CCR5 Δ32 and CTLA-4 +49 A/G Gene Polymorphisms and Interferon-β Treatment Response in Croatian and Slovenian Multiple Sclerosis Patients
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Filippi, M.; Bar-Or, A.; Piehl, F.; Preziosa, P.; Solari, A.; Vukusic, S.; Rocca, M.A. Multiple Sclerosis. Nat. Rev. Dis. Primers 2018, 4, 1–27. [Google Scholar] [CrossRef] [PubMed]
- EMD Serono. Rebif-[Prescribing Information]; EMD Serono: Rockland, MA, USA, 2020. [Google Scholar]
- Biogen Inc. Plegridy-[Prescribing Information]; Biogen Inc.: Cambridge, MA, USA, 2021. [Google Scholar]
- Jakimovski, D.; Kolb, C.; Ramanathan, M.; Zivadinov, R.; Weinstock-Guttman, B. Interferon β for Multiple Sclerosis. Cold Spring Harb. Perspect. Med. 2018, 8, a032003. [Google Scholar] [CrossRef] [PubMed]
- Tsareva, E.; Kulakova, O.; Boyko, A.; Favorova, O. Pharmacogenetics of Multiple Sclerosis: Personalized Therapy with Immunomodulatory Drugs. Pharmacogenet Genom. 2016, 26, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Hočevar, K.; Ristić, S.; Peterlin, B. Pharmacogenomics of Multiple Sclerosis: A Systematic Review. Front. Neurol. 2019, 10, 134. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Campos, M.I.; Pérez-Ramírez, C.; Macías-Cortés, E.; Puerta-García, E.; Sánchez-Pozo, A.; Arnal-García, C.; Barrero-Hernández, F.J.; Calleja-Hernández, M.Á.; Jiménez-Morales, A.; Cañadas-Garre, M. Pharmacogenetic Predictors of Response to Interferon Beta Therapy in Multiple Sclerosis. Mol. Neurobiol. 2021, 58, 4716–4726. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Aguilar, L.; Pérez-Ramírez, C.; Maldonado-Montoro, M.D.M.; Carrasco-Campos, M.I.; Membrive-Jiménez, C.; Martínez-Martínez, F.; García-Collado, C.; Calleja-Hernández, M.Á.; Ramírez-Tortosa, M.C.; Jiménez-Morales, A. Effect of Genetic Polymorphisms on Therapeutic Response in Multiple Sclerosis Relapsing-Remitting Patients Treated with Interferon-Beta. Mutat. Res. Rev. Mutat. Res. 2020, 785, 108322. [Google Scholar] [CrossRef]
- Szczuciński, A.; Losy, J. Chemokines and Chemokine Receptors in Multiple Sclerosis. Potential Targets for New Therapies. Acta Neurol. Scand. 2007, 115, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Uzawa, A.; Mori, M.; Hayakawa, S.; Masuda, S.; Nomura, F.; Kuwabara, S. Expression of Chemokine Receptors on Peripheral Blood Lymphocytes in Multiple Sclerosis and Neuromyelitis Optica. BMC Neurol. 2010, 10, 113. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, R.; Crisafulli, C.; Rinaldi, C.; Ruggeri, A.; Amato, A.; Sidoti, A. CCR5Δ32 Polymorphism Associated with a Slower Rate Disease Progression in a Cohort of RR-MS Sicilian Patients. Mult. Scler. Int. 2011, 2011, 153282. [Google Scholar] [CrossRef]
- Greenwald, R.J.; Oosterwegel, M.A.; van der Woude, D.; Kubal, A.; Mandelbrot, D.A.; Boussiotis, V.A.; Sharpe, A.H. CTLA-4 Regulates Cell Cycle Progression during a Primary Immune Response. Eur. J. Immunol. 2002, 32, 366–373. [Google Scholar] [CrossRef]
- Mäurer, M.; Ponath, A.; Kruse, N.; Rieckmann, P. CTLA4 Exon 1 Dimorphism Is Associated with Primary Progressive Multiple Sclerosis. J. Neuroimmunol. 2002, 131, 213–215. [Google Scholar] [CrossRef] [PubMed]
- Song, G.G.; Lee, Y.H. A Meta-Analysis of the Relation between Chemokine Receptor 5 Delta32 Polymorphism and Multiple Sclerosis Susceptibility. Immunol. Investig. 2014, 43, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, H.-X. CTLA-4 Gene and the Susceptibility of Multiple Sclerosis: An Updated Meta-Analysis Study Including 12,916 Cases and 15,455 Controls. J. Neurogenet. 2014, 28, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Barcellos, L.F.; Schito, A.M.; Rimmler, J.B.; Vittinghoff, E.; Shih, A.; Lincoln, R.; Callier, S.; Elkins, M.K.; Goodkin, D.E.; Haines, J.L.; et al. CC-Chemokine Receptor 5 Polymorphism and Age of Onset in Familial Multiple Sclerosis. Multiple Sclerosis Genetics Group. Immunogenetics 2000, 51, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Sellebjerg, F.; Madsen, H.O.; Jensen, C.V.; Jensen, J.; Garred, P. CCR5 Delta32, Matrix Metalloproteinase-9 and Disease Activity in Multiple Sclerosis. J. Neuroimmunol. 2000, 102, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Kantor, R.; Bakhanashvili, M.; Achiron, A. A Mutated CCR5 Gene May Have Favorable Prognostic Implications in MS. Neurology 2003, 61, 238–240. [Google Scholar] [CrossRef] [PubMed]
- Gade-Andavolu, R.; Comings, D.E.; MacMurray, J.; Rostamkhani, M.; Cheng, L.S.-C.; Tourtellotte, W.W.; Cone, L.A. Association of CCR5 Delta32 Deletion with Early Death in Multiple Sclerosis. Genet. Med. 2004, 6, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Heggarty, S.; Suppiah, V.; Silversides, J.; O’doherty, C.; Droogan, A.; McDonnell, G.; Hawkins, S.; Graham, C.; Vandenbroeck, K. CTLA4 Gene Polymorphisms and Multiple Sclerosis in Northern Ireland. J. Neuroimmunol. 2007, 187, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Bilińska, M.; Frydecka, I.; Noga, L.; Dobosz, T.; Zołedziewska, M.; Suwalska, K.; Tutak, A.; Pokryszko-Dragan, A. Progression of Multiple Sclerosis Is Associated with Exon 1 CTLA-4 Gene Polymorphism. Acta Neurol. Scand. 2004, 110, 67–71. [Google Scholar] [CrossRef]
- Karabon, L.; Kosmaczewska, A.; Bilinska, M.; Pawlak, E.; Ciszak, L.; Jedynak, A.; Jonkisz, A.; Noga, L.; Pokryszko-Dragan, A.; Koszewicz, M.; et al. The CTLA-4 Gene Polymorphisms Are Associated with CTLA-4 Protein Expression Levels in Multiple Sclerosis Patients and with Susceptibility to Disease. Immunology 2009, 128, e787–e796. [Google Scholar] [CrossRef]
- Karam, R.A.; Rezk, N.A.; Amer, M.M.; Fathy, H.A. Immune Response Genes Receptors Expression and Polymorphisms in Relation to Multiple Sclerosis Susceptibility and Response to INF-β Therapy. IUBMB Life 2016, 68, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Sellebjerg, F.; Kristiansen, T.B.; Wittenhagen, P.; Garred, P.; Eugen-Olsen, J.; Frederiksen, J.L.; Sørensen, T.L. Chemokine Receptor CCR5 in Interferon-Treated Multiple Sclerosis. Acta Neurol. Scand. 2007, 115, 413–418. [Google Scholar] [CrossRef]
- Kulakova, O.G.; Tsareva, E.Y.; Boyko, A.N.; Shchur, S.G.; Gusev, E.I.; Lvovs, D.; Favorov, A.V.; Vandenbroeck, K.; Favorova, O.O. Allelic Combinations of Immune-Response Genes as Possible Composite Markers of IFN-β Efficacy in Multiple Sclerosis Patients. Pharmacogenomics 2012, 13, 1689–1700. [Google Scholar] [CrossRef] [PubMed]
- Ristić, S.; Lovrecić, L.; Starcević-Cizmarević, N.; Brajenović-Milić, B.; Jazbec, S.S.; Barac-Latas, V.; Vejnović, D.; Sepcić, J.; Kapović, M.; Peterlin, B. No Association of CCR5delta32 Gene Mutation with Multiple Sclerosis in Croatian and Slovenian Patients. Mult. Scler. 2006, 12, 360–362. [Google Scholar] [CrossRef] [PubMed]
- Cizmarević, N.S.; Gašparović, I.; Peterlin, B.; Sepčić, J.; Rudolf, G.; Kapović, M.; Lavtar, P.; Ristić, S. CTLA-4 +49 A/G Gene Polymorphism in Croatian and Slovenian Multiple Sclerosis Patients. Int. J. Immunogenet. 2011, 38, 419–426. [Google Scholar] [CrossRef]
- Martinson, J.J.; Chapman, N.H.; Rees, D.C.; Liu, Y.T.; Clegg, J.B. Global Distribution of the CCR5 Gene 32-Basepair Deletion. Nat. Genet. 1997, 16, 100–103. [Google Scholar] [CrossRef]
- Bennetts, B.H.; Teutsch, S.M.; Buhler, M.M.; Heard, R.N.; Stewart, G.J. The CCR5 Deletion Mutation Fails to Protect against Multiple Sclerosis. Hum. Immunol. 1997, 58, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-W.; Hu, Y.-C.; Yang, Y.-H.; Chien, Y.-H.; Lee, N.-C.; Yu, H.-H.; Chiang, B.-L.; Wang, L.-C. CTLA-4 Gene Mutation and Multiple Sclerosis: A Case Report and Literature Review. J. Microbiol. Immunol. Infect. 2022, 55, 545–548. [Google Scholar] [CrossRef]
- Kosmaczewska, A.; Bilinska, M.; Ciszak, L.; Noga, L.; Pawlak, E.; Szteblich, A.; Podemski, R.; Frydecka, I. Different Patterns of Activation Markers Expression and CD4+ T-Cell Responses to Ex Vivo Stimulation in Patients with Clinically Quiescent Multiple Sclerosis (MS). J. Neuroimmunol. 2007, 189, 137–146. [Google Scholar] [CrossRef]
- Oliveira, E.M.L.; Bar-Or, A.; Waliszewska, A.I.; Cai, G.; Anderson, D.E.; Krieger, J.I.; Hafler, D.A. CTLA-4 Dysregulation in the Activation of Myelin Basic Protein Reactive T Cells May Distinguish Patients with Multiple Sclerosis from Healthy Controls. J. Autoimmun. 2003, 20, 71–81. [Google Scholar] [CrossRef]
- Eschborn, M.; Pawlitzki, M.; Wirth, T.; Nelke, C.; Pfeuffer, S.; Schulte-Mecklenbeck, A.; Lohmann, L.; Rolfes, L.; Pape, K.; Eveslage, M.; et al. Evaluation of Age-Dependent Immune Signatures in Patients With Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e1094. [Google Scholar] [CrossRef]
- Kuchroo, V.K.; Das, M.P.; Brown, J.A.; Ranger, A.M.; Zamvil, S.S.; Sobel, R.A.; Weiner, H.L.; Nabavi, N.; Glimcher, L.H. B7-1 and B7-2 Costimulatory Molecules Activate Differentially the Th1/Th2 Developmental Pathways: Application to Autoimmune Disease Therapy. Cell 1995, 80, 707–718. [Google Scholar] [CrossRef]
- Hallal-Longo, D.E.M.; Mirandola, S.R.; Oliveira, E.C.; Farias, A.S.; Pereira, F.G.; Metze, I.L.; Brandão, C.O.; Ruocco, H.H.; Damasceno, B.P.; Santos, L.M.B. Diminished Myelin-Specific T Cell Activation Associated with Increase in CTLA4 and Fas Molecules in Multiple Sclerosis Patients Treated with IFN-Beta. J. Interferon Cytokine Res. 2007, 27, 865–873. [Google Scholar] [CrossRef]
- Sellebjerg, F.; Krakauer, M.; Khademi, M.; Olsson, T.; Sørensen, P.S. FOXP3, CBLB and ITCH Gene Expression and Cytotoxic T Lymphocyte Antigen 4 Expression on CD4(+) CD25(High) T Cells in Multiple Sclerosis. Clin. Exp. Immunol. 2012, 170, 149–155. [Google Scholar] [CrossRef]
- Espejo, C.; Brieva, L.; Ruggiero, G.; Río, J.; Montalban, X.; Martínez-Cáceres, E.M. IFN-Beta Treatment Modulates the CD28/CTLA-4-Mediated Pathway for IL-2 Production in Patients with Relapsing-Remitting Multiple Sclerosis. Mult. Scler. 2004, 10, 630–635. [Google Scholar] [CrossRef]
- Greer, J.M.; McCombe, P.A. Role of Gender in Multiple Sclerosis: Clinical Effects and Potential Molecular Mechanisms. J. Neuroimmunol. 2011, 234, 7–18. [Google Scholar] [CrossRef]
- Tzartos, J.S.; Friese, M.A.; Craner, M.J.; Palace, J.; Newcombe, J.; Esiri, M.M.; Fugger, L. Interleukin-17 Production in Central Nervous System-Infiltrating T Cells and Glial Cells Is Associated with Active Disease in Multiple Sclerosis. Am. J. Pathol. 2008, 172, 146–155. [Google Scholar] [CrossRef]
- Contasta, I.; Totaro, R.; Pellegrini, P.; Del Beato, T.; Carolei, A.; Berghella, A.M. A Gender-Related Action of IFNbeta-Therapy Was Found in Multiple Sclerosis. J. Transl. Med. 2012, 10, 223. [Google Scholar] [CrossRef]
- Golden, L.C.; Voskuhl, R. The Importance of Studying Sex Differences in Disease: The Example of Multiple Sclerosis. J. Neurosci. Res. 2017, 95, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Clarelli, F.; Liberatore, G.; Sorosina, M.; Osiceanu, A.M.; Esposito, F.; Mascia, E.; Santoro, S.; Pavan, G.; Colombo, B.; Moiola, L.; et al. Pharmacogenetic Study of Long-Term Response to Interferon-β Treatment in Multiple Sclerosis. Pharmacogenomics J. 2017, 17, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of Multiple Sclerosis: 2017 Revisions of the McDonald Criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Río, J.; Nos, C.; Tintoré, M.; Téllez, N.; Galán, I.; Pelayo, R.; Comabella, M.; Montalban, X. Defining the Response to Interferon-Beta in Relapsing-Remitting Multiple Sclerosis Patients. Ann. Neurol. 2006, 59, 344–352. [Google Scholar] [CrossRef]
- Suppiah, V.; Alloza, I.; Heggarty, S.; Goris, A.; Dubois, B.; Carton, H.; Vandenbroeck, K. The CTLA4 +49 A/G*G-CT60*G Haplotype Is Associated with Susceptibility to Multiple Sclerosis in Flanders. J. Neuroimmunol. 2005, 164, 148–153. [Google Scholar] [CrossRef] [PubMed]
Males (n = 65) | Females (n = 230) | Total (n = 295) | |||||||
---|---|---|---|---|---|---|---|---|---|
Clinical Data | Responders (n = 40) | Non- Responders (n = 25) | p | Responders (n = 133) | Non- Responders (n = 97) | p | Responders (n = 173) | Non- Responders (n = 122) | p |
Age at onset, years * | 29.2 ± 6.9 | 28.4 ± 7.6 | 0.662 | 28.8 ± 7.8 | 26.9 ± 8.3 | 0.098 | 28.9 ± 7.6 | 27.2 ± 8.2 | 0.083 |
No. of relapses in previous 2 years * | 1.6 ± 1.0 (1–5) | 1.8 ± 1.1 (1–4) | 0.559 | 1.8 ± 1.2 (1–7) | 2.1 ± 1.2 (1–6) | 0.074 | 1.7 ± 1.1 (1–7) | 2.0 ± 1.2 (1–6) | 0.051 |
EDSS at baseline * | 2.7 ± 1.6 (1–6.5) | 2.1 ± 2.2 (1–7.5) | 0.355 | 2.8 ± 1.6 (0.5–7) | 3.0 ± 1.3 (1–5.5) | 0.349 | 2.8 ± 1.6 (0.5–7) | 2.9 ± 1.5 (1–7.5) | 0.623 |
EDSS at study endpoint * | 2.0 ± 1.0 (1–4) | 3.1 ± 2.8 (1–7.5) | 0.156 | 2.7 ± 1.7 (0.5–6.5) | 4.0 ± 1.5 (1–7) | 0.0001 | 2.5 ± 1.6 (1–6.5) | 3.9 ± 1.7 (1–7.5) | 0.0001 |
Males (n = 65) | Females (n = 230) | Total (n = 295) | |||||||
---|---|---|---|---|---|---|---|---|---|
Genotype/Allele * | IFN-β R (n = 40) | IFN-β NR (n = 25) | p | IFN-β R (n = 133) | IFN-β NR (n = 97) | p | IFN-β R (n = 173) | IFN-β NR (n = 122) | p |
CCR5 Δ32 | |||||||||
Codominant model | |||||||||
wtwt | 35 (87.5) | 23 (92.0) | 0.488 | 115 (86.5) | 87 (89.7) | 0.580 | 150 (86.7) | 110 (90.2) | 0.517 |
wtΔ32 | 5 (12.5) | 2 (8.0) | 17 (12.8) | 10 (10.3) | 22 (12.7) | 12 (9.8) | |||
Δ32Δ32 | 0 | 0 | 1 (0.7) | 0 | 1 (0.6) | 0 (0.0) | |||
Dominant model | |||||||||
wtΔ32 + Δ32Δ32 | 5 (12.5) | 2 (8.0) | 0.448 | 18 (13.5) | 10 (10.3) | 0.460 | 23 (13.3) | 12 (9.8) | 0.366 |
Recessive model | |||||||||
wtΔ32 + wtwt | 40 (100.0) | 25 (100.0) | - | 132 (99.3) | 97 (100.0) | 0.578 | 172 (99.4) | 122 (100.0) | 0.586 |
Overdominant model | |||||||||
wtwt + Δ32Δ32 | 35 (12.5) | 23 (8.0) | 0.448 | 116 (87.2) | 87 (89.7) | 0.359 | 151 (87.3) | 110 (90.2) | 0.284 |
wt | 93.8 | 96.0 | 0.451 | 92.9 | 94.8 | 0.392 | 93.1 | 95.1 | 0.313 |
Δ32 | 6.2 | 4.0 | 7.1 | 5.2 | 6.9 | 4.9 | |||
CTLA-4 +49 A/G | |||||||||
Codominant model | |||||||||
AA | 16 (40.0) | 12 (48.0) | 0.655 | 56 (42.1) | 28 (28.9) | 0.114 | 72 (41.6) | 40 (32.8) | 0.273 |
AG | 18 (45.0) | 11 (44.0) | 54 (40.6) | 50 (51.5) | 72 (41.6) | 61 (50.0) | |||
GG | 6 (15.0) | 2 (8.0) | 23 (17.3) | 19 (19.6) | 29 (16.8) | 21 (17.2) | |||
Dominant model | |||||||||
AG + GG | 24 (60.0) | 13 (52.0) | 0.583 | 77 (57.9) | 69 (71.1) | 0.039 | 101 (58.4) | 82 (67.2) | 0.123 |
Recessive model | |||||||||
AG + AA | 34 (85.0) | 23 (92.0) | 0.336 | 110 (82.7) | 78 (80.4) | 0.656 | 144 (83.2) | 101(82.8) | 0.920 |
Overdominant model | |||||||||
AA + GG | 22 (55.0) | 14 (56.0) | 0.937 | 79 (59.4) | 47 (48.5) | 0.100 | 101 (58.4) | 61 (50.0) | 0.154 |
A | 62.5 | 68.0 | 0.382 | 62.2 | 54.9 | 0.094 | 62.2 | 57.8 | 0.256 |
G | 37.8 | 32.0 | 37.8 | 45.1 | 37.8 | 42.2 | |||
CCR5 Δ32/CTLA4 +49 A/G | |||||||||
wtwt/AA | 14 (35.0) | 12 (48.0) | 0.546 | 49 (36.8) | 27 (27.8) | 0.118 | 63 (36.4) | 39 (32.0) | 0.146 |
wtΔ32/AA | 2 (5.0) | 0 (0.0) | 7 (5.3) | 1 (1.0) | 9 (5.2) | 1 (0.8) | |||
wtwt/G+ | 21 (52.5) | 11 (44.0) | 66 (49.6) | 60 (61.9) | 87 (50.3) | 71 (58.2) | |||
wtΔ32/G+ | 3 (7.5) | 2 (8.0) | 11 (8.3) | 9 (9.3) | 14 (8.1) | 11 (9.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nekić, J.; Stanković Matić, I.; Rački, V.; Janko Labinac, D.; Vuletić, V.; Kapović, M.; Ristić, S.; Peterlin, B.; Starčević Čizmarević, N. CCR5 Δ32 and CTLA-4 +49 A/G Gene Polymorphisms and Interferon-β Treatment Response in Croatian and Slovenian Multiple Sclerosis Patients. Int. J. Mol. Sci. 2024, 25, 7412. https://doi.org/10.3390/ijms25137412
Nekić J, Stanković Matić I, Rački V, Janko Labinac D, Vuletić V, Kapović M, Ristić S, Peterlin B, Starčević Čizmarević N. CCR5 Δ32 and CTLA-4 +49 A/G Gene Polymorphisms and Interferon-β Treatment Response in Croatian and Slovenian Multiple Sclerosis Patients. International Journal of Molecular Sciences. 2024; 25(13):7412. https://doi.org/10.3390/ijms25137412
Chicago/Turabian StyleNekić, Jasna, Ivana Stanković Matić, Valentino Rački, Dolores Janko Labinac, Vladimira Vuletić, Miljenko Kapović, Smiljana Ristić, Borut Peterlin, and Nada Starčević Čizmarević. 2024. "CCR5 Δ32 and CTLA-4 +49 A/G Gene Polymorphisms and Interferon-β Treatment Response in Croatian and Slovenian Multiple Sclerosis Patients" International Journal of Molecular Sciences 25, no. 13: 7412. https://doi.org/10.3390/ijms25137412
APA StyleNekić, J., Stanković Matić, I., Rački, V., Janko Labinac, D., Vuletić, V., Kapović, M., Ristić, S., Peterlin, B., & Starčević Čizmarević, N. (2024). CCR5 Δ32 and CTLA-4 +49 A/G Gene Polymorphisms and Interferon-β Treatment Response in Croatian and Slovenian Multiple Sclerosis Patients. International Journal of Molecular Sciences, 25(13), 7412. https://doi.org/10.3390/ijms25137412