Analytical Post-Embedding Immunogold–Electron Microscopy with Direct Gold-Labelled Monoclonal Primary Antibodies against RIBEYE A- and B-Domain Suggests a Refined Model of Synaptic Ribbon Assembly
Abstract
:1. Introduction
2. Results
3. Discussion
Limitations of the Study and Outlook
4. Materials and Methods
4.1. Materials
Mice
4.2. Primary Antibodies
RIBEYE Primary Antibodies
4.3. Methods
4.3.1. Affinity-Purification of Mouse Monoclonal Antibodies from (NH4)2SO4-Precipitated Cell Culture Supernatant
4.3.2. Coupling of Affinity-Purified Monoclonal RIBEYE Antibodies to 5 nm Colloidal Gold
4.3.3. Processing of Retinas for Post-Embedding Immunogold Electron Microscopy
4.3.4. Post-Embedding Immunogold Electron Microscopy with Directly Labelled Primary Antibodies
4.3.5. Conventional, Indirect Post-Embedding Immunogold Electron Microscopy
4.3.6. Topographical Analysis of Ribbon-Bound Immunogold Particles on the TEM Images of Photoreceptor Synaptic Ribbons
- d1 = minimal distance from the midline to the gold particle.
- d2 = minimal distance from the gold particle to the outer border of the ribbon.
- di = inner relative distance to the midline of the synaptic ribbon.
- d1 = minimal distance from the midline to the gold particle.
- d2 = minimal distance from the gold particle to the outer border of the ribbon.
- do = outer relative distance with reference to the midline of the synaptic ribbon.
4.4. Statistical Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sterling, P.; Matthews, G. Structure and function of ribbon synapses. Trends Neurosci. 2005, 28, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Matthews, G.; Fuchs, P. The diverse roles of ribbon synapses in sensory neurotransmission. Nat. Rev. Neurosci. 2010, 11, 812–822. [Google Scholar] [CrossRef]
- Moser, T.; Grabner, C.P.; Schmitz, F. Sensory Processing at Ribbon Synapses in the Retina and the Cochlea. Physiol. Rev. 2020, 100, 103–144. [Google Scholar] [CrossRef] [PubMed]
- Zenisek, D.; Steyer, J.A.; Almers, W. Transport, capture and exocytosis of single vesicles at active zones. Nature 2000, 406, 849–854. [Google Scholar] [CrossRef] [PubMed]
- Vaithianathan, T.; Matthews, G. Visualizing synaptic vesicle turnover and pool refilling driven by calcium nanodomains at presynaptic active zones of ribbon synapses. Proc. Natl. Acad. Sci. USA 2014, 111, 8655–8660. [Google Scholar] [CrossRef] [PubMed]
- Vaithianathan, T.; Wollmuth, L.P.; Henry, D.; Zenisek, D.; Matthews, G. Tracking newly released synaptic vesicle proteins at ribbon active zones. iScience 2019, 17, 10–23. [Google Scholar] [CrossRef]
- Schmitz, F.; Königstorfer, A.; Südhof, T.C. RIBEYE, a component of synaptic ribbons: A protein’s journey through evolution provides insight into synaptic ribbon function. Neuron 2000, 28, 857–872. [Google Scholar] [CrossRef] [PubMed]
- Zenisek, D.; Horst, N.K.; Merrifield, C.; Sterling, P.; Matthews, G. Visualizing synaptic ribbons in the living cell. J. Neurosci. 2004, 24, 9752–9759. [Google Scholar] [CrossRef] [PubMed]
- Maxeiner, S.; Luo, F.; Tan, A.; Schmitz, F.; Südhof, T.C. How to make a synaptic ribbon: RIBEYE deletion abolishes ribbons in retinal synapses and disrupts neurotransmitter release. EMBO J. 2016, 35, 1098–1114. [Google Scholar] [CrossRef]
- Piatigorsky, J. Dual use of the transcriptional repressor (CtBP2)/ribbon synapse (RIBEYE) gene: How prevalent are multifunctional genes? Trends Neurosci. 2001, 24, 555–557. [Google Scholar] [CrossRef]
- Chinnadurai, G. CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol. Cell 2002, 9, 213–224. [Google Scholar] [CrossRef]
- Goldberg, J.D.; Yoshida, T.; Brick, P. crystal structure of a NAD-dependent D-glycerate dehydrogenase at 2.4A resolution. J. Mol. Biol. 1994, 236, 1123–1140. [Google Scholar] [CrossRef]
- Jean, P.; de la Morena, D.L.; Michanski, S.; Jaime Tobon, L.M.; Chakrabarti, R.; Picher, M.M.; Neef, J.; Jung, S.Y.; Gültas, M.; Maxeiner, S.; et al. The synaptic ribbon is critical for sound encoding at high rates and with temporal precision. eLife 2018, 7, 29275. [Google Scholar] [CrossRef]
- Becker, L.; Schnee, M.E.; Niwa, M.; Sun, W.; Maxeiner, S.; Talaei, S.; Kachar, B.; Rutherford, M.A.; Ricci, A.J. The presynaptic ribbon maintains vesicle populations at the hair cell afferent fiber synapse. eLife 2018, 7, 30241. [Google Scholar] [CrossRef]
- Shankhwar, S.; Schwarz, K.; Katiyar, R.; Jung, M.; Maxeiner, S.; Südhof, T.C.; Schmitz, F. RIBEYE B-domain is essential for RIBEYE A-domain stability and assembly of synaptic ribbons. Front. Mol. Neurosci. 2022, 15, 838311. [Google Scholar] [CrossRef]
- Mesnard, C.S.; Barta, C.L.; Sladek, A.L.; Zenisek, D.; Thoreson, W.B. Eliminating synaptic ribbons from rods and cones halves the releasable vesicle pool and slows down replenishment. Int. J. Mol. Sci. 2022, 23, 6429. [Google Scholar] [CrossRef]
- Magupalli, V.G.; Schwarz, K.; Alpadi, K.; Natarajan, S.; Seigel, G.M.; Schmitz, F. Multiple RIBEYE-RIBEYE interactions create a dynamic scaffold for the formation of synaptic ribbons. J. Neurosci. 2008, 28, 7954–7967. [Google Scholar] [CrossRef]
- Sjöstrand, F.S. Ultrastructure of retinal rod synapses of the guinea pig eye as revealed by three-dimensional reconstructions from serial sections. J. Ultrastruct. Res. 1958, 2, 122–170. [Google Scholar] [CrossRef]
- Dembla, M.; Kesharwani, A.; Natarajan, S.; Fecher-Trost, C.; Fairless, R.; Williams, S.K.; Flockerzi, V.; Diem, R.; Schwarz, K.; Schmitz, F. Early auto-immune targeting of photoreceptor ribbon synapses in mouse models of multiple sclerosis. EMBO Mol. Med. 2018, 10, e8926. [Google Scholar] [CrossRef] [PubMed]
- Clothia, C.; Lesk, A.M. Canonical structures for the hypervariable regions of immunoglobulins. J. Mol. Biol. 1987, 196, 901–917. [Google Scholar]
- North, B.; Lehmann, A.; Dunbrack, R.L. A new clustering of antibody CDR loo conformations. J. Mol. Biol. 2011, 406, 228–256. [Google Scholar] [CrossRef]
- Dunbar, J.; Krawczyk, K.; Leem, J.; Baker, T.; Fuchs, A.; Georges, G.; Shi, J.; Deane, C.M. SAbDab: The structural antibody database. Nucleic Acids Res. 2014, 42, D1140–D1146. [Google Scholar] [CrossRef]
- Schneider, C.; Raybould, M.I.J.; Deane, C.M. SAbDab in the age of biotherapeutics: Updates including SAbDab-nano, the nanobody structure tracker. Nucleic Acids Res. 2022, 50, D1368–D1372. [Google Scholar] [CrossRef]
- Miller, N.L.; Clark, T.; Raman, R.; Sasisekharan, R. Learned features of antibody-antigen binding affinity. Front. Mol. Biosci. 2023, 10, 1112738. [Google Scholar] [CrossRef]
- Lv, C.; Stewart, W.J.; Akanyeti, O.; Frederick, C.; Zhu, J.; Santos-Sacchi, J.; Sheets, L.; Liao, J.C.; Zenisek, D. Synaptic ribbons require ribeye for electron density, proper synaptic localization, and recruitment of calcium channels. Cell Rep. 2016, 15, 2784–2795. [Google Scholar] [CrossRef]
- Dick, O.; tom Dieck, S.; Altrock, W.D.; Ammermüller, J.; Weiler, R.; Garner, C.C.; Gundelfinger, E.D.; Brandstätter, J.H. The presynaptic active zone protein bassoon is essential for photoreceptor ribbon synapse formation in the retina. Neuron 2003, 37, 775–786. [Google Scholar] [CrossRef]
- tom Dieck, S.; Altrock, W.D.; Kessels, M.M.; Qualmann, B.; Regus, H.; Brauner, D.; Fejtova, A.; Bracko, O.; Gundelfinger, E.; Brandstätter, J.H. Molecular dissection of the photoreceptor ribbon synapse: Physical interaction of bassoon and RIBEYE is essential for the assembly of the ribbon complex. J. Cell Biol. 2005, 168, 825–836. [Google Scholar] [CrossRef]
- Khimich, D.; Nouvian, R.; Pujol, R.; tom Dieck, S.; Egner, A.; Gundelfinger, E.D.; Moser, T. Hair cell ribbons are essential for synchronous auditory signaling. Nature 2005, 434, 889–894. [Google Scholar] [CrossRef]
- Jing, Z.; Rutherford, M.A.; Takago, H.; Frank, T.; Fejtova, A.; Khimich, D.; Moser, T.; Strenzke, N. Disruption of the presynaptic cytomatrix protein bassoon degrades ribbon anchorage, multiquantal release, and sound encoding at the hair cell afferent synapse. J. Neurosci. 2013, 33, 4456–4467. [Google Scholar] [CrossRef]
- Jiang, L.; Wei, Y.; Ronquillo, C.C.; Marc, R.E.; Yoder, B.K.; Frederick, J.M.; Baehr, W. Heterotrimeric kinesin-2 (KIF3) mediates transition zone and axoneme formation of mouse photoreceptors. J. Biol. Chem. 2015, 290, 12765–12778. [Google Scholar] [CrossRef] [PubMed]
- Ryl, M.; Urbasik, A.; Gierke, K.; Babai, N.; Joachimsthaler, A.; Feigenspan, A.; Frischknecht, R.; Stallwitz, N.; Fejtova, A.; Kremers, J.; et al. Genetic disruption of bassoon in two mutant mouse lines causes divergent retinal phenotypes. FASEB J. 2021, 35, e21520. [Google Scholar] [CrossRef]
- Li, P.; Lin, Z.; An, Y.; Lin, J.; Zhang, A.; Wang, S.; Tu, H.; Ran, J.; Wang, J.; Liang, Y.; et al. Piccolo is essential for the maintenance of the mouse retina but not cochlear hair cell function. Aging 2021, 13, 11678–11695. [Google Scholar] [CrossRef] [PubMed]
- Michanski, S.; Kapoor, R.; Steyer, A.M.; Möbius, W.; Früholz, I.; Ackermann, F.; Gültas, M.; Garner, C.C.; Hamra, F.K.; Neef, J.; et al. Piccolino is required for ribbon architecture at cochlear inner hair synapses and for hearing. EMBO Rep. 2023, 24, e56702. [Google Scholar] [CrossRef] [PubMed]
- Müller, T.M.; Gierke, K.; Joachimsthaler, A.; Sticht, H.; Izsvak, Z.; Hamra, F.K.; Fejtova, A.; Ackermann, F.; Garner, C.C.; Kremers, J.; et al. A multiple Piccolino/RIBEYE interaction supports plate-shaped synaptic ribbons in retinal neurons. J. Neurosci. 2019, 39, 2606–2619. [Google Scholar] [CrossRef] [PubMed]
- Regus-Leidig, H.; Fuchs, M.; Löhner, M.; Leist, S.R.; Leal-Ortiz, S.; Chiodo, V.A.; Hauswirth, W.W.; Garner, C.C.; Brandstätter, J.H. In vivo knockdown of piccolino disrupts presynaptic ribbon morphology in mouse photoreceptor synapses. Front. Cell. Neurosci. 2014, 8, 259. [Google Scholar] [CrossRef] [PubMed]
- Regus-Leidig, H.; Ott, C.; Löhner, M.; Atorf, J.; Fuchs, M.; Sedmak, T.; Kremers, J.; Fejtova, A.; Gundelfinger, E.D.; Brandstätter, J.H. Identification and immunocytochemical characterization of Piccolino, a novel Piccolo splice variant selectively expressed at sensory ribbon synapses of the eye and ear. PLoS ONE 2013, 8, e70373. [Google Scholar] [CrossRef] [PubMed]
- Limbach, C.; Laue, M.M.; Wang, X.; Hu, B.; Thiede, N.; Hultqvist, G.; Kilimann, M.W. Molecular in situ topology of Aczonin/Piccolo and associated proteins at the mammalian neurotransmitter release site. Proc. Natl. Acad. Sci. USA 2011, 108, E392–E401. [Google Scholar] [CrossRef] [PubMed]
- Gundelfinger, E.D.; Reissner, C.; Garner, C.C. Role of bassoon and piccolo in assembly and molecular organization of the active zone. Front. Synaptic Neurosci. 2016, 7, 19. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, K.; Natarajan, S.; Kassas, N.; Vitale, N.; Schmitz, F. The synaptic ribbon is a site of phosphatidic acid generation in ribbon synapses. J. Neurosci. 2011, 31, 15996–16011. [Google Scholar] [CrossRef]
- Tan, Y.H.; Liu, M.; Nolting, B.; Go, J.G.; Gervay-Hague, J.; Liu, G.Y. A nanoengineering approach for investigation and regulation of protein immobilization. ACS Nano 2008, 2, 2374–2384. [Google Scholar] [CrossRef]
- Lee, J.H.; Chapman, D.V.; Saltzman, W.M. Nanoparticle targeting with antibodies in the central nervous system. BME Front. 2023, 4, 0012. [Google Scholar] [CrossRef]
- Kumar, V.; Carlson, J.E.; Ohgi, K.A.; Edwards, T.A.; Rose, D.W.; Escalante, C.R.; Rosenfeld, M.G.; Aggarwal, A.K. Transcription corepressor CtBP is an NAD(+)-regulated dehydrogenase. Mol. Cell 2002, 10, 857–869. [Google Scholar] [CrossRef] [PubMed]
- Nardini, M.; Spano, S.; Cericola, C.; Pesce, A.; Massaro, A.; Millo, E.; Luini, A.; Corda, D.; Bolognesi, M. CtBP/BARS: A dual function protein involved in transcription co-repression and Golgi membrane fission. EMBO J. 2003, 22, 3122–3130. [Google Scholar] [CrossRef] [PubMed]
- Nardini, M.; Svergun, D.; Konarev, P.V.; Spano, S.; Fasano, M.; Bracco, C.; Pesce, A.; Donadini, A.; Cericola, C.; Secundo, F.; et al. The C-terminal domain of the transcriptional corepressor CtBP is intrinsically unstructured. Protein Sci. 2006, 15, 1042–1050. [Google Scholar] [CrossRef]
- Madison, D.L.; Wirz, J.A.; Siess, D.; Lundblad, J.R. Nicotinamide adenine dinuleotide-induced multimerization of the co-repressor CtBP1 relies on a switching tryptophan. J. Biol. Chem. 2013, 288, 27836–27848. [Google Scholar] [CrossRef] [PubMed]
- Bellesis, A.G.; Jecrois, A.M.; Hayes, J.A.; Schiffer, C.A.; Royer, W.E., Jr. Assembly of human C-terminal binding protein (CtBP) into tetramers. J. Biol. Chem. 2018, 293, 9101–9112. [Google Scholar] [CrossRef] [PubMed]
- Jecrois, A.M.; Dcona, M.M.; Deng, X.; Bandyopadhyay, D.; Grossman, S.R.; Schiffer, C.A.; Royer, W.E., Jr. Cryo-EM structure of CtBP2 confirms tetrameric structure. Structure 2021, 29, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Nichols, J.C.; Schiffer, C.A.; Royer, W.E., Jr. NAD(H) phosphates mediate tetramer assembly of human C-terminal binding protein. J. Biol. Chem. 2021, 296, 100351. [Google Scholar] [CrossRef]
- Erlandsen, H.; Jecrois, A.; Nichols, J.C.; Cole, J.L.; Royer, W.E., Jr. NADH/NAD+ binding and tetrameric assembly of the oncogenic transcription factors CtBP1 and CtBP2. FEBS Lett. 2022, 596, 479–490. [Google Scholar] [CrossRef]
- Lagnado, L.; Schmitz, F. Ribbon synapses and visual processing in the retina. Annu. Rev. Vis. Sci. 2015, 1, 235–262. [Google Scholar] [CrossRef]
- Usukura, J.; Yamada, E. Ultrastructure of the synaptic ribbons in photoreceptor cells of Rana catesbeiana revealed by freeze-etching and freeze-substitution. Cell Tissue Res. 1987, 247, 483–488. [Google Scholar] [CrossRef]
- Risco, C.; Sanmartin-Conesa, E.; Tzeng, W.P.; Frey, T.K.; Seybold, V.; de Groot, R.J. Specific, sensitive, high-resolution detection of protein molecules in eukaryotic cells using metal-tagging transmission electron microscopy. Structure 2012, 20, 759–766. [Google Scholar] [CrossRef] [PubMed]
- Doh, J.K.; White, J.D.; Zane, H.K.; Chang, Y.H.; Lopez, C.S.; Enns, C.A.; Beatty, K.E. VIPER is a genetically encoded peptide tag for fluorescence and electron microscopy. Proc. Natl. Acad. Sci. USA 2018, 115, 12961–12966. [Google Scholar] [CrossRef] [PubMed]
- Shigemoto, R. Electron microscopic visualization of single molecules by tag-mediated metal particle labeling. Microscopy 2022, 71, i72–i80. [Google Scholar] [CrossRef] [PubMed]
- Robeneck, H.; Severs, N.J. Recent advances in freeze-fracture electron microscopy: The replica immunolabeling technique. Biol. Proced. Online 2008, 10, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Harada, H.; Shigemoto, R. Immunogold protein localization on grid-glued freeze-fracture replicas. Methods Mol. Biol. 2016, 1474, 203–216. [Google Scholar]
- Shaib, A.H.; Chouaib, A.A.; Chowdhury, R.; Mihaylov, D.; Zhang, C.; Imani, V.; Georgiev, S.V.; Mougios, N.; Monga, M.; Reshetniak, S.; et al. Visualizing proteins by expansion microscopy. BioRxiv 2023. [Google Scholar] [CrossRef]
- Al-Amoudi, A.; Chang, J.J.; Leforestier, A.; McDowall, A.; Salamin, M.L.; Norlen, L.P.O.; Richter, K.; Blanc, N.S.; Studer, D.; Dubochet, J. Cryo electron microscopy of vitreous sections. EMBO J. 2004, 23, 3583–3588. [Google Scholar] [CrossRef] [PubMed]
- Drenckhahn, D.; Jöns, T.; Schmitz, F. Production of polyclonal antibodies against proteins and peptides. In Methods in Cell Biology; Asai, D., Ed.; Academic Press: Cambridge, MA, USA, 1993; Volume 37, pp. 7–56. [Google Scholar]
- Dembla, E.; Dembla, M.; Maxeiner, S.; Schmitz, F. Synaptic ribbons foster active zone stability and illumination-dependent enrichment of RIM2 and Cav1.4 in photoreceptor synapses. Sci. Rep. 2020, 10, 5957. [Google Scholar] [CrossRef]
- Faulk, W.P.; Taylor, G.M. An immunocolloid method for the electron microscope. Immunochemistry 1971, 8, 1081–1083. [Google Scholar]
- Slot, J.W.; Geuze, H.J. A new method of preparing gold probes for multiple-labeling cytochemistry. J. Cell Biol. 1985, 38, 87–93. [Google Scholar]
- Horisberger, M.; Clerc, M.-F. Labelling of colloidal gold with protein A. A quantitative study. In Histochemistry; Springer: Berlin/Heidelberg, Germany, 1985; Volume 82, p. 219. [Google Scholar]
- Wahl, S.; Katiyar, R.; Schmitz, F. A local, periactive zone endocytic machinery at photoreceptor synapses in close vicinity to the synaptic ribbon. J. Neurosci. 2013, 33, 10278–10300. [Google Scholar] [CrossRef] [PubMed]
- Suiwal, S.; Dembla, M.; Schwarz, K.; Katiyar, R.; Jung, M.; Carius, Y.; Maxeiner, S.; Lauterbach, M.A.; Lancaster, C.R.D.; Schmitz, F. Ciliary proteins repurposed by the synaptic ribbon: Trafficking myristoylated proteins at rod photoreceptor synapses. Int. J. Mol. Sci. 2022, 23, 7135. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadopoulos, S.; Tinschert, R.; Papadopoulos, I.; Gerloff, X.; Schmitz, F. Analytical Post-Embedding Immunogold–Electron Microscopy with Direct Gold-Labelled Monoclonal Primary Antibodies against RIBEYE A- and B-Domain Suggests a Refined Model of Synaptic Ribbon Assembly. Int. J. Mol. Sci. 2024, 25, 7443. https://doi.org/10.3390/ijms25137443
Papadopoulos S, Tinschert R, Papadopoulos I, Gerloff X, Schmitz F. Analytical Post-Embedding Immunogold–Electron Microscopy with Direct Gold-Labelled Monoclonal Primary Antibodies against RIBEYE A- and B-Domain Suggests a Refined Model of Synaptic Ribbon Assembly. International Journal of Molecular Sciences. 2024; 25(13):7443. https://doi.org/10.3390/ijms25137443
Chicago/Turabian StylePapadopoulos, Stella, René Tinschert, Iason Papadopoulos, Xenia Gerloff, and Frank Schmitz. 2024. "Analytical Post-Embedding Immunogold–Electron Microscopy with Direct Gold-Labelled Monoclonal Primary Antibodies against RIBEYE A- and B-Domain Suggests a Refined Model of Synaptic Ribbon Assembly" International Journal of Molecular Sciences 25, no. 13: 7443. https://doi.org/10.3390/ijms25137443
APA StylePapadopoulos, S., Tinschert, R., Papadopoulos, I., Gerloff, X., & Schmitz, F. (2024). Analytical Post-Embedding Immunogold–Electron Microscopy with Direct Gold-Labelled Monoclonal Primary Antibodies against RIBEYE A- and B-Domain Suggests a Refined Model of Synaptic Ribbon Assembly. International Journal of Molecular Sciences, 25(13), 7443. https://doi.org/10.3390/ijms25137443