A New Application for Cenicriviroc, a Dual CCR2/CCR5 Antagonist, in the Treatment of Painful Diabetic Neuropathy in a Mouse Model
Abstract
:1. Introduction
2. Results
2.1. The Effect of a Single STZ Administration on Weight, Blood Glucose Level, and Pain-Related Behavior on Day 7 after STZ Injection in Male and Female Mice
2.2. The Effect of a Single STZ Administration on the mRNA Levels of CCR2 and CCR5 Ligands Measured on Day 7 after STZ Injection in Male and Female Mice
2.3. The Effect of a Single STZ Administration on the Protein Levels of CCR2 and CCR5 Ligands (CCL2, CCL5, CCL7, and CCL8) Measured on Day 7 after STZ Injection in Male and Female Mice
2.4. The Effect of a Single STZ Administration on the CCR2 and CCR5 mRNA and Protein Levels Measured on Day 7 after STZ Injection in Male and Female Mice
2.5. The Effect of a Single STZ Administration on the mRNA Levels of Opioid Receptors Measured on Day 7 after STZ Injection in Male and Female Mice
2.6. The Effect of a Single Intraperitoneal Injection of Cenicriviroc on Hypersensitivity Measured 7–8 Days after STZ Injection in Male and Female Mice
2.7. The Effect of Repeated Two Daily Intraperitoneal Injections of Cenicriviroc (CVC) on Hypersensitivity Development and the Analgesic Effect of Morphine Were Measured between 8 and 22 Days after STZ Injection in Female Mice
2.8. Effect of Repeated Two Daily Intraperitoneal Injections of Cenicriviroc (CVC) on Weight, Blood Glucose Levels, and Motor Performance in Female Mice 21–22 Days after STZ Injection
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Streptozotocin-Induced Diabetic Neuropathic Pain Model
4.3. Behavioral Tests
4.3.1. Mechanical Nociceptive Threshold—von Frey Test
4.3.2. Thermal Nociceptive Threshold—Cold Plate Test
4.3.3. Motor Performance Measurement—Rotarod Test
4.4. Pharmacological Study
4.4.1. Single i.p. Administration
4.4.2. Repeated i.p. Administration
4.5. Biochemical Tests
4.5.1. RT-qPCR
4.5.2. Western Blot
4.5.3. ELISA
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bondar, A.C.; Popa, A.R. Diabetic Neuropathy Prevalence and Its Associated Risk Factors in Two Representative Groups of Type 1 and Type 2 Diabetes Mellitus Patients from Bihor County. Mædica 2018, 13, 229–234. [Google Scholar] [CrossRef]
- Feldman, E.L.; Callaghan, B.C.; Pop-Busui, R.; Zochodne, D.W.; Wright, D.E.; Bennett, D.L.; Bril, V.; Russell, J.W.; Viswanathan, V. Diabetic Neuropathy. Nat. Rev. Dis. Primers 2019, 5, 41. [Google Scholar] [CrossRef]
- Hansen, C.S.; Määttä, L.L.; Andersen, S.T.; Charles, M.H. The Epidemiology of Diabetic Neuropathy. In Diabetic Neuropathy. Contemporary Diabetes; Humana: Cham, Switzerland, 2023; pp. 5–36. [Google Scholar] [CrossRef]
- Abbott, C.A.; Malik, R.A.; Van Ross, E.R.E.; Kulkarni, J.; Boulton, A.J.M. Prevalence and Characteristics of Painful Diabetic Neuropathy in a Large Community-Based Diabetic Population in the U.K. Diabetes Care 2011, 34, 2220–2224. [Google Scholar] [CrossRef]
- Cohen, K.; Shinkazh, N.; Frank, J.; Israel, I.; Fellner, C. Pharmacological Treatment Of Diabetic Peripheral Neuropathy. Pharm. Ther. 2015, 40, 372–388. [Google Scholar]
- Pop-Busui, R.; Boulton, A.J.M.; Feldman, E.L.; Bril, V.; Freeman, R.; Malik, R.A.; Sosenko, J.M.; Ziegler, D. Diabetic Neuropathy: A Position Statement by the American Diabetes Association. Diabetes Care 2017, 40, 136–154. [Google Scholar] [CrossRef]
- Anandhanarayanan, A.; Teh, K.; Goonoo, M.; Tesfaye, S.; Selvarajah, D. Diabetic Neuropathies. In Endotext [Internet]; MDText.com, Inc.: South Dartmouth, MA, USA, 2022. [Google Scholar]
- Zhou, J.; Ma, R.; Jin, Y.; Fang, J.; Du, J.; Shao, X.; Liang, Y.; Fang, J. Molecular Mechanisms of Opioid Tolerance: From Opioid Receptors to Inflammatory Mediators (Review). Exp. Ther. Med. 2021, 22, 1–8. [Google Scholar] [CrossRef]
- Dumas, E.O.; Pollack, G.M. Opioid Tolerance Development: A Pharmacokinetic/Pharmacodynamic Perspective. AAPS J. 2008, 10, 537–551. [Google Scholar] [CrossRef]
- Pawlik, K.; Mika, J. Targeting Members of the Chemokine Family as a Novel Approach to Treating Neuropathic Pain. Molecules 2023, 28, 5766. [Google Scholar] [CrossRef]
- Mika, J.; Zychowska, M.; Popiolek-Barczyk, K.; Rojewska, E.; Przewlocka, B. Importance of Glial Activation in Neuropathic Pain. Eur. J. Pharmacol. 2013, 716, 106–119. [Google Scholar] [CrossRef]
- Zhang, N.; Rogers, T.J.; Caterina, M.; Oppenheim, J.J. Proinflammatory Chemokines, Such as C-C Chemokine Ligand 3, Desensitize Mu-Opioid Receptors on Dorsal Root Ganglia Neurons. J. Immunol. 2004, 173, 594–599. [Google Scholar] [CrossRef]
- Eisenstein, T.K.; Chen, X.; Inan, S.; Meissler, J.J.; Tallarida, C.S.; Geller, E.B.; Rawls, S.M.; Cowan, A.; Adler, M.W. Chemokine Receptor Antagonists in Combination with Morphine as a Novel Strategy for Opioid Dose Reduction in Pain Management. Mil. Med. 2020, 185, 130–135. [Google Scholar] [CrossRef]
- Borish, L.C.; Steinke, J.W. 2. Cytokines and Chemokines. J. Allergy Clin. Immunol. 2003, 111, S460–S475. [Google Scholar] [CrossRef]
- Kwiatkowski, K.; Pawlik, K.; Ciapała, K.; Piotrowska, A.; Makuch, W.; Mika, J. Bidirectional Action of Cenicriviroc, a CCR2/CCR5 Antagonist, Results in Alleviation of Pain-Related Behaviors and Potentiation of Opioid Analgesia in Rats with Peripheral Neuropathy. Front. Immunol. 2020, 11, 615327. [Google Scholar] [CrossRef]
- Kwiatkowski, K.; Popiolek-Barczyk, K.; Piotrowska, A.; Rojewska, E.; Ciapała, K.; Makuch, W.; Mika, J. Chemokines CCL2 and CCL7, but Not CCL12, Play a Significant Role in the Development of Pain-Related Behavior and Opioid-Induced Analgesia. Cytokine 2019, 119, 202–213. [Google Scholar] [CrossRef]
- Kwiatkowski, K.; Ciapała, K.; Rojewska, E.; Makuch, W.; Mika, J. Comparison of the Beneficial Effects of RS504393, Maraviroc and Cenicriviroc on Neuropathic Pain-Related Symptoms in Rodents: Behavioral and Biochemical Analyses. Int. Immunopharmacol. 2020, 84, 106540. [Google Scholar] [CrossRef]
- Bogacka, J.; Ciapała, K.; Pawlik, K.; Dobrogowski, J.; Przeklasa-Muszynska, A.; Mika, J. Blockade of CCR4 Diminishes Hypersensitivity and Enhances Opioid Analgesia—Evidence from a Mouse Model of Diabetic Neuropathy. Neuroscience 2020, 441, 77–92. [Google Scholar] [CrossRef]
- Zychowska, M.; Rojewska, E.; Piotrowska, A.; Kreiner, G.; Nalepa, I.; Mika, J. Spinal CCL1/CCR8 Signaling Interplay as a Potential Therapeutic Target—Evidence from a Mouse Diabetic Neuropathy Model. Int. Immunopharmacol. 2017, 52, 261–271. [Google Scholar] [CrossRef]
- Zychowska, M.; Rojewska, E.; Pilat, D.; Mika, J. The Role of Some Chemokines from the CXC Subfamily in a Mouse Model of Diabetic Neuropathy. J. Diabetes Res. 2015, 2015, 750182. [Google Scholar] [CrossRef]
- Abbadie, C.; Bhangoo, S.; De Koninck, Y.; Malcangio, M.; Melik-Parsadaniantz, S.; White, F.A. Chemokines and Pain Mechanisms. Brain Res. Rev. 2009, 60, 125. [Google Scholar] [CrossRef] [PubMed]
- Abbadie, C. Chemokines, Chemokine Receptors and Pain. Trends Immunol. 2005, 26, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Kalso, E.; Edwards, J.E.; Moore, R.A.; McQuay, H.J. Opioids in Chronic Non-Cancer Pain: Systematic Review of Efficacy and Safety. Pain 2004, 112, 372–380. [Google Scholar] [CrossRef]
- Finnerup, N.B.; Sindrup, S.H.; Jensen, T.S. The Evidence for Pharmacological Treatment of Neuropathic Pain. Pain 2010, 150, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Fornasari, D. Pharmacotherapy for Neuropathic Pain: A Review. Pain Ther. 2017, 6, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Pawlik, K.; Ciapała, K.; Ciechanowska, A.; Kwiatkowski, K.; Mika, J. Pharmacological Evidence of the Important Roles of CCR1 and CCR3 and Their Endogenous Ligands CCL2/7/8 in Hypersensitivity Based on a Murine Model of Neuropathic Pain. Cells 2023, 12, 98. [Google Scholar] [CrossRef] [PubMed]
- Rojewska, E.; Zychowska, M.; Piotrowska, A.; Kreiner, G.; Nalepa, I.; Mika, J. Involvement of Macrophage Inflammatory Protein-1 Family Members in the Development of Diabetic Neuropathy and Their Contribution to Effectiveness of Morphine. Front. Immunol. 2018, 9, 494. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowski, K.; Piotrowska, A.; Rojewska, E.; Makuch, W.; Jurga, A.; Slusarczyk, J.; Trojan, E.; Basta-Kaim, A.; Mika, J. Beneficial Properties of Maraviroc on Neuropathic Pain Development and Opioid Effectiveness in Rats. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2016, 64, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Szabo, I.; Chen, X.H.; Xin, L.; Adler, M.W.; Howard, O.M.Z.; Oppenheim, J.J.; Rogers, T.J. Heterologous Desensitization of Opioid Receptors by Chemokines Inhibits Chemotaxis and Enhances the Perception of Pain. Proc. Natl. Acad. Sci. USA 2002, 99, 10276–10281. [Google Scholar] [CrossRef]
- Neves, F.; Abrantes, J.; Lopes, A.M.; Fusinatto, L.A.; Magalhães, M.J.; Van Der Loo, W.; Esteves, P.J. Evolution of CCL16 in Glires (Rodentia and Lagomorpha) Shows an Unusual Random Pseudogenization Pattern. BMC Evol. Biol. 2019, 19, 59. [Google Scholar] [CrossRef] [PubMed]
- Zlotnik, A.; Yoshie, O. The Chemokine Superfamily Revisited. Immunity 2012, 36, 705–716. [Google Scholar] [CrossRef]
- Anstee, Q.M.; Neuschwander-Tetri, B.A.; Wai-Sun Wong, V.; Abdelmalek, M.F.; Rodriguez-Araujo, G.; Landgren, H.; Park, G.S.; Bedossa, P.; Alkhouri, N.; Tacke, F.; et al. Cenicriviroc Lacked Efficacy to Treat Liver Fibrosis in Nonalcoholic Steatohepatitis: AURORA Phase III Randomized Study. Clin. Gastroenterol. Hepatol. 2024, 22, 124–134.e1. [Google Scholar] [CrossRef]
- Thompson, M.; Saag, M.; DeJesus, E.; Gathe, J.; Lalezari, J.; Landay, A.L.; Cade, J.; Enejosa, J.; Lefebvre, E.; Feinberg, J. A 48-Week Randomized Phase 2b Study Evaluating Cenicriviroc versus Efavirenz in Treatment-Naive HIV-Infected Adults with C-C Chemokine Receptor Type 5-Tropic Virus. AIDS 2016, 30, 869–878. [Google Scholar] [CrossRef]
- Castany, S.; Carcolé, M.; Leánez, S.; Pol, O. The Antinociceptive Effects of a δ-Opioid Receptor Agonist in Mice with Painful Diabetic Neuropathy: Involvement of Heme Oxygenase 1. Neurosci. Lett. 2016, 614, 49–54. [Google Scholar] [CrossRef]
- Kou, Z.-Z.; Wan, F.-P.; Bai, Y.; Li, C.-Y.; Hu, J.-C.; Zhang, G.-T.; Zhang, T.; Chen, T.; Wang, Y.-Y.; Li, H.; et al. Decreased Endomorphin-2 and μ-Opioid Receptor in the Spinal Cord Are Associated with Painful Diabetic Neuropathy. Front. Mol. Neurosci. 2016, 9, 80. [Google Scholar] [CrossRef]
- Morgado, C.; Pereira-Terra, P.; Cruz, C.D.; Tavares, I. Minocycline Completely Reverses Mechanical Hyperalgesia in Diabetic Rats through Microglia-Induced Changes in the Expression of the Potassium Chloride Co-Transporter 2 (KCC2) at the Spinal Cord. Diabetes Obes. Metab. 2011, 13, 150–159. [Google Scholar] [CrossRef]
- Pabreja, K.; Dua, K.; Sharma, S.; Padi, S.S.V.; Kulkarni, S.K. Minocycline Attenuates the Development of Diabetic Neuropathic Pain: Possible Anti-Inflammatory and Anti-Oxidant Mechanisms. Eur. J. Pharmacol. 2011, 661, 15–21. [Google Scholar] [CrossRef]
- Ali, G.; Subhan, F.; Abbas, M.; Zeb, J.; Shahid, M.; Sewell, R.D.E. A Streptozotocin-Induced Diabetic Neuropathic Pain Model for Static or Dynamic Mechanical Allodynia and Vulvodynia: Validation Using Topical and Systemic Gabapentin. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2015, 388, 1129–1140. [Google Scholar] [CrossRef]
- Zychowska, M.; Rojewska, E.; Kreiner, G.; Nalepa, I.; Przewlocka, B.; Mika, J. Minocycline Influences the Anti-Inflammatory Interleukins and Enhances the Effectiveness of Morphine under Mice Diabetic Neuropathy. J. Neuroimmunol. 2013, 262, 35–45. [Google Scholar] [CrossRef]
- Mizisin, A.P. Mechanisms of Diabetic Neuropathy: Schwann Cells. Handb. Clin. Neurol. 2014, 126, 401–428. [Google Scholar] [CrossRef]
- Yagihashi, S.; Mizukami, H.; Sugimoto, K. Mechanism of Diabetic Neuropathy: Where Are We Now and Where to Go? J. Diabetes Investig. 2011, 2, 18–32. [Google Scholar] [CrossRef]
- Kaur, M.; Misra, S.; Swarnkar, P.; Patel, P.; Das Kurmi, B.; Das Gupta, G.; Singh, A. Understanding the Role of Hyperglycemia and the Molecular Mechanism Associated with Diabetic Neuropathy and Possible Therapeutic Strategies. Biochem. Pharmacol. 2023, 215, 115723. [Google Scholar] [CrossRef]
- Neumann, S.; Doubell, T.P.; Leslie, T.; Woolf, C.J. Inflammatory Pain Hypersensitivity Mediated by Phenotypic Switch in Myelinated Primary Sensory Neurons. Nature 1996, 384, 360–364. [Google Scholar] [CrossRef]
- Safieh-Garabedian, B.; Nomikos, M.; Saadé, N. Targeting Inflammatory Components in Neuropathic Pain: The Analgesic Effect of Thymulin Related Peptide. Neurosci. Lett. 2019, 702, 61–65. [Google Scholar] [CrossRef]
- Abbadie, C.; Lindia, J.A.; Cumiskey, A.M.; Peterson, L.B.; Mudgett, J.S.; Bayne, E.K.; DeMartino, J.A.; MacIntyre, D.E.; Forrest, M.J. Impaired Neuropathic Pain Responses in Mice Lacking the Chemokine Receptor CCR2. Proc. Natl. Acad. Sci. USA 2003, 100, 7947–7952. [Google Scholar] [CrossRef]
- Simpson, J.; Rezaie, P.; Newcombe, J.; Cuzner, M.L.; Male, D.; Woodroofe, M.N. Expression of the β-Chemokine Receptors CCR2, CCR3 and CCR5 in Multiple Sclerosis Central Nervous System Tissue. J. Neuroimmunol. 2000, 108, 192–200. [Google Scholar] [CrossRef]
- Gao, Y.J.; Zhang, L.; Samad, O.A.; Suter, M.R.; Yasuhiko, K.; Xu, Z.-Z.Z.; Park, J.-Y.Y.; Lind, A.-L.L.; Ma, Q.; Ji, R.-R.R. JNK-Induced MCP-1 Production in Spinal Cord Astrocytes Contributes to Central Sensitization and Neuropathic Pain. J. Neurosci. 2009, 29, 4096–4108. [Google Scholar] [CrossRef]
- Jung, H.; Bhangoo, S.; Banisadr, G.; Freitag, C.; Ren, D.; White, F.A.; Miller, R.J. Visualization of Chemokine Receptor Activation in Transgenic Mice Reveals Peripheral Activation of CCR2 Receptors in States of Neuropathic Pain. J. Neurosci. 2009, 29, 8051–8062. [Google Scholar] [CrossRef]
- Kalliomäki, J.; Jonzon, B.; Huizar, K.; O’Malley, M.; Andersson, A.; Simpson, D.M. Evaluation of a Novel Chemokine Receptor 2 (CCR2)-Antagonist in Painful Diabetic Polyneuropathy. Scand. J. Pain 2013, 4, 77–83. [Google Scholar] [CrossRef]
- White, F.A.; Sun, J.; Waters, S.M.; Ma, C.; Ren, D.; Ripsch, M.; Steflik, J.; Cortright, D.N.; LaMotte, R.H.; Miller, R.J. Excitatory Monocyte Chemoattractant Protein-1 Signaling Is up-Regulated in Sensory Neurons after Chronic Compression of the Dorsal Root Ganglion. Proc. Natl. Acad. Sci. USA 2005, 102, 14092–14097. [Google Scholar] [CrossRef]
- Kwiatkowski, K.; Piotrowska, A.; Rojewska, E.; Makuch, W.; Mika, J. The RS504393 Influences the Level of Nociceptive Factors and Enhances Opioid Analgesic Potency in Neuropathic Rats. J. Neuroimmune Pharmacol. 2017, 12, 402–419. [Google Scholar] [CrossRef]
- Ruff, M.R.; Inan, S.; Shi, X.Q.; Meissler, J.J.; Adler, M.W.; Eisenstein, T.K.; Zhang, J. Potentiation of Morphine Antinociception and Inhibition of Diabetic Neuropathic Pain by the Multi-Chemokine Receptor Antagonist Peptide RAP-103. Life Sci. 2022, 306, 120788. [Google Scholar] [CrossRef]
- Aye-Mon, A.; Hori, K.; Kozakai, Y.; Nakagawa, T.; Hiraga, S.; Nakamura, T.; Shiraishi, Y.; Okuda, H.; Ozaki, N. CCR2 Upregulation in DRG Neurons Plays a Crucial Role in Gastric Hyperalgesia Associated with Diabetic Gastropathy. Mol. Pain 2018, 14, 1–13. [Google Scholar] [CrossRef]
- Kiguchi, N.; Ding, H.; Peters, C.M.; Kock, N.D.; Kishioka, S.; Cline, J.M.; Wagner, J.D.; Ko, M.C. Altered Expression of Glial Markers, Chemokines, and Opioid Receptors in the Spinal Cord of Type 2 Diabetic Monkeys. Biochim. Biophys. Acta 2017, 1863, 274–283. [Google Scholar] [CrossRef]
- Mine, S.; Okada, Y.; Tanikawa, T.; Kawahara, C.; Tabata, T.; Tanaka, Y. Increased Expression Levels of Monocyte CCR2 and Monocyte Chemoattractant Protein-1 in Patients with Diabetes Mellitus. Biochem. Biophys. Res. Commun. 2006, 344, 780–785. [Google Scholar] [CrossRef]
- Zlotnik, A.; Yoshie, O. Chemokines: A New Classification System and Their Role in Immunity. Immunity 2000, 12, 121–127. [Google Scholar] [CrossRef]
- Viola, A.; Luster, A.D. Chemokines and Their Receptors: Drug Targets in Immunity and Inflammation. Annu. Rev. Pharmacol. Toxicol. 2008, 48, 171–197. Available online: https://pubmed.ncbi.nlm.nih.gov/17883327/ (accessed on 20 December 2023). [CrossRef]
- Hughes, C.E.; Nibbs, R.J.B. A Guide to Chemokines and Their Receptors. FEBS J. 2018, 285, 2944–2971. [Google Scholar] [CrossRef]
- Gao, Y.J.; Ji, R.R. Chemokines, Neuronal-Glial Interactions, and Central Processing of Neuropathic Pain. Pharmacol. Ther. 2010, 126, 56–68. [Google Scholar] [CrossRef]
- Ji, R.R.; Xu, Z.Z.; Gao, Y.J. Emerging Targets in Neuroinflammation-Driven Chronic Pain. Nat. Rev. Drug Discov. 2014, 13, 533–548. [Google Scholar] [CrossRef]
- Graves, D.T.; Jiang, Y.; Valente, A.J. Regulated Expression of MCP-1 by Osteoblastic Cells in Vitro and in Vivo. Histol. Histopathol. 1999, 14, 1347–1354. [Google Scholar]
- McMillin, M.; Frampton, G.; Thompson, M.; Galindo, C.; Standeford, H.; Whittington, E.; Alpini, G.; DeMorrow, S. Neuronal CCL2 Is Upregulated during Hepatic Encephalopathy and Contributes to Microglia Activation and Neurological Decline. J. Neuroinflamm. 2014, 11, 121. [Google Scholar] [CrossRef]
- Carr, M.W.; Roth, S.J.; Luther, E.; Rose, S.S.; Springer, T.A. Monocyte Chemoattractant Protein 1 Acts as a T-Lymphocyte Chemoattractant. Proc. Natl. Acad. Sci. USA 1994, 91, 3652–3656. [Google Scholar] [CrossRef]
- Deshmane, S.L.; Kremlev, S.; Amini, S.; Sawaya, B.E. Monocyte Chemoattractant Protein-1 (MCP-1): An Overview. J. Interf. Cytokine Res. 2009, 29, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Rong, Y.; Ji, C.; Wang, Z.; Ge, X.; Wang, J.; Ye, W.; Tang, P.; Jiang, D.; Fan, J.; Yin, G.; et al. Small Extracellular Vesicles Encapsulating CCL2 from Activated Astrocytes Induce Microglial Activation and Neuronal Apoptosis after Traumatic Spinal Cord Injury. J. Neuroinflamm. 2021, 18, 196. [Google Scholar] [CrossRef] [PubMed]
- Zeboudj, L.; Sideris-Lampretsas, G.; Silva, R.; Al-Mudaris, S.; Picco, F.; Fox, S.; Chambers, D.; Malcangio, M. Silencing MiR-21-5p in Sensory Neurons Reverses Neuropathic Allodynia via Activation of TGF-β–Related Pathway in Macrophages. J. Clin. Investig. 2023, 133, e164472. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.T.; Chen, J.W. The Role of Chemokines and Chemokine Receptors in Diabetic Nephropathy. Int. J. Mol. Sci. 2020, 21, 3172. [Google Scholar] [CrossRef] [PubMed]
- Mert, T.; Sahin, E.; Yaman, S.; Sahin, M. Effects of Immune Cell-Targeted Treatments Result from the Suppression of Neuronal Oxidative Stress and Inflammation in Experimental Diabetic Rats. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2020, 393, 1293–1302. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.P.; Song, C.Y.; Yuan, Y.; Eber, A.; Rodriguez, Y.; Levitt, R.C.; Takacs, P.; Yang, Z.; Goldberg, R.; Candiotti, K.A. Diabetic Neuropathic Pain Development in Type 2 Diabetic Mouse Model and the Prophylactic and Therapeutic Effects of Coenzyme Q10. Neurobiol. Dis. 2013, 58, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Jamali, Z.; Nazari, M.; Khoramdelazad, H.; Hakimizadeh, E.; Mahmoodi, M.; Karimabad, M.N.; Hassanshahi, G.; Rezaeian, M.; Balaei, P.; Darakhshan, S.; et al. Expression of CC Chemokines CCL2, CCL5, and CCL11 Is Associated with Duration of Disease and Complications in Type-1 Diabetes: A Study on Iranian Diabetic Patients. Clin. Lab. 2013, 59, 993–1001. [Google Scholar] [CrossRef] [PubMed]
- Padmos, R.C.; Schloot, N.C.; Beyan, H.; Ruwhof, C.; Staal, F.J.T.; De Ridder, D.; Aanstoot, H.J.; Lam-Tse, W.K.; De Wit, H.; De Herder, C.; et al. Distinct Monocyte Gene-Expression Profiles in Autoimmune Diabetes. Diabetes 2008, 57, 2768–2773. [Google Scholar] [CrossRef]
- Takami, S.; Minami, M.; Katayama, T.; Nagata, I.; Namura, S.; Satoh, M. TAK-779, a Nonpeptide CC Chemokine Receptor Antagonist, Protects the Brain against Focal Cerebral Ischemia in Mice. J. Cereb. Blood Flow Metab. 2002, 22, 780–784. [Google Scholar] [CrossRef]
- Ciechanowska, A.; Popiolek-Barczyk, K.; Pawlik, K.; Ciapała, K.; Oggioni, M.; Mercurio, D.; De Simoni, M.G.; Mika, J. Changes in Macrophage Inflammatory Protein-1 (MIP-1) Family Members Expression Induced by Traumatic Brain Injury in Mice. Immunobiology 2020, 225, 151911. [Google Scholar] [CrossRef]
- Chen, J.; Guo, W.; Yin, H.; Ma, L.; Li, S.; Li, H. Investigation of the Correlation Between the Polymorphism/Expression Level of RANTES and Its Receptor CCR5 Gene Promoter and Type 2 Diabetes Mellitus. Diabetes Metab. Syndr. Obes. 2023, 16, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Blanpain, C.; Buser, R.; Power, C.A.; Edgerton, M.; Buchanan, C.; Mack, M.; Simmons, G.; Clapham, P.R.; Parmentier, M.; Proudfoot, A.E. A Chimeric MIP-1alpha/RANTES Protein Demonstrates the Use of Different Regions of the RANTES Protein to Bind and Activate Its Receptors. J. Leukoc. Biol. 2001, 69, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Brill, A.; Hershkoviz, R.; Vaday, G.G.; Chowers, Y.; Lider, O. Augmentation of RANTES-Induced Extracellular Signal-Regulated Kinase Mediated Signaling and T Cell Adhesion by Elastase-Treated Fibronectin. J. Immunol. 2001, 166, 7121–7127. [Google Scholar] [CrossRef] [PubMed]
- Marques, R.E.; Guabiraba, R.; Russo, R.C.; Teixeira, M.M. Targeting CCL5 in Inflammation. Expert Opin. Ther. Targets 2013, 17, 1439–1460. [Google Scholar] [CrossRef]
- Zeng, Z.; Lan, T.; Wei, Y.; Wei, X. CCL5/CCR5 Axis in Human Diseases and Related Treatments. Genes Dis. 2022, 9, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Maixner, D.W.; Weng, H.-R. The Role of Glycogen Synthase Kinase 3 Beta in Neuroinflammation and Pain. J. Pharm. Pharmacol. 2013, 1, 001. [Google Scholar] [CrossRef]
- Jeong, K.H.; Moon, J.Y.; Chung, J.H.; Kim, Y.H.; Lee, T.W. Significant Associations between CCL5 Gene Polymorphisms and Post-Transplantational Diabetes Mellitus in Korean Renal Allograft Recipients. Am. J. Nephrol. 2010, 32, 356–361. [Google Scholar] [CrossRef]
- Kochetova, O.V.; Avzaletdinova, D.S.; Morugova, T.V.; Mustafina, O.E. Chemokine Gene Polymorphisms Association with Increased Risk of Type 2 Diabetes Mellitus in Tatar Ethnic Group, Russia. Mol. Biol. Rep. 2019, 46, 887–896. [Google Scholar] [CrossRef]
- Alshammary, A.F.; Alshammari, A.M.; Alsobaie, S.F.; Alageel, A.A.; Ali Khan, I. Evidence from Genetic Studies among Rs2107538 Variant in the CCL5 Gene and Saudi Patients Diagnosed with Type 2 Diabetes Mellitus. Saudi J. Biol. Sci. 2023, 30, 103658. [Google Scholar] [CrossRef]
- Pan, X.; Kaminga, A.C.; Kinra, S.; Wen, S.W.; Liu, H.; Tan, X.; Liu, A. Chemokines in Type 1 Diabetes Mellitus. Front. Immunol. 2022, 12, 690082. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-S.; Rajarathnam, K.; Clark-Lewis, I.; Sykes, B.D.; Key-Sun, K.; Rajarathnam, K.; Clark-Lewis, I.; Sykes, B.D. Structural Characterization of a Monomeric Chemokine: Monocyte Chemoattractant Protein-3. FEBS Lett. 1996, 395, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Van Damme, J.; Proost, P.; Lenaerts, J.-P.; Opdenakker, G. Structural and Functional Identification of Two Human, Tumor-Derived Monocyte Chemotactic Proteins (MCP-2 and MCP-3) Belonging to the Chemokine Family. J. Exp. Med. 1992, 176, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Imai, S.; Narita, M.M.; Ikegami, D.; Yamashita, A.; Shimizu, T.; Narita, M.M.; Niikura, K.; Furuya, M.; Kobayashi, Y.; Miyashita, K.; et al. Epigenetic Transcriptional Activation of Monocyte Chemotactic Protein 3 Contributes to Long-Lasting Neuropathic Pain. Brain 2013, 136, 828–843. [Google Scholar] [CrossRef] [PubMed]
- Ke, B.; Huang, X.X.; Li, Y.; Li, L.Y.; Xu, Q.X.; Gao, Y.; Liu, Y.; Luo, J. Neuronal-Derived Ccl7 Drives Neuropathic Pain by Promoting Astrocyte Proliferation. Neuroreport 2016, 27, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Matos, M.; Park, R.; Mathis, D.; Benoist, C. Progression to Islet Destruction in a Cyclophosphamide-Induced Transgenic Model: A Microarray Overview. Diabetes 2004, 53, 2310–2321. [Google Scholar] [CrossRef] [PubMed]
- Rosa, J.S.; Mitsuhashi, M.; Oliver, S.R.; Ogura, M.; Flores, R.L.; Pontello, A.M.; Galassetti, P.R. Ex Vivo TCR-Induced Leukocyte Gene Expression of Inflammatory Mediators Is Increased in Type 1 Diabetic Patients but Not in Overweight Children. Diabetes Metab. Res. Rev. 2010, 26, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Vujosevic, S.; Micera, A.; Bini, S.; Berton, M.; Esposito, G.; Midena, E. Proteome Analysis of Retinal Glia Cells-Related Inflammatory Cytokines in the Aqueous Humour of Diabetic Patients. Acta Ophthalmol. 2016, 94, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Sun, Y.; Nie, L.; Cui, A.; Zhao, P.; Leung, W.K.; Wang, Q. Metabolic Memory: Mechanisms and Diseases. Signal Transduct. Target. Ther. 2024, 9, 38. [Google Scholar] [CrossRef]
- Copur, S.; Rossing, P.; Afsar, B.; Sag, A.A.; Siriopol, D.; Kuwabara, M.; Ortiz, A.; Kanbay, M. A Primer on Metabolic Memory: Why Existing Diabesity Treatments Fail. Clin. Kidney J. 2021, 14, 756–767. [Google Scholar] [CrossRef]
- Silvestre-Roig, C.; Braster, Q.; Wichapong, K.; Lee, E.Y.; Teulon, J.M.; Berrebeh, N.; Winter, J.; Adrover, J.M.; Santos, G.S.; Froese, A.; et al. Externalized Histone H4 Orchestrates Chronic Inflammation by Inducing Lytic Cell Death. Nature 2019, 569, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Njeim, R.; Azar, W.S.; Fares, A.H.; Azar, S.T.; Kassouf, H.K.; Eid, A.A. NETosis Contributes to the Pathogenesis of Diabetes and Its Complications. J. Mol. Endocrinol. 2020, 65, R65–R76. [Google Scholar] [CrossRef] [PubMed]
- Shafqat, A.; Abdul Rab, S.; Ammar, O.; Al Salameh, S.; Alkhudairi, A.; Kashir, J.; Alkattan, K.; Yaqinuddin, A. Emerging Role of Neutrophil Extracellular Traps in the Complications of Diabetes Mellitus. Front. Med. 2022, 9, 995993. [Google Scholar] [CrossRef] [PubMed]
- Bryk, A.H.; Prior, S.M.; Plens, K.; Konieczynska, M.; Hohendorff, J.; Malecki, M.T.; Butenas, S.; Undas, A. Predictors of Neutrophil Extracellular Traps Markers in Type 2 Diabetes Mellitus: Associations with a Prothrombotic State and Hypofibrinolysis. Cardiovasc. Diabetol. 2019, 18, 49. [Google Scholar] [CrossRef]
- Thimmappa, P.Y.; Vasishta, S.; Ganesh, K.; Nair, A.S.; Joshi, M.B. Neutrophil (Dys)Function Due to Altered Immuno-Metabolic Axis in Type 2 Diabetes: Implications in Combating Infections. Hum. Cell 2023, 36, 1265–1282. [Google Scholar] [CrossRef] [PubMed]
- Ghazisaeidi, S.; Muley, M.M.; Salter, M.W. Annual Review of Pharmacology and Toxicology Neuropathic Pain: Mechanisms, Sex Differences, and Potential Therapies for a Global Problem. Annu. Rev. Pharmacol. Toxicol. 2023, 63, 565–583. [Google Scholar] [CrossRef]
- Gutiérrez Lombana, W.; Gutiérrez Vidal, S.E. Pain and Gender Differences: A Clinical Approach. Colomb. J. Anesthesiol. 2012, 40, 207–212. [Google Scholar] [CrossRef]
- Cardinez, N.; Lovblom, L.E.; Orszag, A.; Bril, V.; Cherney, D.Z.; Perkins, B.A. Sex Differences in Neuropathy & Neuropathic Pain: A Brief Report from the Phase 2 Canadian Study of Longevity in Type 1 Diabetes. J. Diabetes Complicat. 2019, 33, 107397. [Google Scholar] [CrossRef]
- Abraham, A.; Barnett, C.; Katzberg, H.D.; Lovblom, L.E.; Perkins, B.A.; Bril, V. Sex Differences in Neuropathic Pain Intensity in Diabetes. J. Neurol. Sci. 2018, 388, 103–106. [Google Scholar] [CrossRef]
- Chowen, J.A.; Garcia-Segura, L.M. Role of Glial Cells in the Generation of Sex Differences in Neurodegenerative Diseases and Brain Aging. Mech. Ageing Dev. 2021, 196, 111473. [Google Scholar] [CrossRef]
- Acaz-Fonseca, E.; Duran, J.C.; Carrero, P.; Garcia-Segura, L.M.; Arevalo, M.A. Sex Differences in Glia Reactivity after Cortical Brain Injury. Glia 2015, 63, 1966–1981. [Google Scholar] [CrossRef] [PubMed]
- Cyr, B.; de Rivero Vaccari, J.P. Sex Differences in the Inflammatory Profile in the Brain of Young and Aged Mice. Cells 2023, 12, 1372. [Google Scholar] [CrossRef] [PubMed]
- Scotland, R.S.; Stables, M.J.; Madalli, S.; Watson, P.; Gilroy, D.W. Sex-Differences in Resident Immune Cell Phenotype Underlies More Efficient Acute Inflammatory Responses in Female Mice. Blood 2011, 118, 5918–5927. [Google Scholar] [CrossRef]
- De Angelis, F.; Vacca, V.; Tofanicchio, J.; Strimpakos, G.; Giacovazzo, G.; Pavone, F.; Coccurello, R.; Marinelli, S. Sex Differences in Neuropathy: The Paradigmatic Case of MetFormin. Int. J. Mol. Sci. 2022, 23, 14503. [Google Scholar] [CrossRef] [PubMed]
- Bajetto, A.; Bonavia, R.; Barbero, S.; Florio, T.; Schettini, G. Chemokines and Their Receptors in the Central Nervous System. Front. Neuroendocrinol. 2001, 22, 147–184. [Google Scholar] [CrossRef] [PubMed]
- White, F.A.; Jung, H.; Miller, R.J. Chemokines and the Pathophysiology of Neuropathic Pain. Proc. Natl. Acad. Sci. USA 2007, 104, 20151–20158. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska, A.; Kwiatkowski, K.; Rojewska, E.; Slusarczyk, J.; Makuch, W.; Basta-Kaim, A.; Przewlocka, B.; Mika, J. Direct and Indirect Pharmacological Modulation of CCL2/CCR2 Pathway Results in Attenuation of Neuropathic Pain—In Vivo and in Vitro Evidence. J. Neuroimmunol. 2016, 297, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Tacke, F. Cenicriviroc for the Treatment of Non-Alcoholic Steatohepatitis and Liver Fibrosis. Expert Opin. Investig. Drugs 2018, 27, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Poeta, V.M.; Massara, M.; Capucetti, A.; Bonecchi, R. Chemokines and Chemokine Receptors: New Targets for Cancer Immunotherapy. Front. Immunol. 2019, 10, 438073. [Google Scholar] [CrossRef]
- Wang, J.; Tannous, B.A.; Poznansky, M.C.; Chen, H. CXCR4 Antagonist AMD3100 (Plerixafor): From an Impurity to a Therapeutic Agent. Pharmacol. Res. 2020, 159, 105010. [Google Scholar] [CrossRef]
- Kwiatkowski, K.; Mika, J. The Importance of Chemokines in Neuropathic Pain Development and Opioid Analgesic Potency. Pharmacol. Rep. 2018, 70, 821–830. [Google Scholar] [CrossRef]
- Stein, C.; Machelska, H. Modulation of Peripheral Sensory Neurons by the Immune System: Implications for Pain Therapy. Pharmacol. Rev. 2011, 63, 860–881. [Google Scholar] [CrossRef]
- Li, L.; Chen, J.; Li, Y.Q. The Downregulation of Opioid Receptors and Neuropathic Pain. Int. J. Mol. Sci. 2023, 24, 5981. [Google Scholar] [CrossRef] [PubMed]
- Ledeboer, A.; Sloane, E.M.; Milligan, E.D.; Frank, M.G.; Mahony, J.H.; Maier, S.F.; Watkins, L.R. Minocycline Attenuates Mechanical Allodynia and Proinflammatory Cytokine Expression in Rat Models of Pain Facilitation. Pain 2005, 115, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, J.; Yu, T.; Du, D.; Jiang, W. Minocycline Can Delay the Development of Morphine Tolerance, but Cannot Reverse Existing Tolerance in the Maintenance Period of Neuropathic Pain in Rats. Clin. Exp. Pharmacol. Physiol. 2015, 42, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.M.; Guo, R.X.; Hu, F.; Chen, P.X.; Cui, Y.; Feng, J.Q.; Meng, J.L.; Mo, L.Q.; Liao, X.X.; Chen, P.X.; et al. Spinal MCP-1 Contributes to the Development of Morphine Antinociceptive Tolerance in Rats. Am. J. Med. Sci. 2012, 344, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Mika, J.; Popiolek-Barczyk, K.; Rojewska, E.; Makuch, W.; Starowicz, K.; Przewlocka, B. Delta-Opioid Receptor Analgesia Is Independent of Microglial Activation in a Rat Model of Neuropathic Pain. PLoS ONE 2014, 9, e104420. [Google Scholar] [CrossRef] [PubMed]
- Liou, J.-T.; Lee, C.-M.; Day, Y.-J. The Immune Aspect in Neuropathic Pain: Role of Chemokines. Acta Anaesthesiol. Taiwanica 2013, 51, 127–132. [Google Scholar] [CrossRef]
- Miyagi, T.; Chuang, L.F.; Doi, R.H.; Carlos, M.P.; Torres, J.V.; Chuang, R.Y. Morphine Induces Gene Expression of CCR5 in Human CEMx174 Lymphocytes. J. Biol. Chem. 2000, 275, 31305–31310. [Google Scholar] [CrossRef]
- Mummidi, S.; Ahuja, S.S.; Gonzalez, E.; Anderson, S.A.; Santiago, E.N.; Stephan, K.T.; Craig, F.E.; O’Connell, P.; Tryon, V.; Clark, R.A.; et al. Genealogy of the CCR5 Locus and Chemokine System Gene Variants Associated with Altered Rates of HIV-1 Disease Progression. Nat. Med. 1998, 4, 786–793. [Google Scholar] [CrossRef]
- Suzuki, S.; Chuang, L.F.; Yau, P.; Doi, R.H.; Chuang, R.Y. Interactions of Opioid and Chemokine Receptors: Oligomerization of Mu, Kappa, and Delta with CCR5 on Immune Cells. Exp. Cell Res. 2002, 280, 192–200. [Google Scholar] [CrossRef]
- Mika, J.; Wawrzczak-Bargiela, A.; Osikowicz, M.; Makuch, W.; Przewlocka, B. Attenuation of Morphine Tolerance by Minocycline and Pentoxifylline in Naive and Neuropathic Mice. Brain. Behav. Immun. 2009, 23, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Christensen, D.; Kayser, V. The Development of Pain-Related Behaviour and Opioid Tolerance after Neuropathy-Inducing Surgery and Sham Surgery. Pain 2000, 88, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Arnatt, C.K.; Li, G.; Haney, K.M.; Ding, D.; Jacob, J.C.; Selley, D.E.; Zhang, Y. Design and Synthesis of a Bivalent Ligand to Explore the Putative Heterodimerization of the Mu Opioid Receptor and the Chemokine Receptor CCR5. Org. Biomol. Chem. 2012, 10, 2633–2646. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Li, J.; Bot, G.; Szabo, I.; Rogers, T.J.; Liu-Chen, L.-Y. Heterodimerization and Cross-Desensitization between the Mu-Opioid Receptor and the Chemokine CCR5 Receptor. Eur. J. Pharmacol. 2004, 483, 175–186. [Google Scholar] [CrossRef]
- Kerr, B.; Hill, H.; Coda, B.; Calogero, M.; Chapman, C.R.; Hunt, E.; Buffington, V.; Mackie, A. Concentration-Related Effects of Morphine on Cognition and Motor Control in Human Subjects. Neuropsychopharmacology 1991, 5, 157–166. [Google Scholar] [PubMed]
- Jamison, R.N.; Schein, J.R.; Vallow, S.; Ascher, S.; Vorsanger, G.J.; Katz, N.P. Neuropsychological Effects of Long-Term Opioid Use in Chronic Pain Patients. J. Pain Symptom Manag. 2003, 26, 913–921. [Google Scholar] [CrossRef]
- Zimmermann, M. Ethical Guidelines for Investigations of Experimental Pain in Conscious Animals. Pain 1983, 16, 109–110. [Google Scholar] [CrossRef] [PubMed]
- Ciechanowska, A.; Rojewska, E.; Piotrowska, A.; Barut, J.; Pawlik, K.; Ciapała, K.; Kreiner, G.; Mika, J. New Insights into the Analgesic Properties of the XCL1/XCR1 and XCL1/ITGA9 Axes Modulation under Neuropathic Pain Conditions—Evidence from Animal Studies. Front. Immunol. 2022, 13, 1058204. [Google Scholar] [CrossRef]
- Lefebvre, E.; Gottwald, M.; Lasseter, K.; Chang, W.; Willett, M.; Smith, P.F.; Somasunderam, A.; Utay, N.S. Pharmacokinetics, Safety, and CCR2/CCR5 Antagonist Activity of Cenicriviroc in Participants with Mild or Moderate Hepatic Impairment. Clin. Transl. Sci. 2016, 9, 139–148. [Google Scholar] [CrossRef]
- Chomczynski, P.; Sacchi, N. Single-Step Method of RNA Isolation by Acid Guanidinium Thiocyanate-Phenol-Chloroform Extraction. Anal. Biochem. 1987, 162, 156–159. [Google Scholar] [CrossRef] [PubMed]
MALE | FEMALE | |||
---|---|---|---|---|
CTRL | STZ | CTRL | STZ | |
Oprm1 | 1 ± 0.13 | 0.59 ± 0.07 ^ | 1 ± 0.09 | 0.85 ± 0.04 |
Oprd1 | 1 ± 0.19 | 0.35 ± 0.05 ^^ | 1 ± 0.20 | 0.74 ± 0.06 |
Oprk1 | 1 ± 0.10 | 0.80 ± 0.02 | 1 ± 0.33 | 0.70 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bober, A.; Piotrowska, A.; Pawlik, K.; Ciapała, K.; Maciuszek, M.; Makuch, W.; Mika, J. A New Application for Cenicriviroc, a Dual CCR2/CCR5 Antagonist, in the Treatment of Painful Diabetic Neuropathy in a Mouse Model. Int. J. Mol. Sci. 2024, 25, 7410. https://doi.org/10.3390/ijms25137410
Bober A, Piotrowska A, Pawlik K, Ciapała K, Maciuszek M, Makuch W, Mika J. A New Application for Cenicriviroc, a Dual CCR2/CCR5 Antagonist, in the Treatment of Painful Diabetic Neuropathy in a Mouse Model. International Journal of Molecular Sciences. 2024; 25(13):7410. https://doi.org/10.3390/ijms25137410
Chicago/Turabian StyleBober, Aleksandra, Anna Piotrowska, Katarzyna Pawlik, Katarzyna Ciapała, Magdalena Maciuszek, Wioletta Makuch, and Joanna Mika. 2024. "A New Application for Cenicriviroc, a Dual CCR2/CCR5 Antagonist, in the Treatment of Painful Diabetic Neuropathy in a Mouse Model" International Journal of Molecular Sciences 25, no. 13: 7410. https://doi.org/10.3390/ijms25137410
APA StyleBober, A., Piotrowska, A., Pawlik, K., Ciapała, K., Maciuszek, M., Makuch, W., & Mika, J. (2024). A New Application for Cenicriviroc, a Dual CCR2/CCR5 Antagonist, in the Treatment of Painful Diabetic Neuropathy in a Mouse Model. International Journal of Molecular Sciences, 25(13), 7410. https://doi.org/10.3390/ijms25137410