Nematode Galectin Inhibits Basophilic Leukaemia RBL-2H3 Cells Apoptosis in IgE-Mediated Activation
Abstract
:1. Introduction
2. Results
2.1. Tci-Gal-1 Influences Expression of Genes Encoding Proteins Related to Apoptosis
2.2. Tci-Gal-1 Inhibits Apoptosis of Activated RBL-2H3 Cells
2.3. Tci-Gal-1 Inhibits Degranulation of Activated RBL-2H3 Cells
2.4. Tci-Gal-1 Inhibits Expression of Molecules Involved in Apoptosis Induction by RBL-2H3 Cells
2.5. Tci-Gal-1 Modulates Production of Cytokines Related to Mast Cell Activation
3. Discussion
4. Materials and Methods
4.1. Expression and Purification of Recombinant Tci-Ga1-1
4.2. RBL-2H3 Cell Culture and Tci-Gal-1 Stimulation
4.3. Apoptosis Assay
4.4. Degranulation Assay
4.5. Antibody Array
4.6. ELISA
4.7. Gene Expression Microarray
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stear, M.J.; Bishop, S.C.; Doligalska, M.; Duncan, J.L.; Holmes, P.H.; Irvine, J.; Mccririe, L.; Mckellar, Q.A.; Sinski, E.; Murray, M. Regulation of Egg Production, Worm Burden, Worm Length and Worm Fecundity by Host Responses in Sheep Infected with Ostertagia Circumcincta. Parasite Immunol. 1995, 17, 643–652. [Google Scholar] [CrossRef]
- Dahlin, J.S.; Maurer, M.; Metcalfe, D.D.; Pejler, G.; Sagi-Eisenberg, R.; Nilsson, G. The Ingenious Mast Cell: Contemporary Insights into Mast Cell Behavior and Function. Allergy 2021, 77, 83–99. [Google Scholar] [CrossRef] [PubMed]
- Urb, M.; Sheppard, D.C. The Role of Mast Cells in the Defence against Pathogens. PLoS Pathog. 2012, 8, e1002619. [Google Scholar] [CrossRef] [PubMed]
- Charlier, J.; Rinaldi, L.; Musella, V.; Ploeger, H.W.; Chartier, C.; Vineer, H.R.; Hinney, B.; von Samson-Himmelstjerna, G.; Băcescu, B.; Mickiewicz, M.; et al. Initial Assessment of the Economic Burden of Major Parasitic Helminth Infections to the Ruminant Livestock Industry in Europe. Prev. Vet. Med. 2020, 182, 105103. [Google Scholar] [CrossRef] [PubMed]
- Sangster, N.C.; Cowling, A.; Woodgate, R.G. Ten Events That Defined Anthelmintic Resistance Research. Trends Parasitol. 2018, 34, 553–563. [Google Scholar] [CrossRef]
- Donskow-Łysoniewska, K.; Maruszewska-Cheruiyot, M.; Stear, M. The Interaction of Host and Nematode Galectins Influences the Outcome of Gastrointestinal Nematode Infections. Parasitology 2021, 148, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.-T.; Stowell, S.R. The Role of Galectins in Immunity and Infection. Nat. Rev. Immunol. 2023, 23, 479–494. [Google Scholar] [CrossRef] [PubMed]
- Athanasiadou, S.; Huntley, J.F. Emerging Technologies and Their Applications in Interactions between Nutrition and Immunity to Gastrointestinal Parasites in Sheep. Parasite Immunol. 2008, 30, 101–111. [Google Scholar] [CrossRef]
- Shi, W.; Xue, C.; Su, X.; Lu, F. The Roles of Galectins in Parasitic Infections. Acta Trop. 2018, 177, 97–104. [Google Scholar] [CrossRef]
- Shi, X.; Xiao, M.; Xie, Z.; Shi, Q.; Zhang, Y.; Leavenworth, J.W.; Yan, B.; Huang, H. Angiostrongylus Cantonensis Galectin-1 Interacts with Annexin A2 to Impair the Viability of Macrophages via Activating JNK Pathway. Parasites Vectors 2020, 13, 183. [Google Scholar] [CrossRef]
- Craig, H.; Wastling, J.M.; Knox, D.P. A Preliminary Proteomic Survey of The in Vitro excretory/Secretory Products of Fourth-Stage Larval and adult Teladorsagia Circumcincta. Parasitology 2006, 132, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Seldin, D.C.; Adelman, S.; Austen, K.F.; Stevens, R.L.; Hein, A.; Caulfield, J.P.; Woodbury, R.G. Homology of the rat basophilic leukemia cell and the rat mucosal mast cell. Proc. Natl. Acad. Sci. USA 1985, 82, 3871–3875. [Google Scholar] [CrossRef]
- Donskow-Łysoniewska, K.; Maruszewska-Cheruiyot, M.; Krawczak-Wójcik, K.; Gonzalez, J.F.; Hernández, J.N.; Stear, M.J. Nematode Galectin Binds IgE and Modulates Mast Cell Activity. Veterinary Parasitology 2022, 311, 109807. [Google Scholar] [CrossRef]
- Bosurgi, L.; Rothlin, C.V. Management of Cell Death in Parasitic Infections. Semin. Immunopathol. 2021, 43, 481–492. [Google Scholar] [CrossRef]
- Donskow-Łysoniewska, K.; Brodaczewska, K.; Doligalska, M. Heligmosomoides Polygyrus antigens Inhibit the Intrinsic Pathway of Apoptosis by Overexpression of Survivin and Bcl-2 Protein in CD4 T Cells. Prion 2013, 7, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, W.; Brenz, Y.; Kingsley, M.T.; Ajonina-Ekoti, I.; Brattig, N.W.; Liebau, E.; Breloer, M. Nematode-Derived Proteins Suppress Proliferation and Cytokine Production of Antigen-Specific T Cells via Induction of Cell Death. PLoS ONE 2013, 8, e68380. [Google Scholar] [CrossRef]
- Cliffe, L.J.; Potten, C.S.; Booth, C.E.; Grencis, R.K. An Increase in Epithelial Cell Apoptosis Is Associated with Chronic Intestinal Nematode Infection. Infect. Immun. 2007, 75, 1556–1564. [Google Scholar] [CrossRef] [PubMed]
- Sturm, A.; Lensch, M.; André, S.; Kaltner, H.; Wiedenmann, B.; Rosewicz, S.; Dignass, A.U.; Gabius, H.-J. Human Galectin-2: Novel Inducer of T Cell Apoptosis with Distinct Profile of Caspase Activation. J. Immunol. 2004, 173, 3825–3837. [Google Scholar] [CrossRef]
- Zhu, C.; Anderson, A.C.; Schubart, A.; Xiong, H.; Imitola, J.; Khoury, S.J.; Zheng, X.X.; Strom, T.B.; Kuchroo, V.K. The Tim-3 Ligand Galectin-9 Negatively Regulates T Helper Type 1 Immunity. Nat. Immunol. 2005, 6, 1245–1252. [Google Scholar] [CrossRef]
- Toscano, M.A.; Bianco, G.A.; Ilarregui, J.M.; Croci, D.O.; Correale, J.; Hernandez, J.D.; Zwirner, N.W.; Poirier, F.; Riley, E.M.; Baum, L.G.; et al. Differential Glycosylation of TH1, TH2 and TH-17 Effector Cells Selectively Regulates Susceptibility to Cell Death. Nat. Immunol. 2007, 8, 825–834. [Google Scholar] [CrossRef]
- Pardo, E.; Cárcamo, C.; Uribe-San Martín, R.; Ciampi, E.; Segovia-Miranda, F.; Curkovic-Peña, C.; Montecino, F.; Holmes, C.; Tichauer, J.E.; Acuña, E.; et al. Galectin-8 as an Immunosuppressor in Experimental Autoimmune Encephalomyelitis and a Target of Human Early Prognostic Antibodies in Multiple Sclerosis. PLoS ONE 2017, 12, e0177472. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.Y.; Hsu, D.K.; Liu, F.T. Expression of Galectin-3 Modulates T-Cell Growth and Apoptosis. Proc. Natl. Acad. Sci. USA 1996, 93, 6737–6742. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Inoue, T.; Yoshimaru, T.; Ra, C. Galectin-3 but Not Galectin-1 Induces Mast Cell Death by Oxidative Stress and Mitochondrial Permeability Transition. Biochim. Et Biophys. Acta (BBA)–Mol. Cell Res. 2008, 1783, 924–934. [Google Scholar] [CrossRef] [PubMed]
- Nagata, S. Fas ligand-induced apoptosis. Annu. Rev. Genet. 1999, 33, 29–55. [Google Scholar] [CrossRef] [PubMed]
- Di Christine Oliveira, Y.L.; de Oliveira, Y.L.M.; Cirilo, T.M.; Fujiwara, R.T.; Bueno, L.L.; Dolabella, S.S. Inflammatory Profile of Th9 Cells and Their Protective Potential in Helminth Infections. Immuno 2023, 3, 228–236. [Google Scholar] [CrossRef]
- Polukort, S.H.; Rovatti, J.; Carlson, L.; Thompson, C.; Ser-Dolansky, J.; Kinney, S.R.M.; Schneider, S.S.; Mathias, C.B. IL-10 Enhances IgE-Mediated Mast Cell Responses and Is Essential for the Development of Experimental Food Allergy in IL-10–Deficient Mice. J. Immunol. 2016, 196, 4865–4876. [Google Scholar] [CrossRef]
- Corren, J. Anti-Interleukin-13 Antibody Therapy for Asthma: One Step Closer. Eur. Respir. J. 2013, 41, 255–256. [Google Scholar] [CrossRef] [PubMed]
- Rath, P.C.; Aggarwal, B.B. TNF-induced signaling in apoptosis. J. Clin. Immunol. 1999, 19, 350–364. [Google Scholar] [CrossRef]
- Redpath, S.A.; Fonseca, N.M.; Perona-Wright, G. Protection and Pathology during Parasite Infection: IL-10 Strikes the Balance. Parasite Immunol. 2014, 36, 233–252. [Google Scholar] [CrossRef]
- Xia, H.Z.; Du, Z.; Craig, S.; Klisch, G.; Noben-Trauth, N.; Kochan, J.P.; Huff, T.H.; Irani, A.M.; Schwartz, L.B. Effect of Recombinant Human IL-4 on Tryptase, Chymase, and Fc Epsilon Receptor Type I Expression in Recombinant Human Stem Cell Factor-Dependent Fetal Liver-Derived Human Mast Cells. J. Immunol. 1997, 159, 2911–2921. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Sharma, B.B.; Yu, L.; Zuberi, R.; Weng, I.-C.; Kawakami, Y.; Kawakami, T.; Hsu, D.K.; Liu, F.-T. Role of Galectin-3 in Mast Cell Functions: Galectin-3-Deficient Mast Cells Exhibit Impaired Mediator Release and Defective JNK Expression. J. Immunol. 2006, 177, 4991–4997. [Google Scholar] [CrossRef] [PubMed]
- Gulliksson, M.; Carvalho, R.F.S.; Ullerås, E.; Nilsson, G. Mast Cell Survival and Mediator Secretion in Response to Hypoxia. PLoS ONE 2010, 5, e12360. [Google Scholar] [CrossRef] [PubMed]
- Gerke, V.; Creutz, C.E.; Moss, S.E. Annexins: Linking Ca2+ Signalling to Membrane Dynamics. Nat. Rev. Mol. Cell Biol. 2005, 6, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, S.; Kreft, S.; Etich, J.; Frie, C.; Stermann, J.; Grskovic, I.; Frey, B.; Mielenz, D.; Pöschl, E.; Gaipl, U.; et al. Identification of Novel Binding Partners (Annexins) for the Cell Death Signal Phosphatidylserine and Definition of Their Recognition Motif. J. Biol. Chem. 2011, 286, 5708–5716. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Rubin, B.P. Apoptosis-Associated Tyrosine Kinase 1 Inhibits Growth and Migration and Promotes Apoptosis in Melanoma. Lab. Investig. 2014, 94, 430–438. [Google Scholar] [CrossRef] [PubMed]
Gene | Description | Regulation | Fold Change | Adjusted p-Value |
---|---|---|---|---|
Aatk | apoptosis-associated tyrosine kinase | down | 2.2 | 0.0117 |
Anxa13 | annexin A13 | down | 5.4 | 0.0498 |
Baiap2l1 | BAI1-associated protein 2-like 1 | up | 6.2 | 0.0348 |
Tsc1 | TSC complex subunit 1 (Tsc1) | down | 2.2 | 0.049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maruszewska-Cheruiyot, M.; Szewczak, L.; Krawczak-Wójcik, K.; Stear, M.J.; Donskow-Łysoniewska, K. Nematode Galectin Inhibits Basophilic Leukaemia RBL-2H3 Cells Apoptosis in IgE-Mediated Activation. Int. J. Mol. Sci. 2024, 25, 7419. https://doi.org/10.3390/ijms25137419
Maruszewska-Cheruiyot M, Szewczak L, Krawczak-Wójcik K, Stear MJ, Donskow-Łysoniewska K. Nematode Galectin Inhibits Basophilic Leukaemia RBL-2H3 Cells Apoptosis in IgE-Mediated Activation. International Journal of Molecular Sciences. 2024; 25(13):7419. https://doi.org/10.3390/ijms25137419
Chicago/Turabian StyleMaruszewska-Cheruiyot, Marta, Ludmiła Szewczak, Katarzyna Krawczak-Wójcik, Michael James Stear, and Katarzyna Donskow-Łysoniewska. 2024. "Nematode Galectin Inhibits Basophilic Leukaemia RBL-2H3 Cells Apoptosis in IgE-Mediated Activation" International Journal of Molecular Sciences 25, no. 13: 7419. https://doi.org/10.3390/ijms25137419
APA StyleMaruszewska-Cheruiyot, M., Szewczak, L., Krawczak-Wójcik, K., Stear, M. J., & Donskow-Łysoniewska, K. (2024). Nematode Galectin Inhibits Basophilic Leukaemia RBL-2H3 Cells Apoptosis in IgE-Mediated Activation. International Journal of Molecular Sciences, 25(13), 7419. https://doi.org/10.3390/ijms25137419