Proteomic Changes Induced by the Immunosuppressant Everolimus in Human Podocytes
Abstract
:1. Introduction
2. Results
2.1. Proteomic Profile
2.2. Gene Ontology Enrichment Analysis
2.3. AKT-mTOR Phosphorylation Pathway Profiling
2.4. PLK1 Phosphorylation Activity
2.5. Urinary Content of Polo-Like Kinase 1 (PLK1) and Osteopontin (SPP1)
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Cells
4.3. Mass Spectrometry Profile
4.4. AKT-mTOR Phosphorylation Pathway Profiling Array
4.5. PLK1 Phosphorylation Activity
4.6. Patients
4.7. Enzyme-Linked Immunosorbent Assay (ELISA)
4.8. Statistical Analysis of the Mass Spectrometry Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
mTOR-Is | mTOR inhibitors |
mTORC1 | mammalian target of rapamycin complex 1 |
mTORC2 | mammalian target of rapamycin complex 2 |
CNI | calcineurin inhibitors |
VEGF | vascular endothelial growth factor |
PLS-DA | partial least squares discriminant analysis |
SVM | support vector machine |
SD | slit diaphragm |
VIP | variable importance in projection |
GO | gene ontology |
KEA | kinase enrichment analysis |
EVE | everolimus |
PLK1 | Polo-Like Kinase 1 |
SPP1 | osteopontin |
NPHS1 | nephrin |
NPHS2 | podocin |
SYNPO | synaptopodin |
PBS | phosphate-buffered saline |
BSA | bovine serum albumin |
EVs | extracellular vesicles |
References
- Laplante, M.; Sabatini, D.M. mTOR signaling in growth control and disease. Cell 2012, 149, 274–293. [Google Scholar] [CrossRef] [PubMed]
- Simcox, J.; Lamming, D.W. The central moTOR of metabolism. Dev. Cell 2022, 57, 691–706. [Google Scholar] [CrossRef] [PubMed]
- Diekmann, F.; Andrés, A.; Oppenheimer, F. mTOR inhibitor-associated proteinuria in kidney transplant recipients. Transplant. Rev. 2012, 26, 27–29. [Google Scholar] [CrossRef] [PubMed]
- Schena, F.P.; Pascoe, M.D.; Alberu, J.; del Carmen Rial, M.; Oberbauer, R.; Brennan, D.C.; Campistol, J.M.; Racusen, L.; Polinsky, M.S.; Goldberg-Alberts, R.; et al. Sirolimus CONVERT Trial Study Group. Conversion from calcineurin inhibitors to sirolimus maintenance therapy in renal allograft recipients: 24-month efficacy and safety results from the CONVERT trial. Transplantation 2009, 87, 233–242. [Google Scholar] [CrossRef]
- Diekmann, F.; Budde, K.; Oppenheimer, F.; Fritsche, L.; Neumayer, H.H.; Campistol, J.M. Predictors of success in conversion from calcineurin inhibitor to sirolimus in chronic allograft dysfunction. Am. J. Transplant. 2004, 4, 1869–1875. [Google Scholar] [CrossRef]
- Diekmann, F.; Budde, K.; Slowinski, T.; Oppenheimer, F.; Fritsche, L.; Neumayer, H.H.; Campistol, J.M. Conversion to sirolimus for chronic allograft dysfunction: Long-term results confirm predictive value of proteinuria. Transpl. Int. 2008, 21, 152–155. [Google Scholar] [CrossRef] [PubMed]
- Letavernier, E.; Pe’raldi, M.N.; Pariente, A.; Morelon, E.; Legendre, C. Proteinuria following a switch from calcineurin inhibitors to sirolimus. Transplantation 2005, 80, 1198–1203. [Google Scholar] [CrossRef] [PubMed]
- Morelon, E.; Kreis, H. Sirolimus therapy without calcineurin inhibitors: Necker Hospital 8-year experience. Transplant. Proc. 2003, 35, 52S–57S. [Google Scholar] [CrossRef] [PubMed]
- Saurina, A.; Campistol, J.M.; Piera, C.; Diekmann, F.; Campos, B.; Campos, N.; de las Cuevas, X.; Oppenheimer, F. Conversion from calcineurin inhibitors to sirolimus in chronic allograft dysfunction: Changes in glomerular haemodynamics and proteinuria. Nephrol. Dial. Transplant. 2006, 21, 488–493. [Google Scholar] [CrossRef]
- Letavernier, E.; Legendre, C. mToR inhibitors-induced proteinuria: Mechanisms, significance, and management. Transplant. Rev. 2008, 22, 125–130. [Google Scholar] [CrossRef]
- Coombes, J.D.; Mreich, E.; Liddle, C.; Rangan, G.K. Rapamycin worsens renal function and intratubular cast formation in protein overload nephropathy. Kidney Int. 2005, 68, 2599–2607. [Google Scholar] [CrossRef] [PubMed]
- Stallone, G.; Infante, B.; Pontrelli, P.; Gigante, M.; Montemurno, E.; Loverre, A.; Rossini, M.; Schena, F.P.; Grandaliano, G.; Gesualdo, L. Sirolimus and proteinuria in renal transplant patients: Evidence for a dose-dependent effect on slit diaphragm-associated proteins. Transplantation 2011, 91, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Amer, H.; Cosio, F.G. Significance and management of proteinuria in kidney transplant recipients. J. Am. Soc. Nephrol. 2009, 20, 2490–2492. [Google Scholar] [CrossRef] [PubMed]
- Tomei, P.; Masola, V.; Granata, S.; Bellin, G.; Carratù, P.; Ficial, M.; Ventura, V.A.; Onisto, M.; Resta, O.; Gambaro, G.; et al. Everolimus-induced epithelial to mesenchymal transition (EMT) in bronchial/pulmonary cells: When the dosage does matter in transplantation. J. Nephrol. 2016, 29, 881–891. [Google Scholar] [CrossRef] [PubMed]
- Masola, V.; Carraro, A.; Zaza, G.; Bellin, G.; Montin, U.; Violi, P.; Lupo, A.; Tedeschi, U. Epithelial to mesenchymal transition in the liver field: The double face of Everolimus in vitro. BMC Gastroenterol. 2015, 15, 118. [Google Scholar] [CrossRef]
- Masola, V.; Zaza, G.; Granata, S.; Gambaro, G.; Onisto, M.; Lupo, A. Everolimus-induced epithelial to mesenchymal transition in immortalized human renal proximal tubular epithelial cells: Key role of heparanase. J. Transl. Med. 2013, 11, 292. [Google Scholar] [CrossRef]
- Petronczki, M.; Glotzer, M.; Kraut, N.; Peters, J.M. Polo-like kinase 1 triggers the initiation of cytokinesis in human cells by promoting recruitment of the RhoGEF Ect2 to the central spindle. Dev. Cell 2007, 12, 713–725. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Shang, Y.; Qian, Y.; Guo, Y.; Chen, S.; Lin, X.; Cao, W.; Tang, X.; Zhou, A.; Huang, S.; et al. Plk1 promotes renal tubulointerstitial fibrosis by targeting autophagy/lysosome axis. Cell Death Dis. 2023, 14, 571. [Google Scholar] [CrossRef]
- Migneault, F.; Hébert, M.J. Autophagy, tissue repair, and fibrosis: A delicate balance. Matrix Biol. 2021, 100–101, 182–196. [Google Scholar] [CrossRef]
- Ruf, S.; Heberle, A.M.; Langelaar-Makkinje, M.; Gelino, S.; Wilkinson, D.; Gerbeth, C.; Schwarz, J.J.; Holzwarth, B.; Warscheid, B.; Meisinger, C.; et al. PLK1 (polo like kinase 1) inhibits MTOR complex 1 and promotes autophagy. Autophagy 2017, 13, 486–505. [Google Scholar] [CrossRef]
- Chen, X.C.; Li, Z.H.; Yang, C.; Tang, J.X.; Lan, H.Y.; Liu, H.F. Lysosome Depletion-Triggered Autophagy Impairment in Progressive Kidney Injury. Kidney Dis. 2021, 7, 254–267. [Google Scholar] [CrossRef]
- Lin, Q.; Banu, K.; Ni, Z.; Leventhal, J.S.; Menon, M.C. Podocyte Autophagy in Homeostasis and Disease. J. Clin. Med. 2021, 10, 1184. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto-Nonaka, K.; Koike, M.; Asanuma, K.; Takagi, M.; Oliva Trejo, J.A.; Seki, T.; Hidaka, T.; Ichimura, K.; Sakai, T.; Tada, N.; et al. Cathepsin D in Podocytes Is Important in the Pathogenesis of Proteinuria and CKD. J. Am. Soc. Nephrol. 2016, 27, 2685–2700. [Google Scholar] [CrossRef]
- Sinha, S.K.; Mellody, M.; Carpio, M.B.; Damoiseaux, R.; Nicholas, S.B. Osteopontin as a Biomarker in Chronic Kidney Disease. Biomedicines 2023, 11, 1356. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.Q.; Wu, L.L.; Huang, X.R.; Yang, N.; Gilbert, R.E.; Cooper, M.E.; Johnson, R.J.; Lai, K.N.; Lan, H.Y. Osteopontin expression in progressive renal injury in remnant kidney: Role of angiotensin II. Kidney Int. 2000, 58, 1469–1480. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Sakatsume, M.; Nishi, S.; Narita, I.; Arakawa, M.; Gejyo, F. Expression, roles, receptors, and regulation of osteopontin in the kidney. Kidney Int. 2001, 60, 1645–1657. [Google Scholar] [CrossRef]
- Xie, Y.; Nishi, S.; Iguchi, S.; Imai, N.; Sakatsume, M.; Saito, A.; Ikegame, M.; Iino, N.; Shimada, H.; Ueno, M.; et al. Expression of osteopontin in gentamicin-induced acute tubular necrosis and its recovery process. Kidney Int. 2001, 59, 959–974. [Google Scholar] [CrossRef]
- Endlich, N.; Sunohara, M.; Nietfeld, W.; Wolski, E.W.; Schiwek, D.; Kränzlin, B.; Gretz, N.; Kriz, W.; Eickhoff, H.; Endlich, K. Analysis of differential gene expression in stretched podocytes: Osteopontin enhances adaptation of podocytes to mechanical stress. FASEB J. 2002, 16, 1850–1852. [Google Scholar] [CrossRef]
- Conaldi, P.G.; Bottelli, A.; Baj, A.; Serra, C.; Fiore, L.; Federico, G.; Bussolati, B.; Camussi, G. Human immunodeficiency virus-1 tat induces hyperproliferation and dysregulation of renal glomerular epithelial cells. Am. J. Pathol. 2002, 161, 53–61. [Google Scholar] [CrossRef]
- Kulak, N.A.; Pichler, G.; Paron, I.; Nagaraj, N.; Mann, M. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat. Methods 2014, 11, 319–324. [Google Scholar] [CrossRef]
- Bruderer, R.; Bernhardt, O.M.; Gandhi, T.; Miladinović, S.M.; Cheng, L.Y.; Messner, S.; Ehrenberger, T.; Zanotelli, V.; Butscheid, Y.; Escher, C.; et al. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol. Cell. Proteom. 2015, 14, 1400–1410. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Chong, J.; Li, S.; Xia, J. MetaboAnalystR 3.0: Toward an Optimized Workflow for Global Metabolomics. Metabolites 2020, 10, 186. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.Y.; Xu, H.; Gordonov, S.; Lim, M.P.; Perkins, M.H.; Ma’ayan, A. Expression2Kinases: mRNA profiling linked to multiple upstream regulatory layers. Bioinformatics 2012, 28, 105–111. [Google Scholar] [CrossRef]
- Metz, K.S.; Deoudes, E.M.; Berginski, M.E.; Jimenez-Ruiz, I.; Aksoy, B.A.; Hammerbacher, J.; Gomez, S.M.; Phanstiel, D.H. Coral: Clear and Customizable Visualization of Human Kinome Data. Cell Syst. 2018, 7, 347–350.e1. [Google Scholar] [CrossRef]
Characteristics | Values |
---|---|
Number of patients | 28 |
Age (years) | 56.04 ± 13.40 |
Gender (M/F) | 16/12 |
Time since transplantation (years) | 11.5 ± 5.68 |
Serum creatinine (mmol/L) | 1.77 ± 0.82 |
eGFR (mL/min) | 55.17 ± 20.91 |
Daily proteinuria (g/24 h) | 0.06 ± 0.11 |
Trough level EVE (ng/mL) | 2.89 ± 1.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruschi, M.; Granata, S.; Candiano, G.; Petretto, A.; Bartolucci, M.; Kajana, X.; Spinelli, S.; Verlato, A.; Provenzano, M.; Zaza, G. Proteomic Changes Induced by the Immunosuppressant Everolimus in Human Podocytes. Int. J. Mol. Sci. 2024, 25, 7336. https://doi.org/10.3390/ijms25137336
Bruschi M, Granata S, Candiano G, Petretto A, Bartolucci M, Kajana X, Spinelli S, Verlato A, Provenzano M, Zaza G. Proteomic Changes Induced by the Immunosuppressant Everolimus in Human Podocytes. International Journal of Molecular Sciences. 2024; 25(13):7336. https://doi.org/10.3390/ijms25137336
Chicago/Turabian StyleBruschi, Maurizio, Simona Granata, Giovanni Candiano, Andrea Petretto, Martina Bartolucci, Xhuliana Kajana, Sonia Spinelli, Alberto Verlato, Michele Provenzano, and Gianluigi Zaza. 2024. "Proteomic Changes Induced by the Immunosuppressant Everolimus in Human Podocytes" International Journal of Molecular Sciences 25, no. 13: 7336. https://doi.org/10.3390/ijms25137336
APA StyleBruschi, M., Granata, S., Candiano, G., Petretto, A., Bartolucci, M., Kajana, X., Spinelli, S., Verlato, A., Provenzano, M., & Zaza, G. (2024). Proteomic Changes Induced by the Immunosuppressant Everolimus in Human Podocytes. International Journal of Molecular Sciences, 25(13), 7336. https://doi.org/10.3390/ijms25137336