Antimicrobial Activity of Positively Charged Oligopeptides with Theoretical High α-Helix Content against Cutibacterium acnes
Abstract
:1. Introduction
2. Results
2.1. Theoretical Parameters of the Structure of Antimicrobial Oligopeptides
2.2. Minimum Inhibitory Concentration (MIC) of FK-13 and CKR-13 in Modified Gifu Anaerobic Medium Broth at pH 7
2.3. SEM
2.4. TEM
2.5. MIC of CKR-13 and RXM (Separately and in Combination)
2.6. Effects of pH on the MIC of CKR-13 with RXM in Modified Gifu Anaerobic Medium Broth
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Determination of MICs
4.3. SEM
4.4. TEM
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today 2015, 20, 122–128. [Google Scholar] [CrossRef]
- Sharma, K.; Sharma, K.K.; Sharma, A.; Jain, R. Peptide-based drug discovery: Current status and recent advances. Drug Discov. Today 2023, 28, 103464. [Google Scholar] [CrossRef] [PubMed]
- Mercer, D.K.; Torres, M.D.T.; Duay, S.S.; Lovie, E.; Simpson, L.; von Köckritz-Blickwede, M.; de la Fuente-Nunez, C.; O’Neil, D.A.; Angeles-Boza, A.M. Antimicrobial susceptibility testing of antimicrobial peptides to better predict efficacy. Front. Cell. Infect. Microbiol. 2020, 10, 326. [Google Scholar] [CrossRef] [PubMed]
- Guterstam, P.; Madani, F.; Hirose, H.; Takeuchi, T.; Futaki, S.; El Andaloussi, S.; Gräslund, A.; Langel, U. Elucidating cell-penetrating peptide mechanisms of action for membrane interaction, cellular uptake, and translocation utilizing the hydrophobic counter-anion pyrenebutyrate. Biochim. Biophys. Acta 2009, 1788, 2509–2517. [Google Scholar] [CrossRef] [PubMed]
- de la Fuente-Núñez, C.; Silva, O.N.; Lu, T.K.; Franco, O.L. Antimicrobial peptides: Role in human disease and potential as immunotherapies. Pharmacol. Ther. 2017, 178, 132–140. [Google Scholar] [CrossRef]
- Felício, M.R.; Silva, O.N.; Gonçalves, S.; Santos, N.C.; Franco, O.L. Peptides with dual antimicrobial and anticancer activities. Front. Chem. 2017, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- Silva, O.N.; Mulder, K.C.; Barbosa, A.E.; Otero-Gonzalez, A.J.; Lopez-Abarrategui, C.; Rezende, T.M.; Dias, S.C.; Franco, O.L. Exploring the pharmacological potential of promiscuous host-defense peptides: From natural screenings to biotechnological applications. Front. Microbiol. 2011, 2, 232. [Google Scholar] [CrossRef]
- Silva, O.N.; Porto, W.F.; Ribeiro, S.M.; Batista, I.; Franco, O.L. Host-defense peptides and their potential use as biomarkers in human diseases. Drug Discov. Today 2018, 23, 1666–1671. [Google Scholar] [CrossRef]
- Wei, X.B.; Wu, R.J.; Si, D.Y.; Liao, X.D.; Zhang, L.L.; Zhang, R.J. Novel hybrid peptide cecropin A (1-8)-LL37 (17-30) with potential antibacterial activity. Int. J. Mol. Sci. 2016, 17, 983. [Google Scholar] [CrossRef]
- Oren, Z.; Lerman, J.C.; Gudmundsson, G.H.; Agerberth, B.; Shai, Y. Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: Relevance to the molecular basis for its non-cell-selective activity. Biochem. J. 1999, 341, 501–513. [Google Scholar] [CrossRef]
- Bucki, R.; Janmey, P.A. Interaction of the gelsolin-derived antibacterial PBP 10 peptide with lipid bilayers and cell membranes. Antimicrob. Agents Chemother. 2006, 50, 2932–2940. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Sun, Y.; Qian, S.; Huang, H.W. Transmembrane pores formed by human antimicrobial peptide LL-37. Biophys. J. 2011, 100, 1688–1696. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.; Cho, Y.; Dinh, N.N.; Waring, A.J.; Lehrer, R.I. Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob. Agents Chemother. 1998, 42, 2206–2214. [Google Scholar] [CrossRef] [PubMed]
- Jacob, B.; Park, I.S.; Bang, J.K.; Shin, S.Y. Short KR-12 analogs designed from human cathelicidin LL-37 possessing both antimicrobial and antiendotoxic activities without mammalian cell toxicity. J. Pept. Sci. 2013, 19, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Jana, J.; Sengupta, P.; Mondal, S.; Chatterjee, S. Restriction of telomerase capping by short non-toxic peptides via arresting telomeric G-quadruplex. RSC Adv. 2017, 7, 20888–20899. [Google Scholar] [CrossRef]
- Mori, T.; Yoshida, M.; Hazekawa, M.; Ishibashi, D.; Hatanaka, Y.; Nagao, T.; Kakehashi, R.; Kojima, H.; Uno, R.; Ozeki, M.; et al. Antimicrobial activities of LL-37 fragment mutant-poly (lactic-co-glycolic) acid conjugate against Staphylococcus aureus, Escherichia coli, and Candida albicans. Int. J. Mol. Sci. 2021, 22, 5097. [Google Scholar] [CrossRef] [PubMed]
- Byrd, A.L.; Belkaid, Y.; Segre, J.A. The human skin microbiome. Nat. Rev. Microbiol. 2018, 16, 143–155. [Google Scholar] [CrossRef]
- Achermann, Y.; Goldstein, E.J.; Coenye, T.; Shirtliff, M.E. Propionibacterium acnes: From commensal to opportunistic biofilm-associated implant pathogen. Clin. Microbiol. Rev. 2014, 27, 419–440. [Google Scholar] [CrossRef] [PubMed]
- Williams, H.C.; Dellavalle, R.P.; Garner, S. Acne vulgaris. Lancet 2012, 379, 361–372. [Google Scholar] [CrossRef]
- Mollerup, S.; Friis-Nielsen, J.; Vinner, L.; Hansen, T.A.; Richter, S.R.; Fridholm, H.; Herrera, J.A.; Lund, O.; Brunak, S.; Izarzugaza, J.M.; et al. Propionibacterium acnes: Disease-causing agent or common contaminant? Detection in diverse patient samples by next-generation sequencing. J. Clin. Microbiol. 2016, 54, 980–987. [Google Scholar] [CrossRef]
- Bhate, K.; Williams, H.C. Epidemiology of acne vulgaris. Br. J. Dermatol. 2013, 168, 474–485. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, T.C.; Yin, X.L.; Man, J.Y.; Yang, X.R.; Lu, M. Magnitude and temporal trend of acne vulgaris burden in 204 countries and territories from 1990 to 2019: An analysis from the Global Burden of Disease Study 2019. Br. J. Dermatol. 2022, 186, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Heng, A.H.S.; Chew, F.T. Systematic review of the epidemiology of acne vulgaris. Sci. Rep. 2020, 10, 5754. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.K.; Bhate, K. A global perspective on the epidemiology of acne. Br. J. Dermatol. 2015, 172 (Suppl. 1), 3–12. [Google Scholar] [CrossRef] [PubMed]
- Boyanova, L. Cutibacterium acnes (formerly Propionibacterium acnes): Friend or foe? Future Microbiol. 2023, 18, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Hilpert, K.; Elliott, M.; Jenssen, H.; Kindrachuk, J.; Fjell, C.D.; Körner, J.; Winkler, D.F.; Weaver, L.L.; Henklein, P.; Ulrich, A.S.; et al. Screening and characterization of surface-tethered cationic peptides for antimicrobial activity. Chem. Biol. 2009, 16, 58–69. [Google Scholar] [CrossRef]
- Moraes, L.G.; Fázio, M.A.; Vieira, R.F.; Nakaie, C.R.; Miranda, M.T.; Schreier, S.; Daffre, S.; Miranda, A. Conformational and functional studies of gomesin analogues by CD, EPR and fluorescence spectroscopies. Biochim. Biophys. Acta 2007, 1768, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Wood, S.J.; Park, Y.A.; Kanneganti, N.P.; Mukkisa, H.R.; Crisman, L.L.; Davis, S.E.; Vandenbosch, J.L.; Scaglione, J.B.; Heyl, D.L. Modified cysteine-deleted tachyplesin (CDT) analogs as linear antimicrobial peptides: Influence of chain length, positive charge, and hydrophobicity on antimicrobial and hemolytic activity. Int. J. Pept. Res. Ther. 2014, 20, 519–530. [Google Scholar] [CrossRef]
- Christensen, B.; Fink, J.; Merrifield, R.B.; Mauzerall, D. Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc. Natl. Acad. Sci. USA 1988, 85, 5072–5076. [Google Scholar] [CrossRef]
- Dennison, S.R.; Wallace, J.; Harris, F.; Phoenix, D.A. Amphiphilic alpha-helical antimicrobial peptides and their structure/function relationships. Protein Pept. Lett. 2005, 12, 31–39. [Google Scholar] [CrossRef]
- Spangler, S.K.; Appelbaum, P.C. Oxyrase, a method which avoids CO2 in the incubation atmosphere for anaerobic susceptibility testing of antibiotics affected by CO2. J. Clin. Microbiol. 1993, 31, 460–462. [Google Scholar] [CrossRef] [PubMed]
- Spangler, S.K.; Jacobs, M.R.; Appelbaum, P.C. Effect of CO2 on susceptibilities of anaerobes to erythromycin, azithromycin, clarithromycin, and roxithromycin. Antimicrob. Agents Chemother. 1994, 38, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Spangler, S.K.; Jacobs, M.R.; Appelbaum, P.C. Susceptibilities of 201 anaerobes to erythromycin, azithromycin, clarithromycin, and roxithromycin by oxyrase agar dilution and E-test methodologies. J. Clin. Microbiol. 1995, 33, 1366–1367. [Google Scholar] [CrossRef]
- Spangler, S.K.; Jacobs, M.R.; Appelbaum, P.C. Time-kill study of the activity of trovafloxacin compared with ciprofloxacin, sparfloxacin, metronidazole, cefoxitin, piperacillin and piperacillin/tazobactam against six anaerobes. J. Antimicrob. Chemother. 1997, 39 (Suppl. B), 23–27. [Google Scholar] [CrossRef] [PubMed]
- Spangler, S.K.; Jacobs, M.R.; Appelbaum, P.C. Bactericidal activity of DU-6859a compared to activities of three quinolones, three b-lactams, clindamycin, and metronidazole against anaerobes as determined by time-kill methodology. Antimicrob. Agents Chemother. 1997, 41, 847–849. [Google Scholar] [CrossRef]
- Lee, D.; Yamasaki, K.; Rudsil, J.; Zouboulis, C.C.; Park, G.T.; Yang, J.; Gallo, R.L. Sebocytes Express Functional Cathelicidin Antimicrobial Peptides and Can Act to Kill Propionibacterium Acnes. J. Investig. Dermatol. 2008, 128, 1863–1866. [Google Scholar] [CrossRef]
- Haraguchi, T.; Hayashi, S.; Nakasaka, S.; Hatanaka, Y.; Nagao, T.; Tanaka, S.; Yoshii, M.; Hagimori, M.; Yoshida, M. Antimicrobial Activity of 2-(Piperazin-1-yl)naphtho [2,3-d]thiazole-4,9-dione against Staphylococcus Strains. Molecules 2024, 29, 1277. [Google Scholar] [CrossRef]
Antimicrobial Oligopeptide | Amino Acid Sequence | α-Helix Content (%) | Net Charge |
---|---|---|---|
FK-13 | FKRIVQRIKDFLR | 84.6 | +4 |
CKR-13 | CKRIVKRIKKWLR | 84.6 | +7 |
MIC | ||||
---|---|---|---|---|
Microorganism | FK-13 | CKR-13 | RXM | CKR-13 + RXM |
C. acnes (NRBC 107605T) | 200 µg/mL | 50 µg/mL | 25 ng/mL | CKR-13: 12.5 µg/mL RXM: 12.5 ng/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshida, M.; Hayashi, S.; Haraguchi, T.; Ito, M.; Hatanaka, Y.; Yoshii, M.; Tatsuoka, H.; Tanaka, S.; Nagao, T. Antimicrobial Activity of Positively Charged Oligopeptides with Theoretical High α-Helix Content against Cutibacterium acnes. Int. J. Mol. Sci. 2024, 25, 7445. https://doi.org/10.3390/ijms25137445
Yoshida M, Hayashi S, Haraguchi T, Ito M, Hatanaka Y, Yoshii M, Tatsuoka H, Tanaka S, Nagao T. Antimicrobial Activity of Positively Charged Oligopeptides with Theoretical High α-Helix Content against Cutibacterium acnes. International Journal of Molecular Sciences. 2024; 25(13):7445. https://doi.org/10.3390/ijms25137445
Chicago/Turabian StyleYoshida, Miyako, Saki Hayashi, Tamami Haraguchi, Momoka Ito, Yoshiro Hatanaka, Miki Yoshii, Hiroaki Tatsuoka, Shigemitsu Tanaka, and Toshihiro Nagao. 2024. "Antimicrobial Activity of Positively Charged Oligopeptides with Theoretical High α-Helix Content against Cutibacterium acnes" International Journal of Molecular Sciences 25, no. 13: 7445. https://doi.org/10.3390/ijms25137445
APA StyleYoshida, M., Hayashi, S., Haraguchi, T., Ito, M., Hatanaka, Y., Yoshii, M., Tatsuoka, H., Tanaka, S., & Nagao, T. (2024). Antimicrobial Activity of Positively Charged Oligopeptides with Theoretical High α-Helix Content against Cutibacterium acnes. International Journal of Molecular Sciences, 25(13), 7445. https://doi.org/10.3390/ijms25137445