]
- Segerstad, E.M.H.A.; Liu, X.; Uusitalo, U.; Agardh, D.; Aronsson, C.A. Sources of dietary gluten in the first 2 years of life and associations with celiac disease autoimmunity and celiac disease in Swedish genetically predisposed children: The Environmental Determinants of Diabetes in the Young (TEDDY) study. Am. J. Clin. Nutr. 2022, 116, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Redondo, M.J.; Steck, A.K.; Pugliese, A. Genetics of type 1 diabetes. Pediatr. Diabetes 2017, 19, 346–353. [Google Scholar] [CrossRef]
- Oliveira, S.M.R.; Rebocho, A.; Ahmadpour, E.; Nissapatorn, V.; Pereira, M.d.L. Type 1 Diabetes Mellitus: A Review on Advances and Challenges in Creating Insulin Producing Devices. Micromachines 2023, 14, 151. [Google Scholar] [CrossRef]
- Andersen, C.C.P.; Flyvbjerg, A.; Buschard, K.; Holmstrup, P. Relationship Between Periodontitis and Diabetes: Lessons from Rodent Studies. J. Periodontol. 2007, 78, 1264–1275. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, D.; Choi, S.; Cha, J.; Bak, E.; Yoo, Y. Diabetic characteristics and alveolar bone loss in streptozotocin- and streptozotocin-nicotinamide-treated rats with periodontitis. J. Periodontal Res. 2014, 49, 792–800. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Lee, D.-E.; Gunawardhana, K.S.N.D.; Choi, S.-H.; Woo, G.-H.; Cha, J.-H.; Bak, E.-J.; Yoo, Y.-J. Effect of the interaction between periodontitis and type 1 diabetes mellitus on alveolar bone, mandibular condyle and tibia. Acta Odontol. Scand. 2013, 72, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Popławska-Kita, A.; Siewko, K.; Szpak, P.; Król, B.; Telejko, B.; Klimiuk, P.A.; Stokowska, W.; Górska, M.; Szelachowska, M. Association between type 1 diabetes and periodontal health. Adv. Med Sci. 2014, 59, 126–131. [Google Scholar] [CrossRef]
- Dicembrini, I.; Serni, L.; Monami, M.; Caliri, M.; Barbato, L.; Cairo, F.; Mannucci, E. Type 1 diabetes and periodontitis: Prevalence and periodontal destruction—A systematic review. Acta Diabetol. 2020, 57, 1405–1412. [Google Scholar] [CrossRef] [PubMed]
- Roy, M.; Gastaldi, G.; Courvoisier, D.S.; Mombelli, A.; Giannopoulou, C. Periodontal health in a cohort of subjects with type 1 diabetes mellitus. Clin. Exp. Dent. Res. 2019, 5, 243–249. [Google Scholar] [CrossRef]
- Meenawat, A.; Punn, K.; Srivastava, V.; Meenawat, A.S.; Dolas, R.; Govila, V. Periodontal disease and type I diabetes mellitus: Associations with glycemic control and complications. J. Indian Soc. Periodontol. 2013, 17, 597–600. [Google Scholar] [CrossRef] [PubMed]
- Jindal, A.; Parihar, A.S.; Sood, M.; Singh, P.; Singh, N. Relationship between Severity of Periodontal Disease and Control of Diabetes (Glycated Hemoglobin) in Patients with Type 1 Diabetes Mellitus. J. Int. Oral Health 2015, 7, 17–20. [Google Scholar]
- Dakovic, D.; Pavlovic, M.D. Periodontal Disease in Children and Adolescents with Type 1 Diabetes in Serbia. J. Periodontol. 2008, 79, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Ferizi, L.; Bimbashi, V.; Kelmendi, J. Association between metabolic control and oral health in children with type 1 diabetes mellitus. BMC Oral Health 2022, 22, 502. [Google Scholar] [CrossRef]
- Costa, R.; Ríos-Carrasco, B.; Monteiro, L.; López-Jarana, P.; Carneiro, F.; Relvas, M. Association between Type 1 Diabetes Mellitus and Periodontal Diseases. J. Clin. Med. 2023, 12, 1147. [Google Scholar] [CrossRef] [PubMed]
- Graves, D.T.; Ding, Z.; Yang, Y. The impact of diabetes on periodontal diseases. Periodontology 2000 2019, 82, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.; Gopalkrishna, P. Type 1 diabetes and periodontal disease: A literature review. Can. J. Dent. Hyg. 2022, 56, 22–30. [Google Scholar] [PubMed]
- Gregorczyk-Maga, I.; Fiema, M.; Kania, M.; Jachowicz-Matczak, E.; Romaniszyn, D.; Gerreth, K.; Klupa, T.; Wójkowska-Mach, J. Oral Microbiota—One Habitat or Diverse Niches? A Pilot Study of Sampling and Identification of Oral Bacterial and Fungal Biota in Patients with Type I Diabetes Mellitus Treated with Insulin Pump. Int. J. Environ. Res. Public Health 2023, 20, 2252. [Google Scholar] [CrossRef]
- Vergnes, J.; Canceill, T.; Vinel, A.; Laurencin-Dalicieux, S.; Maupas-Schwalm, F.; Blasco-Baqué, V.; Hanaire, H.; Arrivé, E.; Rigalleau, V.; Nabet, C.; et al. The effects of periodontal treatment on diabetic patients: The DIAPERIO randomized controlled trial. J. Clin. Periodontol. 2018, 45, 1150–1163. [Google Scholar] [CrossRef]
- Simpson, T.C.; E Clarkson, J.; Worthington, H.V.; MacDonald, L.; Weldon, J.C.; Needleman, I.; Iheozor-Ejiofor, Z.; Wild, S.H.; Qureshi, A.; Walker, A.; et al. Treatment of periodontitis for glycaemic control in people with diabetes mellitus. Cochrane Database Syst. Rev. 2022, 2022, CD004714. [Google Scholar] [CrossRef]
- Seppälä, B.; Seppälä, M.; Ainamo, J. A longitudinal study on insulin-dependent diabetes mellitus and periodontal disease. J. Clin. Periodontol. 1993, 20, 161–165. [Google Scholar] [CrossRef]
- Balta, M.; Papathanasiou, E.; Blix, I.; Van Dyke, T. Host Modulation and Treatment of Periodontal Disease. J. Dent. Res. 2021, 100, 798–809. [Google Scholar] [CrossRef] [PubMed]
- TEDDY Study Group; Toppari, J.; Akolkar, B.; Salami, F.; Lee, H.-S.; Freyhult, E.; Larsson, H.E.; Törn, C.; Couper, J.J.; Haller, M.J.; et al. The Environmental Determinants of Diabetes in the Young (TEDDY) Study. Ann. New York Acad. Sci. 2008, 1150, 1–13. [Google Scholar] [CrossRef]
- Davis-Richardson, A.G.; Triplett, E.W. A model for the role of gut bacteria in the development of autoimmunity for type 1 diabetes. Diabetologia 2015, 58, 1386–1393. [Google Scholar] [CrossRef]
- Abdellatif, A.M.; Sarvetnick, N.E. Current understanding of the role of gut dysbiosis in type 1 diabetes. J. Diabetes 2019, 11, 632–644. [Google Scholar] [CrossRef] [PubMed]
- Abuqwider, J.; Corrado, A.; Scidà, G.; Lupoli, R.; Costabile, G.; Mauriello, G.; Bozzetto, L. Gut microbiome and blood glucose control in type 1 diabetes: A systematic review. Front. Endocrinol. 2023, 14, 1265696. [Google Scholar] [CrossRef] [PubMed]
- Moskovitz, M.; Nassar, M.; Moriel, N.; Cher, A.; Faibis, S.; Ram, D.; Zangen, D.; Yassour, M.; Steinberg, D. Characterization of the Oral Microbiome Among Children With Type 1 Diabetes Compared With Healthy Children. Front. Microbiol. 2021, 12, 756808. [Google Scholar] [CrossRef]
- Pisano, M.; Giordano, F.; Sangiovanni, G.; Capuano, N.; Acerra, A.; D’ambrosio, F. The Interaction between the Oral Microbiome and Systemic Diseases: A Narrative Review. Microbiol. Res. 2023, 14, 1862–1878. [Google Scholar] [CrossRef]
- Størling, J.; Pociot, F. Type 1 Diabetes Candidate Genes Linked to Pancreatic Islet Cell Inflammation and Beta-Cell Apoptosis. Genes 2017, 8, 72. [Google Scholar] [CrossRef]
- Mashimo, P.A.; Yamamoto, Y.; Slots, J.; Park, B.H.; Genco, R.J. The Periodontal Microflora of Juvenile Diabetics: Culture, Immunofluorescence, and Serum Antibody Studies. J. Periodontol. 1983, 54, 420–430. [Google Scholar] [CrossRef]
- Sastrowijoto, S.H.; Hillemans, P.; van Steenbergen, T.J.M.; Abraham-Inpijn, L.; de Graaff, J. Periodontal condition and microbiology of healthy and diseased periodontal pockets in type 1 diabetes mellitus patients. J. Clin. Periodontol. 1989, 16, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Sandholm, L.; Swanljung, O.; Rytömaa, I.; Kaprio, E.A.; Mäenpää, J. Morphotypes of the Subgingival Microflora in Diabetic Adolescents in Finland. J. Periodontol. 1989, 60, 526–528. [Google Scholar] [CrossRef]
- Mandell, R.L.; Dirienzo, J.; Kent, R.; Joshipura, K.; Haber, J. Microbiology of Healthy and Diseased Periodontal Sites in Poorly Controlled Insulin Dependent Diabetics. J. Periodontol. 1992, 63, 274–279. [Google Scholar] [CrossRef]
- Sbordone, L.; Ramaglia, L.; Barone, A.; Ciaglia, R.N.; Tenore, A.; Iacono, V.J. Periodontal Status and Selected Cultivable Anaerobic Microflora of Insulin-Dependent Juvenile Diabetics. J. Periodontol. 1995, 66, 452–461. [Google Scholar] [CrossRef]
- Sjödin, B.; Edblad, E.; Sondell, K.; Dahlén, G. Minor manifestations of periodontal diseases in young adults with type 1 diabetes mellitus. Periodontal and microbiological findings. Acta Odontol. Scand. 2011, 70, 589–596. [Google Scholar] [CrossRef]
- Kumar, V.H.; Kumar, K.M.; Gafoor, A.; Santhosh, V. Evaluation of Subgingival Microflora in Diabetic and Nondiabetic Patients. J. Contemp. Dent. Pr. 2012, 13, 157–162. [Google Scholar] [CrossRef]
- Krishnan, M.; Chamarthi, V.; Arangannal, P.; Santoshkumari; Krishnan, P.; Nichani, M. Detection of putative periodontopathic bacteria in type 1 diabetic and healthy children: A comparative study. Indian J. Dent. Res. 2013, 24, 342–346. [Google Scholar] [CrossRef] [PubMed]
- Lalla, E.; Kaplan, S.; Chang, S.J.; Roth, G.A.; Celenti, R.; Hinckley, K.; Greenberg, E.; Papapanou, P.N. Periodontal infection profiles in type 1 diabetes. J. Clin. Periodontol. 2006, 33, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Singh-Hüsgen, P.; Meissner, T.; Bizhang, M.; Henrich, B.; Raab, W.H.-M. Investigation of the oral status and microorganisms in children with phenylketonuria and type 1 diabetes. Clin. Oral Investig. 2015, 20, 841–847. [Google Scholar] [CrossRef] [PubMed]
- Olczak-Kowalczyk, D.; Pyrżak, B.; Dąbkowska, M.; Pańczyk-Tomaszewska, M.; Miszkurka, G.; Rogozińska, I.; Swoboda-Kopeć, E.; Gozdowski, D.; Kalińska, A.; Piróg, A.; et al. Candida spp. and gingivitis in children with nephrotic syndrome or type 1 diabetes. BMC Oral Health 2015, 15, 57. [Google Scholar] [CrossRef] [PubMed]
- Duque, C.; João, M.F.D.; Camargo, G.A.d.C.G.; Teixeira, G.S.; Machado, T.S.; Azevedo, R.d.S.; Mariano, F.S.; Colombo, N.H.; Vizoto, N.L.; Mattos-Graner, R.d.O. Microbiological, lipid and immunological profiles in children with gingivitis and type 1 diabetes mellitus. J. Appl. Oral Sci. 2017, 25, 217–226. [Google Scholar] [CrossRef]
- Castrillon, C.A.; Hincapie, J.P.; Yepes, F.L.; Roldan, N.; Moreno, S.M.; Contreras, A.; Botero, J.E. Occurrence of red complex microorganisms and Aggregatibacter actinomycetemcomitans in patients with diabetes. J. Investig. Clin. Dent. 2013, 6, 25–31. [Google Scholar] [CrossRef]
- Šaferis, V.; Sakalauskiene, J.; Kubilius, R.; Gleiznys, A.; Vitkauskiene, A.; Ivanauskiene, E. Relationship of Clinical and Microbiological Variables in Patients with Type 1 Diabetes Mellitus and Periodontitis. Med Sci. Monit. 2014, 20, 1871–1877. [Google Scholar] [CrossRef]
- Mahalakshmi, K.; Arangannal, P. Santoshkumari Frequency of putative periodontal pathogens among type 1 diabetes mellitus: A case–control study. BMC Res. Notes 2019, 12, 328. [Google Scholar] [CrossRef]
- Jensen, E.D.; Selway, C.A.; Allen, G.; Bednarz, J.; Weyrich, L.S.; Gue, S.; Peña, A.S.; Couper, J. Early markers of periodontal disease and altered oral microbiota are associated with glycemic control in children with type 1 diabetes. Pediatr. Diabetes 2020, 22, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, P.; Chowdhury, R.; Bhakta, A.; Mukhopahyay, P.; Ghosh, S. Microbiology of periodontal disease in adolescents with Type 1 diabetes. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 102333. [Google Scholar] [CrossRef] [PubMed]
- Pachoński, M.; Koczor-Rozmus, A.; Mocny-Pachońska, K.; Łanowy, P.; Mertas, A.; Jarosz-Chobot, P. Oral microbiota in children with type 1 diabetes mellitus. Pediatr. Endocrinol. Diabetes Metab. 2021, 27, 100–108. [Google Scholar] [CrossRef]
- Carelli, M.; Maguolo, A.; Zusi, C.; Olivieri, F.; Emiliani, F.; De Grandi, G.; Unali, I.; Zerman, N.; Signoretto, C.; Maffeis, C. Oral Microbiota in Children and Adolescents with Type 1 Diabetes Mellitus: Novel Insights into the Pathogenesis of Dental and Periodontal Disease. Microorganisms 2023, 11, 668. [Google Scholar] [CrossRef] [PubMed]
- Selway, C.A.; Jensen, E.D.; Pena, A.S.; Smart, G.; Weyrich, L.S. Type 1 diabetes, periodontal health, and a familial history of hyperlipidaemia is associated with oral microbiota in children: A cross-sectional study. BMC Oral Health 2023, 23, 15. [Google Scholar] [CrossRef]
- Wu, C.-Z.; Yuan, Y.-H.; Liu, H.-H.; Li, S.-S.; Zhang, B.-W.; Chen, W.; An, Z.-J.; Chen, S.-Y.; Wu, Y.-Z.; Han, B.; et al. Epidemiologic relationship between periodontitis and type 2 diabetes mellitus. BMC Oral Health 2020, 20, 204. [Google Scholar] [CrossRef]
- King, G.L. The Role of Inflammatory Cytokines in Diabetes and Its Complications. J. Periodontol. 2008, 79, 1527–1534. [Google Scholar] [CrossRef]
- Papathanasiou, E.; Palaska, I.; Theoharides, T.C. Stress hormones regulate periodontal inflammation. J. Biol. Regul. Homeost. Agents 2013, 27, 621–626. [Google Scholar]
- Aral, C.A.; Nalbantoğlu; Nur, B.G.; Altunsoy, M.; Aral, K. Metabolic control and periodontal treatment decreases elevated oxidative stress in the early phases of type 1 diabetes onset. Arch. Oral Biol. 2017, 82, 115–120. [Google Scholar] [CrossRef]
- Aroonrangsee, T.; Chairatnathrongporn, R.; Surarit, R.; Tansriratanawong, K.; Santiprabhob, J.; Boriboonhirunsarn, C.; Promsudthi, A. Salivary oxidative stress biomarkers in thai adolescents and young adults with type 1 diabetes mellitus: A cross-sectional study. J. Int. Soc. Prev. Community Dent. 2023, 13, 333–341. [Google Scholar] [CrossRef]
- Lappin, D.F.; Robertson, D.; Hodge, P.; Treagus, D.; Awang, R.A.; Ramage, G.; Nile, C.J. The Influence of Glycated Hemoglobin on the Cross Susceptibility Between Type 1 Diabetes Mellitus and Periodontal Disease. J. Periodontol. 2015, 86, 1249–1259. [Google Scholar] [CrossRef] [PubMed]
- Passoja, A.; Knuuttila, M.; Hiltunen, L.; Karttunen, R.; Niemelä, O.; Raunio, T.; Vainio, O.; Hedberg, P.; Tervonen, T. Serum interleukin-6 may modulate periodontal inflammation in type 1 diabetic subjects. J. Clin. Periodontol. 2011, 38, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Salvi, G.E.; Franco, L.M.; Braun, T.M.; Lee, A.; Persson, G.R.; Lang, N.P.; Giannobile, W.V. Pro-inflammatory biomarkers during experimental gingivitis in patients with type 1 diabetes mellitus: A proof-of-concept study. J. Clin. Periodontol. 2009, 37, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Aspriello, S.D.; Zizzi, A.; Tirabassi, G.; Buldreghini, E.; Biscotti, T.; Faloia, E.; Stramazzotti, D.; Boscaro, M.; Piemontese, M. Diabetes mellitus-associated periodontitis: Differences between type 1 and type 2 diabetes mellitus. J. Periodontal Res. 2010, 46, 164–169. [Google Scholar] [CrossRef]
- Musiał, M.; Wiench, R.; Kolonko, A.; Choręza, P.; Świętochowska, E.; Niedzielski, D.; Machorowska-Pieniążęk, A.; Skaba, D.; Więcek, A.; Owczarek, A.J.; et al. Type 1 Diabetic Patients After Simultaneous Pancreas and Kidney Transplantation Have Less Intense Periodontal Inflammation Compared to Kidney Recipients Treated with Insulin. Ann. Transplant. 2021, 26, e932426-1–e932426-12. [Google Scholar] [CrossRef]
- Lappin, D.F.; Eapen, B.; Robertson, D.; Young, J.; Hodge, P.J. Markers of bone destruction and formation and periodontitis in type 1 diabetes mellitus. J. Clin. Periodontol. 2009, 36, 634–641. [Google Scholar] [CrossRef]
- Promsudthi, A.; Chairatnathrongporn, R.; Tansriratanawong, K.; Santiprabhob, J.; Boriboonhirunsarn, C. Salivary gene expression of RANK, RANKL, and OPG in type 1 diabetes mellitus and periodontal disease patients. J. Int. Soc. Prev. Community Dent. 2022, 12, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Guerra, J.F.d.C.; Magalhães, C.L.d.B.; Costa, D.C.; Silva, M.E.; Pedrosa, M.L. Dietary açai modulates ROS production by neutrophils and gene expression of liver antioxidant enzymes in rats. J. Clin. Biochem. Nutr. 2011, 49, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Lipski, J.; Duda-Sobczak, A.; Napierala, M.; Florek, E.; Zozulinska-Ziolkiewicz, D.; Wyganowska-Swiatkowska, M. Influence of Chlorhexidine and Cetylpyridine on Periodontal Status and Indicators of Oxidative Stress in Patients with Type 1 Diabetes. Antioxidants 2021, 10, 1732. [Google Scholar] [CrossRef]
- Linhartova, P.B.; Kavrikova, D.; Tomandlova, M.; Poskerova, H.; Rehka, V.; Dušek, L.; Holla, L.I. Differences in Interleukin-8 Plasma Levels between Diabetic Patients and Healthy Individuals Independently on Their Periodontal Status. Int. J. Mol. Sci. 2018, 19, 3214. [Google Scholar] [CrossRef]
- Passoja, A.; Knuuttila, M.; Hiltunen, L.; Karttunen, R.; Niemelä, O.; Raunio, T.; Vainio, O.; Hedberg, P.; Tervonen, T. Serum high-density lipoprotein cholesterol level associated with the extent of periodontal inflammation in type 1 diabetic subjects. J. Clin. Periodontol. 2011, 38, 1071–1077. [Google Scholar] [CrossRef]
- Sereti, M.; Roy, M.; Zekeridou, A.; Gastaldi, G.; Giannopoulou, C. Gingival crevicular fluid biomarkers in type 1 diabetes mellitus: A case–control study. Clin. Exp. Dent. Res. 2020, 7, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Şurlin, P.; Oprea, B.; Solomon, S.M.; Popa, S.G.; Moţa, M.; Mateescu, G.O.; Rauten, A.M.; Popescu, D.M.; Dragomir, L.P.; Puiu, I.; et al. Matrix metalloproteinase -7, -8, -9 and -13 in gingival tissue of patients with type 1 diabetes and periodontitis. Rom. J. Morphol. Embryol. 2014, 55, 1137–1141. [Google Scholar]
- Maksymenko, A.I.; Sheshukova, O.V.; Kuz, I.O.; Lyakhova, N.A.; Tkachenko, I.M. THE LEVEL OF INTERLEUKIN-18 IN THE ORAL FLUID IN PRIMARY SCHOOL CHILDREN WITH CHRONIC CATARRHAL GINGIVITIS AND TYPE I DIABETES MELLITUS. Wiadomosci Lek. (Warsaw, Pol. 1960) 2021, 74, 1336–1340. [Google Scholar] [CrossRef]
- Keles, S.; Anik, A.; Cevik, O.; Abas, B.I.; Anik, A. Gingival crevicular fluid levels of interleukin-18 and tumor necrosis factor-alpha in type 1 diabetic children with gingivitis. Clin. Oral Investig. 2020, 24, 3623–3631. [Google Scholar] [CrossRef] [PubMed]
- Steigmann, L.; Maekawa, S.; Kauffmann, F.; Reiss, J.; Cornett, A.; Sugai, J.; Venegas, J.; Fan, X.; Xie, Y.; Giannobile, W.V.; et al. Changes in salivary biomarkers associated with periodontitis and diabetic neuropathy in individuals with type 1 diabetes. Sci. Rep. 2022, 12, 11284. [Google Scholar] [CrossRef]
- Del Valle, L.M.L.; Ocasio-López, C.; Steffen, M. Comparison of Levels of Salivary Cytokines in Diabetic and Nondiabetic Puerto Rican Children: A Case-control Pilot Study. Pediatr. Dent. 2015, 37, 30–34. [Google Scholar]
- Yilmaz, N.; Polat, R.; Gürsoy, M.; Kaman, W.; Aydin, E.G.; Fteita, D.; Yilmaz, D.; Bikker, F.; Gürsoy, U.K. Salivary macrophage activation-related chemokines and mitogen-activated kinase kinase-degrading proteolytic activity in type 1 diabetes mellitus. J. Periodontol. 2023, 94, 896–904. [Google Scholar] [CrossRef]
- Antonoglou, G.; Knuuttila, M.; Nieminen, P.; Vainio, O.; Hiltunen, L.; Raunio, T.; Niemelä, O.; Hedberg, P.; Karttunen, R.; Tervonen, T. Serum osteoprotegerin and periodontal destruction in subjects with type 1 diabetes mellitus. J. Clin. Periodontol. 2013, 40, 765–770. [Google Scholar] [CrossRef]
References | Type of Study | Methodology | Types of Samples & Microbiological Analysis | Results | Conclusions |
---|---|---|---|---|---|
Arangann et al., 2013 [53] | Comparative case–control clinical study |
| Polymerase chain reaction assay for 6S rRNA gene detection |
| Similar microbiologic findings in T1DM patients and healthy children |
Carelli et al., 2023 [64] | Cross-sectional study |
|
|
| Importance of glycemic control and regular oral hygiene in preventing oral microbiota linked to dental and periodontal issues in individuals with T1DM since childhood |
Castrillon CA et al., 2015 [58] | Comparative case–control clinical study |
| DNA extraction by silica |
|
|
Chakraborty et al., 2021 [62] | Cross-sectional study | Gingival plaque sampling | Culture based microbial identification and biofilm assay |
| T1DM children with worse glycemic control, especially with periodontitis, showed increased biofilm formation and microbial diversity |
Duque et al., 2017 [57] | Comparative case–control clinical study |
|
|
|
|
Gregorczyk-Maga et al., 2023 [34] | Pilot study | Samples from the mucosa of the buccal and soft palate, tongue, palatal and buccal dental surfaces, and gingival pockets in adult patients with type 1 diabetes mellitus undergoing treatment with insulin pump therapy | Microbiologival cultures with dilution method or qualitative culture method |
|
|
Jensen et al., 2021 [61] | Cross-sectional study |
| 16S rRNA sequencing |
|
|
Kumar et al., 2012 [52] | Comparative parallel group clinical study |
| Bacterial cultures with ‘standard loop semiquantitative method’. | No statistical difference between the three groups (insulin-dependent, non-insulin dependent diabetics and non-diabetic periodontitis patients) | The microbial flora of the periodontitis patients is not influenced by their diabetic status |
Lalla et al., 2006 [54] | Comparative case–control clinical study |
|
|
|
|
Mahalakshmi et al., 2019 [60] | Comparative case–control clinical study |
| PCR | No statistically significant difference in the prevalence of C. rectus, E. corrodens, P. intermedia, P. nigrescens between type 1 diabetic and healthy children | Negative correlation of T1DM with periodontitis in association to 4 periopathogenic bacteria |
Mandell et al., 1992 [49] | Cross-sectional study |
| Bacterial cultures |
| Correlation observed between periodontal disease in insulin dependent diabetes patients (T1DM) and increased levels of specific pathogens |
Mashimo et al., 1983 [46] | Cross-sectional study |
|
|
| The subgingival organisms identified in periodontal lesions of individuals with insulin-dependent diabetes (T1DM) exhibit quantitative distinctions from those observed in cases of periodontitis |
Moskovitz et al., 2021 [43] | Comparative case–control clinical study |
|
|
|
|
Olczak-Kowalczyk et al., 2015 [56] | Comparative parallel group clinical study |
|
|
|
|
Pachoński et al., 2021 [63] | Comparative case–control clinical study | Oral bacterial swabs |
|
| Oral microbiome in T1DM children differs quantitatively and qualitatively from healthy children |
Sakalauskiene et al., 2014 [59] | Comparative case–control clinical study |
|
|
| The presence of two periodontal pathogens, F. nucleatum and Capnocytophaga spp., showed the strongest relationship with poorer metabolic control in T1DM patients and all clinical parameters of periodontal pathology |
Sandholm et al., 1989 [48] | Comparative case–control clinical study | Subgingival plaque sampling |
|
| Diabetes patients exhibited lower proportions of cocci and total Gram-positive bacteria but higher proportions of periodontally more pathogenic forms, Gram-negative rods, and total Gram-negative bacteria compared to controls even if they had comparable hygiene |
Sastrowijoto et al., 1989 [47] | Comparative case–control clinical study |
| Bacterial cultures and use of isolation and identification media |
|
|
Sbordone et al., 1995 [50] | Comparative case–control clinical study in siblings |
|
| No significant differences detected in any clinical and microbiological data | Limited distinctions were noted between individuals with T1DM and their healthy counterparts within this population |
Selway et al., 2023 [65] | Post hoc cross-sectional study |
| 16S rRNA gene sequencing |
| In children diagnosed with T1DM, findings highlight an association between oral microbiota and two distinct exposure variables: familial history of hyperlipidemia and periodontal risk factors |
Singh-Hüsgen et al., 2016 [42] | Cross-sectional study |
| PCR |
| Diabetic children displayed a lower caries experience in their primary dentition but were found to have a slightly higher risk of developing periodontal disease |
Sjodin et al., 2012 [51] | Comparative case–control clinical study |
| Checkboard DNA-DNA hybridization |
| Periodontal and microbiological status in young adults with insulin dependent diabetes (T1DM) does not differ significantly from that of healthy controls |
Main Microbiological Findings for T1DM |
---|
Gut microbiota influences T1DM risk |
Animal studies link gut flora composition to T1DM risk |
T1DM patients exhibit less diverse gut microbiota |
Correlations found between HbA1c levels and specific microbial abundances in T1DM patients |
Oral microbiome composition varies in individuals with T1DM |
Variations in oral microbiota in T1DM patients observed compared to healthy controls |
Increased Gram-negative rods and fusiforms found in subgingival microbial composition of T1DM patients |
Author | Type of Study | Methodology | Types of Samples & Immune Analysis | Results | Conclusions |
---|---|---|---|---|---|
Aral et al., 2017 [69] | Prospective case–control study | 32 T1DM patients at diagnosis, and age- and gender-matched 36 systemically healthy children with (G) and without (H) gingivitis were enrolled for periodontal exam and oxidative stress markers. The diabetic patients who took insulin therapy (1.5 units/kg/day totally) and periodontal treatment (oral hygiene education with professional scaling) were re-evaluated after 3 months. | Total antioxidant status [64], total oxidant status (TOS), and oxidative stress index were measured in saliva, GCF and serum. |
| A substantial level of oxidative stress may occur in children with T1DM, with increased oxidative stress index in GCF, salivary, and serum samples. |
Aroonrangsee et al., 2023 [70] | Cross-sectional case–control study | 40 participants from 15–23 years old. 20 T1DM patients and 20 age- matched non-T1DM subjects were enrolled. An average HbA1c level of less than 8% was considered the cut-off between well-controlled and poorly-controlled T1DM. Unstimulated whole saliva was collected before clinical periodontal exam. | Salivary levels of OS biomarkers including malondialdehyde, protein carbonyl, total oxidant status (TOS), and total antioxidant capacity were determined using oxidative and antioxidative assays followed by spectrophotometric measurement at 375–532 nm. |
| Salivary total oxidant status (TOS) levels were related to both diabetes status and the extent of gingival inflammation. |
Lappin et al., 2015 [71] | Cross-sectional study | 104 participants in the study: 19 healthy volunteers, 23 patients with periodontitis, 28 patients with T1DM, and 34 patients with T1DM and periodontitis. | Levels of blood HbA1C were determined by high-performance liquid chromatography. Levels of IL-6, IL-8, and CXCL5 in plasma were determined by ELISA. |
| Elevated plasma levels of IL-8 potentially contribute to the cross-susceptibility between periodontitis and T1DM. |
Passoja et al., 2011 [72] | Prospective clinical study | 80 subjects with T1DM (age 38.6 ± 12.3 y.o.) participated in the baseline study visit, while 58 subjects (age 39.5 ± 12.6 y.o.) completed the visit after periodontal therapy. Periodontal therapy included oral hygiene education, scaling and root planning and patients were re-evaluated 8 weeks after periodontal therapy. Periodontal exam and blood samples were drawn at the baseline and in the follow-up visits. | Serum IL-6 levels were measured using ELISA. |
| Subjects with a high IL-6 serum level after therapy presented poorer periodontal healing than those with a low level. IL-6 may have a modulatory effect on host immune response in T1DM patients. |
Salvi et al., 2010 [73] | Prospective cohort study of experimental gingivitis (EG) | A total of 18 Caucasian subjects (9 patients with T1DM and 9 without diabetes) (age 25.6 ± 5.8 y.o.) were included. EG: Patients were instructed to refrain from all oralhygiene practices for 21 days, resuming oral hygiene practices following the 21-day exam, continuing for an additional 2 weeks until Day 35. | Periodontal exam and GCF was collected at baseline, Day 7, Day 14, Day 21 and Day 35. IL-1β, IL-8, MMP-8, and MMP-9 levels were determined by ELISA. |
| GCF IL-1β and MMP-9 were most significantly elevated in T1DM subjects compared with healthy individuals during EG, not resulting from differences in the plaque index (PI) or microbial composition. |
Aspriello et al., 2011 [74] | Cross-sectional study | Plasma C-reactive protein and GCF IL-1β, IL-6 and TNF-α were measured in periodontitis patients affected by T1DM (n = 24) and type 2 diabetes mellitus (T2DM) (n = 24). T1DM patients had a significantly lower age (43.5 ± 6.5 y.o) compared to T2DM ones (63.5 ± 15.5 y.o). | Plasma high-sensitive C-reactive protein (hs-CRP) concentrations were measured by a particle-enhanced immunoturbidimetric assay. GCF mediators were measured with ELISA. |
| GCF IL-1β and TNF-α levels were higher in T1DM periodontitis patients compared to T2DM periodontitis ones. GCF IL-1β and TNF-α levels higher in cases of recent onset of diabetes mellitus highlighting the need for periodontal therapy at the early stages of T1DM development. |
Musial et al., 2021 [75] | Cross-sectional study | 20 T1DM patients after simultaneous pancreas and kidney transplantation (SPK) and 16 after kidney transplantation (KTx), and 15 non-diabetic kidney recipients (control) were included. The minimal post-transplant follow-up period was 12 months. | GCF samples were collected and IL-1β, TNF-α, resistin, YKL-40 were measured with ELISA. |
| Good metabolic control achieved by simultaneous pancreas and kidney transplantation (SPK) can decrease severity of periodontal inflammation in patients with end-stage renal disease caused by T1DM. |
Lappin et al., 2009 [76] | Cross-sectional study | Plasma concentrations of receptor activator of nuclear factor-kB ligand (RANKL), osteoprotegerin (OPG), C-terminal telopeptide of type 1 collagen and osteocalcin were measured in T1DM patients (n = 63) and non-diabetics (n = 38). The age range of the subjects was 22–56 years. | Plasma levels of RANKL, OPG, C-terminal telopeptide of type 1 collagen and osteocalcin were measured with ELISA. |
| T1DM patients with periodontitis showed lower serum osteocalcin and higher OPG levels than non-diabetic periodontitis patients, suggesting that T1DM patients have a decreased intrinsic ability to replace bone when that has been destroyed during ‘‘acute bursts’’ of periodontitis. |
Chairatnathrongporn et al., 2022 [77] | Cross-sectional study | Twenty patients with T1DM and twenty age-matched non-T1DM patients participated (age: 18.35 ± 2.01 years). Periodontal exams and unstimulated whole saliva was collected. | RNA analysis of salivary samples for RANK, RANKL and OPG gene expression was conducted. |
| More studies aiming to understand the role of bone metabolism by exploring bone markers are needed in patients with T1DM and periodontal diseases. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlachou, S.; Loumé, A.; Giannopoulou, C.; Papathanasiou, E.; Zekeridou, A. Investigating the Interplay: Periodontal Disease and Type 1 Diabetes Mellitus—A Comprehensive Review of Clinical Studies. Int. J. Mol. Sci. 2024, 25, 7299. https://doi.org/10.3390/ijms25137299
Vlachou S, Loumé A, Giannopoulou C, Papathanasiou E, Zekeridou A. Investigating the Interplay: Periodontal Disease and Type 1 Diabetes Mellitus—A Comprehensive Review of Clinical Studies. International Journal of Molecular Sciences. 2024; 25(13):7299. https://doi.org/10.3390/ijms25137299
Chicago/Turabian StyleVlachou, Stefania, Alexandre Loumé, Catherine Giannopoulou, Evangelos Papathanasiou, and Alkisti Zekeridou. 2024. "Investigating the Interplay: Periodontal Disease and Type 1 Diabetes Mellitus—A Comprehensive Review of Clinical Studies" International Journal of Molecular Sciences 25, no. 13: 7299. https://doi.org/10.3390/ijms25137299
APA StyleVlachou, S., Loumé, A., Giannopoulou, C., Papathanasiou, E., & Zekeridou, A. (2024). Investigating the Interplay: Periodontal Disease and Type 1 Diabetes Mellitus—A Comprehensive Review of Clinical Studies. International Journal of Molecular Sciences, 25(13), 7299. https://doi.org/10.3390/ijms25137299