Impact of Maternal Pre-Pregnancy Underweight on Cord Blood Metabolome: An Analysis of the Population-Based Survey of Neonates in Pomerania (SNiP)
Abstract
:1. Introduction
2. Results
2.1. Baseline Characteristics of the Study Population
2.2. Association of Maternal and Neonatal Parameters with Lipoprotein Subclasses
2.3. Association of Maternal and Neonatal Parameters with Plasma Metabolites
3. Discussion
4. Materials and Methods
4.1. Study Design and Participants
4.2. Definition of Smoking
4.3. Definition of Small-for-Gestational Age (SGA) and Large-for-Gestational Age (LGA)
4.4. Diagnosis of Neonatal Hypoglycemia
4.5. Placental Weight/Birth Weight Ratio
4.6. Sample Collection and Measurement
4.7. Impact of Storage Temperature on NMR Metabolomics
4.8. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Metabolite | Detection Rate (%) | Stability −20 °C vs. −80 °C |
---|---|---|
Asparagine | 0.0 | NA |
Glycerol | 0.0 | NA |
Methionine | 0.0 | NA |
Trimethylamine-N-oxide | 0.0 | NA |
2-Aminobutyric acid | 0.2 | NA |
Sarcosine | 0.2 | NA |
N,N-Dimethylglycine | 0.4 | NA |
2-Hydroxybutyric acid | 0.6 | NA |
Dimethylsulfone | 0.8 | NA |
Glutamic acid | 0.8 | NA |
Glutamine | 1.2 | NA |
Ethanol | 2.3 | NA |
Acetoacetic acid | 2.7 | NA |
Threonine | 7.5 | NA |
2-Oxoglutaric acid | 16.4 | NA |
Proline | 17.0 | NA |
D-Galactose | 18.0 | NA |
Ornithine | 23.4 | NA |
Isoleucine | 72.0 | yes |
Formic acid | 74.1 | yes |
Choline | 84.3 | NA |
Creatinine | 90.7 | yes |
3-Hydroxybutyric acid | 92.1 | yes |
Lysine | 92.1 | NA |
Acetone | 94.4 | yes |
Creatine | 95.2 | no |
Histidine | 98.1 | no |
Leucine | 98.6 | no |
Glycine | 99.2 | no |
Succinic acid | 99.4 | NA |
Citric acid | 99.8 | no |
Phenylalanine | 99.8 | no |
Acetic acid | 100.0 | no |
Alanine | 100.0 | yes |
Lactic acid | 100.0 | yes |
Pyruvic acid | 100.0 | no |
Tyrosine | 100.0 | yes |
Valine | 100.0 | yes |
Appendix B
Pre-Pregnancy BMI | |||||
---|---|---|---|---|---|
Normal Weight (BMI 18.5–25 kg/m2) n = 240 | Underweight (BMI < 18.5 kg/m2) n = 208 | p | |||
Metabolite/Lipoprotein | N | Median (Q1; Q3) | N | Median (Q1; Q3) | |
Acetone | 201 | 0.07 (0.04; 0.13) | 220 | 0.06 (0.04; 0.10) | 0.05 |
Choline | 176 | 5.13 (3.89; 7.32) | 200 | 5.26 (3.95; 7.15) | 0.88 |
Alanine | 208 | 0.81 (0.71; 0.97) | 239 | 0.83 (0.69; 1.04) | 1.00 |
Tyrosine | 208 | 0.06 (0.05; 0.07) | 239 | 0.06 (0.05; 0.07) | 0.71 |
Formic acid | 153 | 0.06 (0.04; 0.08) | 182 | 0.06 (0.04; 0.09) | 0.31 |
Lactic acid | 208 | 11.0 (9.25; 12.3) | 239 | 10.2 (8.70; 11.8) | <0.01 |
3-Hydroxybutyric acid | 195 | 0.11 (0.06; 0.23) | 219 | 0.09 (0.05; 0.18) | 0.05 |
Valine | 208 | 0.24 (0.22; 0.27) | 239 | 0.23 (0.20; 0.26) | 0.02 |
Total Cholesterol | 208 | 64.2 (58.0; 74.3) | 239 | 64.4 (56.9; 74.2) | 0.98 |
VLDL1 Chol | 208 | 2.73 (2.28; 3.27) | 239 | 2.72 (2.28; 3.32) | 0.89 |
VLDL3 Chol | 124 | 0.35 (0.14; 0.68) | 124 | 0.44 (0.21; 0.73) | 0.39 |
VLDL5 Chol | 149 | 0.33 (0.16; 0.53) | 180 | 0.45 (0.24; 0.70) | <0.01 |
LDL2 Chol | 208 | 13.2 (11.7; 15.0) | 239 | 13.0 (11.4; 15.0) | 0.46 |
LDL3 Chol | 208 | 8.78 (7.51; 10.5) | 239 | 8.99 (7.30; 10.8) | 0.95 |
LDL4 Chol | 189 | 3.10 (2.13; 4.06) | 221 | 3.13 (2.04; 4.42) | 0.82 |
LDL6 Chol | 208 | 8.91 (6.82; 11.3) | 236 | 8.89 (6.66; 11.5) | 0.89 |
HDL4 Chol | 208 | 10.2 (9.41; 10.9) | 239 | 10.6 (9.60; 11.6) | <0.01 |
LDL Free Chol | 208 | 15.8 (14.0; 18.0) | 239 | 15.7 (13.9; 18.1) | 0.67 |
HDL2 Free Chol | 208 | 0.81 (0.67; 0.97) | 236 | 0.74 (0.56; 0.91) | <0.01 |
VLDL Triglycerides | 208 | 14.9 (12.6; 17.5) | 239 | 14.9 (12.5; 17.8) | 0.51 |
VLDL1 TGs | 208 | 7.83 (5.89; 9.80) | 231 | 7.92 (6.04; 9.71) | 0.72 |
LDL2 TGs | 208 | 0.86 (0.68; 1.06) | 239 | 0.88 (0.69; 1.11) | 0.31 |
LDL4 TGs | 208 | 0.82 (0.57; 1.12) | 235 | 0.89 (0.62; 1.18) | 0.07 |
LDL5 TGs | 208 | 0.75 (0.56; 1.05) | 230 | 0.84 (0.57; 1.12) | 0.20 |
HDL Triglycerides | 206 | 3.02 (2.39; 3.76) | 233 | 3.26 (2.47; 4.05) | 0.08 |
HDL2 TGs | 196 | 0.53 (0.36; 0.72) | 220 | 0.54 (0.35; 0.74) | 0.94 |
HDL3 TGs | 202 | 0.67 (0.48; 0.88) | 230 | 0.72 (0.50; 0.89) | 0.66 |
VLDL Phospholipids | 208 | 5.50 (4.85; 6.15) | 239 | 5.61 (5.00; 6.33) | 0.23 |
VLDL1 PLs | 198 | 0.87 (0.54; 1.23) | 210 | 0.87 (0.52; 1.22) | 0.51 |
VLDL2 PLs | 202 | 0.65 (0.46; 0.82) | 231 | 0.60 (0.42; 0.80) | 0.10 |
VLDL3 PLs | 175 | 0.49 (0.26; 0.77) | 181 | 0.42 (0.23; 0.79) | 0.40 |
LDL Phospholipids | 208 | 24.9 (22.0; 28.6) | 239 | 24.9 (22.4; 29.0) | 0.53 |
HDL Phospholipids | 208 | 28.9 (26.6; 30.9) | 239 | 29.0 (26.9; 31.7) | 0.17 |
HDL1 PLs | 208 | 5.59 (4.29; 6.98) | 236 | 5.46 (4.25; 7.01) | 0.52 |
HDL2 PLs | 208 | 4.60 (4.19; 4.98) | 239 | 4.63 (4.09; 5.04) | 0.56 |
HDL3 PLs | 208 | 5.15 (4.73; 5.52) | 239 | 5.14 (4.73; 5.71) | 0.45 |
HDL4 PLs | 208 | 13.5 (12.3; 14.4) | 239 | 14.1 (13.0; 15.2) | <0.01 |
HDL1 Apo-A1 | 208 | 8.69 (7.02; 10.4) | 237 | 8.30 (5.94; 10.4) | 0.12 |
HDL2 Apo-A1 | 208 | 6.65 (6.13; 7.29) | 239 | 6.81 (6.27; 7.63) | 0.01 |
HDL4 Apo-A1 | 208 | 40.5 (38.1; 42.6) | 239 | 41.7 (38.9; 44.9) | <0.01 |
HDL1 Apo-A2 | 195 | 0.47 (0.27; 0.69) | 209 | 0.46 (0.23; 0.69) | 0.61 |
HDL3 Apo-A2 | 208 | 2.20 (1.85; 2.55) | 239 | 2.08 (1.74; 2.41) | 0.02 |
HDL4 Apo-A2 | 208 | 10.7 (9.88; 11.3) | 239 | 10.9 (10.0; 11.6) | 0.05 |
HDL Apo-A2 | 208 | 15.9 (14.7; 16.9) | 239 | 15.8 (14.5; 17.0) | 0.42 |
LDL1 Apo-B | 207 | 2.86 (2.18; 3.67) | 233 | 2.98 (2.24; 3.80) | 0.25 |
LDL2 Apo-B | 208 | 7.63 (6.82; 8.44) | 239 | 7.58 (6.66; 8.50) | 0.72 |
LDL3 Apo-B | 208 | 5.59 (4.96; 6.38) | 239 | 5.63 (4.78; 6.56) | 0.96 |
LDL4 Apo-B | 195 | 2.18 (1.50; 2.89) | 222 | 2.17 (1.40; 3.16) | 0.58 |
Pre-Pregnancy BMI + Gestational Weight Gain | |||||
---|---|---|---|---|---|
Normal Weight or Underweight and Normal Gestational Weight Gain n = 393 | Underweight (BMI < 18.5 kg/m2) and Low Gestational Weight Gain n = 55 | p | |||
Metabolite/Lipoprotein | N | Median (Q1; Q3) | N | Median (Q1; Q3) | |
Acetone | 375 | 0.07 (0.04; 0.11) | 46 | 0.06 (0.03; 0.11) | 0.44 |
Choline | 327 | 5.16 (3.94; 7.15) | 49 | 5.27 (3.95; 7.43) | 1.00 |
Alanine | 393 | 0.83 (0.70; 1.02) | 54 | 0.80 (0.66; 0.91) | 0.19 |
Tyrosine | 393 | 0.06 (0.05; 0.07) | 54 | 0.06 (0.05; 0.06) | 0.14 |
Formic acid | 292 | 0.06 (0.04; 0.08) | 43 | 0.05 (0.04; 0.09) | 0.92 |
Lactic acid | 393 | 10.5 (8.96; 12.1) | 54 | 10.3 (9.01; 11.3) | 0.12 |
3-Hydroxybutyric acid | 366 | 0.10 (0.06; 0.20) | 48 | 0.07 (0.04; 0.19) | 0.07 |
Valine | 393 | 0.23 (0.21; 0.27) | 54 | 0.22 (0.20; 0.26) | 0.16 |
Total Cholesterol | 393 | 64.6 (57.8; 74.4) | 54 | 62.7 (55.6; 73.2) | 0.45 |
VLDL1 Chol | 393 | 2.72 (2.28; 3.28) | 54 | 2.95 (2.38; 3.36) | 0.35 |
VLDL3 Chol | 223 | 0.41 (0.18; 0.70) | 25 | 0.33 (0.12; 0.48) | 0.27 |
VLDL5 Chol | 285 | 0.37 (0.18; 0.57) | 44 | 0.59 (0.38; 0.97) | <0.01 |
LDL2 Chol | 393 | 13.1 (11.6; 15.0) | 54 | 13.3 (11.2; 14.5) | 0.54 |
LDL3 Chol | 393 | 8.95 (7.46; 10.7) | 54 | 8.70 (7.23; 10.3) | 0.38 |
LDL4 Chol | 359 | 3.17 (2.15; 4.32) | 51 | 2.34 (1.27; 4.30) | 0.03 |
LDL6 Chol | 390 | 8.93 (6.74; 11.3) | 54 | 7.97 (6.13; 10.8) | 0.28 |
HDL4 Chol | 393 | 10.4 (9.51; 11.2) | 54 | 10.5 (9.64; 11.7) | 0.19 |
LDL Free Chol | 393 | 15.8 (14.0; 18.1) | 54 | 15.5 (13.2; 17.9) | 0.40 |
HDL2 Free Chol | 391 | 0.80 (0.63; 0.94) | 53 | 0.67 (0.46; 0.88) | <0.01 |
VLDL Triglycerides | 393 | 14.9 (12.6; 17.6) | 54 | 14.8 (12.1; 17.8) | 0.56 |
VLDL1 TGs | 387 | 7.67 (5.82; 9.71) | 52 | 8.88 (6.62; 9.87) | 0.09 |
LDL2 TGs | 393 | 0.87 (0.69; 1.08) | 54 | 0.84 (0.67; 1.12) | 0.90 |
LDL4 TGs | 390 | 0.87 (0.60; 1.14) | 53 | 0.85 (0.60; 1.16) | 0.61 |
LDL5 TGs | 386 | 0.81 (0.56; 1.10) | 52 | 0.72 (0.54; 1.03) | 0.40 |
HDL Triglycerides | 387 | 3.08 (2.37; 3.91) | 52 | 3.39 (2.76; 4.13) | 0.19 |
HDL2 TGs | 367 | 0.54 (0.35; 0.74) | 49 | 0.51 (0.35; 0.74) | 0.76 |
HDL3 TGs | 380 | 0.70 (0.48; 0.89) | 52 | 0.67 (0.50; 0.89) | 0.90 |
VLDL Phospholipids | 393 | 5.53 (4.92; 6.21) | 54 | 5.66 (5.05; 6.29) | 0.33 |
VLDL1 PLs | 360 | 0.86 (0.53; 1.23) | 48 | 0.96 (0.66; 1.21) | 0.32 |
VLDL2 PLs | 385 | 0.62 (0.44; 0.81) | 48 | 0.57 (0.36; 0.84) | 0.17 |
VLDL3 PLs | 320 | 0.48 (0.25; 0.81) | 36 | 0.36 (0.21; 0.77) | 0.36 |
LDL Phospholipids | 393 | 25.0 (22.3; 28.7) | 54 | 23.9 (22.1; 28.4) | 0.40 |
HDL Phospholipids | 393 | 28.8 (26.7; 31.3) | 54 | 29.3 (27.2; 31.8) | 0.26 |
HDL1 PLs | 391 | 5.56 (4.28; 7.01) | 53 | 5.17 (4.06; 7.46) | 0.62 |
HDL2 PLs | 393 | 4.62 (4.17; 5.01) | 54 | 4.55 (3.93; 5.06) | 0.34 |
HDL3 PLs | 393 | 5.15 (4.73; 5.58) | 54 | 5.08 (4.75; 5.71) | 0.91 |
HDL4 PLs | 393 | 13.7 (12.6; 14.6) | 54 | 14.4 (13.1; 15.6) | 0.01 |
HDL1 Apo-A1 | 392 | 8.54 (6.71; 10.4) | 53 | 8.00 (5.94; 10.4) | 0.31 |
HDL2 Apo-A1 | 393 | 6.75 (6.17; 7.44) | 54 | 6.82 (6.44; 7.93) | 0.06 |
HDL4 Apo-A1 | 393 | 40.9 (38.3; 43.7) | 54 | 41.3 (39.3; 45.0) | 0.11 |
HDL1 Apo-A2 | 359 | 0.46 (0.26; 0.69) | 45 | 0.44 (0.22; 0.76) | 0.55 |
HDL3 Apo-A2 | 393 | 2.14 (1.80; 2.48) | 54 | 1.89 (1.37; 2.33) | <0.01 |
HDL4 Apo-A2 | 393 | 10.8 (10.0; 11.5) | 54 | 10.6 (9.72; 11.5) | 0.61 |
HDL Apo-A2 | 393 | 15.9 (14.8; 17.0) | 54 | 15.3 (13.8; 16.5) | 0.02 |
LDL1 Apo-B | 387 | 2.88 (2.25; 3.73) | 53 | 2.95 (2.07; 3.98) | 0.63 |
LDL2 Apo-B | 393 | 7.58 (6.72; 8.49) | 54 | 7.67 (6.61; 8.27) | 0.88 |
LDL3 Apo-B | 393 | 5.63 (4.89; 6.52) | 54 | 5.46 (4.75; 6.33) | 0.40 |
LDL4 Apo-B | 365 | 2.25 (1.54; 3.02) | 52 | 1.71 (1.00; 3.04) | 0.04 |
References
- Barker, D.J.; Martyn, C.N. The maternal and fetal origins of cardiovascular disease. J. Epidemiol. Community Health 1992, 46, 8–11. [Google Scholar] [CrossRef]
- Voerman, E.; Santos, S.; Inskip, H.; Amiano, P.; Barros, H.; Charles, M.-A.; Chatzi, L.; Chrousos, G.P.; Corpeleijn, E.; Crozier, S.; et al. Association of Gestational Weight Gain with Adverse Maternal and Infant Outcomes. JAMA 2019, 321, 1702–1715. [Google Scholar] [CrossRef] [PubMed]
- Voerman, E.; Santos, S.; Patro Golab, B.; Amiano, P.; Ballester, F.; Barros, H.; Bergström, A.; Charles, M.-A.; Chatzi, L.; Chevrier, C.; et al. Maternal body mass index, gestational weight gain, and the risk of overweight and obesity across childhood: An individual participant data meta-analysis. PLoS Med. 2019, 16, e1002744. [Google Scholar] [CrossRef]
- Abenhaim, H.A.; Kinch, R.A.; Morin, L.; Benjamin, A.; Usher, R. Effect of prepregnancy body mass index categories on obstetrical and neonatal outcomes. Arch. Gynecol. Obstet. 2007, 275, 39–43. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Campbell, D.M.; Liston, W.A.; Bhattacharya, S. Effect of Body Mass Index on pregnancy outcomes in nulliparous women delivering singleton babies. BMC Public Health 2007, 7, 168. [Google Scholar] [CrossRef]
- Cnattingius, S.; Bergström, R.; Lipworth, L.; Kramer, M.S. Prepregnancy weight and the risk of adverse pregnancy outcomes. N. Engl. J. Med. 1998, 338, 147–152. [Google Scholar] [CrossRef]
- Doherty, D.A.; Magann, E.F.; Francis, J.; Morrison, J.C.; Newnham, J.P. Pre-pregnancy body mass index and pregnancy outcomes. Int. J. Gynaecol. Obstet. 2006, 95, 242–247. [Google Scholar] [CrossRef]
- Black, R.E.; Allen, L.H.; Bhutta, Z.A.; Caulfield, L.E.; de Onis, M.; Ezzati, M.; Mathers, C.; Rivera, J. Maternal and child undernutrition: Global and regional exposures and health consequences. Lancet 2008, 371, 243–260. [Google Scholar] [CrossRef] [PubMed]
- Dzakpasu, S.; Fahey, J.; Kirby, R.S.; Tough, S.C.; Chalmers, B.; Heaman, M.I.; Bartholomew, S.; Biringer, A.; Darling, E.K.; Lee, L.S.; et al. Contribution of prepregnancy body mass index and gestational weight gain to adverse neonatal outcomes: Population attributable fractions for Canada. BMC Pregnancy Childbirth 2015, 15, 21. [Google Scholar] [CrossRef]
- Goldstein, R.F.; Abell, S.K.; Ranasinha, S.; Misso, M.; Boyle, J.A.; Black, M.H.; Li, N.; Hu, G.; Corrado, F.; Rode, L.; et al. Association of Gestational Weight Gain with Maternal and Infant Outcomes: A Systematic Review and Meta-analysis. JAMA 2017, 317, 2207–2225. [Google Scholar] [CrossRef]
- IQTIG—Institut für Qualitätssicherung und Transparenz im Gesundheitswesen. Bundesauswertung zum Erfassungsjahr 2019. In Geburtshilfe: Qualitätsindikatoren und Kennzahlen; IQTIG: Berlin, Germany, 2020. [Google Scholar]
- Domanski, G.; Lange, A.E.; Ittermann, T.; Fallenberg, J.; Allenberg, H.; Zygmunt, M.; Heckmann, M. Maternal pre-pregnancy underweight as a risk factor for the offspring: Survey of Neonates in Pomerania. Acta Paediatr. 2021, 110, 1452–1460. [Google Scholar] [CrossRef] [PubMed]
- Brett, K.E.; Ferraro, Z.M.; Yockell-Lelievre, J.; Gruslin, A.; Adamo, K.B. Maternal-fetal nutrient transport in pregnancy pathologies: The role of the placenta. Int. J. Mol. Sci. 2014, 15, 16153–16185. [Google Scholar] [CrossRef]
- Roland, M.C.P.; Friis, C.M.; Voldner, N.; Godang, K.; Bollerslev, J.; Haugen, G.; Henriksen, T. Fetal growth versus birthweight: The role of placenta versus other determinants. PLoS ONE 2012, 7, e39324. [Google Scholar] [CrossRef]
- Roseboom, T.J. Epidemiological evidence for the developmental origins of health and disease: Effects of prenatal undernutrition in humans. J. Endocrinol. 2019, 242, T135–T144. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Dai, W.; Dai, X.; Li, Z. Prepregnancy body mass index and gestational weight gain with the outcome of pregnancy: A 13-year study of 292,568 cases in China. Arch. Gynecol. Obstet. 2012, 286, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Andersen, L.G.; Angquist, L.; Eriksson, J.G.; Forsen, T.; Gamborg, M.; Osmond, C.; Baker, J.L.; Sørensen, T.I.A. Birth weight, childhood body mass index and risk of coronary heart disease in adults: Combined historical cohort studies. PLoS ONE 2010, 5, e14126. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J.P.; Osmond, C.; Forsén, T.J.; Kajantie, E.; Eriksson, J.G. Trajectories of growth among children who have coronary events as adults. N. Engl. J. Med. 2005, 353, 1802–1809. [Google Scholar] [CrossRef] [PubMed]
- Dessì, A.; Ottonello, G.; Fanos, V. Physiopathology of intrauterine growth retardation: From classic data to metabolomics. J. Matern.-Fetal Neonatal Med. 2012, 25, 13–18. [Google Scholar] [CrossRef]
- Eriksson, J.G. Early growth, and coronary heart disease and type 2 diabetes: Experiences from the Helsinki Birth Cohort Studies. Int. J. Obes. 2006, 30 (Suppl. S4), S18–S22. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, J.G. Early growth and coronary heart disease and type 2 diabetes: Findings from the Helsinki Birth Cohort Study (HBCS). Am. J. Clin. Nutr. 2011, 94, 1799S–1802S. [Google Scholar] [CrossRef]
- Burton, G.J.; Fowden, A.L.; Thornburg, K.L. Placental Origins of Chronic Disease. Physiol. Rev. 2016, 96, 1509–1565. [Google Scholar] [CrossRef]
- Miranda, J.; Simões, R.V.; Paules, C.; Cañueto, D.; Pardo-Cea, M.A.; García-Martín, M.L.; Crovetto, F.; Fuertes-Martin, R.; Domenech, M.; Gómez-Roig, M.D.; et al. Metabolic profiling and targeted lipidomics reveals a disturbed lipid profile in mothers and fetuses with intrauterine growth restriction. Sci. Rep. 2018, 8, 13614. [Google Scholar] [CrossRef]
- Wang, X.; Cui, Y.; Tong, X.; Ye, H.; Li, S. Glucose and lipid metabolism in small-for-gestational-age infants at 72 hours of age. J. Clin. Endocrinol. Metab. 2007, 92, 681–684. [Google Scholar] [CrossRef] [PubMed]
- Pecks, U.; Brieger, M.; Schiessl, B.; Bauerschlag, D.O.; Piroth, D.; Bruno, B.; Fitzner, C.; Orlikowsky, T.; Maass, N.; Rath, W. Maternal and fetal cord blood lipids in intrauterine growth restriction. J. Perinat. Med. 2012, 40, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Cetin, I. Placental transport of amino acids in normal and growth-restricted pregnancies. Eur. J. Obstet. Gynecol. Reprod. Biol. 2003, 110 (Suppl. S1), S50–S54. [Google Scholar] [CrossRef]
- Cetin, I.; Corbetta, C.; Sereni, L.P.; Marconi, A.M.; Bozzetti, P.; Pardi, G.; Battaglia, F.C. Umbilical amino acid concentrations in normal and growth-retarded fetuses sampled in utero by cordocentesis. Am. J. Obstet. Gynecol. 1990, 162, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-Z.; Gerszten, R.E. Metabolomics and Proteomics in Type 2 Diabetes. Circ. Res. 2020, 126, 1613–1627. [Google Scholar] [CrossRef] [PubMed]
- Priante, E.; Verlato, G.; Giordano, G.; Stocchero, M.; Visentin, S.; Mardegan, V.; Baraldi, E. Intrauterine Growth Restriction: New Insight from the Metabolomic Approach. Metabolites 2019, 9, 267. [Google Scholar] [CrossRef]
- Yuan, X.; Ma, Y.; Wang, J.; Zhao, Y.; Zheng, W.; Yang, R.; Zhang, L.; Yan, X.; Li, G. The influence of maternal prepregnancy weight and gestational weight gain on the umbilical cord blood metabolome: A case-control study. BMC Pregnancy Childbirth 2024, 24, 297. [Google Scholar] [CrossRef]
- Mir, S.A.; Chen, L.; Burugupalli, S.; Burla, B.; Ji, S.; Smith, A.A.T.; Narasimhan, K.; Ramasamy, A.; Tan, K.M.-L.; Huynh, K.; et al. Population-based plasma lipidomics reveals developmental changes in metabolism and signatures of obesity risk: A mother-offspring cohort study. BMC Med. 2022, 20, 242. [Google Scholar] [CrossRef]
- Brittos, T.; de Souza, W.B.; Anschau, F.; Pellanda, L. Lipids and leukocytes in newborn umbilical vein blood, birth weight and maternal body mass index. J. Dev. Orig. Health Dis. 2016, 7, 672–677. [Google Scholar] [CrossRef] [PubMed]
- Averna, M.R.; Barbagallo, C.M.; Di Paola, G.; Labisi, M.; Pinna, G.; Marino, G.; Dimita, U.; Notarbartolo, A. Lipids, lipoproteins and apolipoproteins AI, AII, B, CII, CIII and E in newborns. Biol. Neonate 1991, 60, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Parker, C.R.; Carr, B.R.; Simpson, E.R.; MacDonald, P.C. Decline in the concentration of low-density lipoprotein-cholesterol in human fetal plasma near term. Metabolism 1983, 32, 919–923. [Google Scholar] [CrossRef] [PubMed]
- Augsten, M.; Hackl, H.; Ebner, B.; Chemelli, A.; Glatter, O.; Marsche, G.; Lang, U.; Desoye, G.; Wadsack, C. Fetal HDL/apoE: A novel regulator of gene expression in human placental endothelial cells. Physiol. Genom. 2011, 43, 1255–1262. [Google Scholar] [CrossRef] [PubMed]
- Stadler, J.T.; Wadsack, C.; Marsche, G. Fetal High-Density Lipoproteins: Current Knowledge on Particle Metabolism, Composition and Function in Health and Disease. Biomedicines 2021, 9, 349. [Google Scholar] [CrossRef] [PubMed]
- Anastasius, M.; Kockx, M.; Jessup, W.; Sullivan, D.; Rye, K.-A.; Kritharides, L. Cholesterol efflux capacity: An introduction for clinicians. Am. Heart J. 2016, 180, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Rauschert, S.; Uhl, O.; Koletzko, B.; Kirchberg, F.; Mori, T.A.; Huang, R.-C.; Beilin, L.J.; Hellmuth, C.; Oddy, W.H. Lipidomics Reveals Associations of Phospholipids With Obesity and Insulin Resistance in Young Adults. J. Clin. Endocrinol. Metab. 2016, 101, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Paavola, T.; Bergmann, U.; Kuusisto, S.; Kakko, S.; Savolainen, M.J.; Salonurmi, T. Distinct Fatty Acid Compositions of HDL Phospholipids Are Characteristic of Metabolic Syndrome and Premature Coronary Heart Disease-Family Study. Int. J. Mol. Sci. 2021, 22, 4908. [Google Scholar] [CrossRef]
- Wahl, S.; Yu, Z.; Kleber, M.; Singmann, P.; Holzapfel, C.; He, Y.; Mittelstrass, K.; Polonikov, A.; Prehn, C.; Römisch-Margl, W.; et al. Childhood obesity is associated with changes in the serum metabolite profile. Obes. Facts 2012, 5, 660–670. [Google Scholar] [CrossRef]
- Christian Flemming, G.M.; Bussler, S.; Körner, A.; Kiess, W. Definition and early diagnosis of metabolic syndrome in children. J. Pediatr. Endocrinol. Metab. 2020, 33, 821–833. [Google Scholar] [CrossRef]
- Mamun, A.A.; Mannan, M.; Doi, S.A.R. Gestational weight gain in relation to offspring obesity over the life course: A systematic review and bias-adjusted meta-analysis. Obes. Rev. 2014, 15, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Tindula, G.; Lee, D.; Huen, K.; Bradman, A.; Eskenazi, B.; Holland, N. Pregnancy lipidomic profiles and DNA methylation in newborns from the CHAMACOS cohort. Environ. Epigenet. 2019, 5, dvz004. [Google Scholar] [CrossRef]
- Benyshek, D.C. The “early life” origins of obesity-related health disorders: New discoveries regarding the intergenerational transmission of developmentally programmed traits in the global cardiometabolic health crisis. Am. J. Phys. Anthropol. 2013, 152 (Suppl. S57), 79–93. [Google Scholar] [CrossRef] [PubMed]
- Marchlewicz, E.H.; Dolinoy, D.C.; Tang, L.; Milewski, S.; Jones, T.R.; Goodrich, J.M.; Soni, T.; Domino, S.E.; Song, P.X.K.; F Burant, C.; et al. Lipid metabolism is associated with developmental epigenetic programming. Sci. Rep. 2016, 6, 34857. [Google Scholar] [CrossRef] [PubMed]
- Drozdz, D.; Alvarez-Pitti, J.; Wójcik, M.; Borghi, C.; Gabbianelli, R.; Mazur, A.; Herceg-Čavrak, V.; Lopez-Valcarcel, B.G.; Brzeziński, M.; Lurbe, E.; et al. Obesity and Cardiometabolic Risk Factors: From Childhood to Adulthood. Nutrients 2021, 13, 4176. [Google Scholar] [CrossRef]
- Kelishadi, R.; Badiee, Z.; Adeli, K. Cord blood lipid profile and associated factors: Baseline data of a birth cohort study. Paediatr. Perinat. Epidemiol. 2007, 21, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, H.N.; Packard, C.J.; Chapman, M.J.; Borén, J.; Aguilar-Salinas, C.A.; Averna, M.; Ference, B.A.; Gaudet, D.; Hegele, R.A.; Kersten, S.; et al. Triglyceride-rich lipoproteins and their remnants: Metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society. Eur. Heart J. 2021, 42, 4791–4806. [Google Scholar] [CrossRef] [PubMed]
- Nayak, C.D.; Agarwal, V.; Nayak, D.M. Correlation of cord blood lipid heterogeneity in neonates with their anthropometry at birth. Indian J. Clin. Biochem. 2013, 28, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Lobo, L.L.; Kumar, H.U.; Mishra, T.; Sundari, T.; Singh, A.; Kumar, C.V.; Rao, G.K.; Jahangir, B.; Misale, V.; Prashant, P.; et al. Small-for-gestational-age versus appropriate-for-gestational-age: Comparison of cord blood lipid profile & insulin levels in term newborns (SAGA-ACT study). Indian J. Med. Res. 2016, 144, 194–199. [Google Scholar] [CrossRef]
- Hou, R.-L.; Jin, W.-Y.; Chen, X.-Y.; Jin, Y.; Wang, X.-M.; Shao, J.; Zhao, Z.-Y. Cord blood C-peptide, insulin, HbA1c, and lipids levels in small- and large-for-gestational-age newborns. Med. Sci. Monit. 2014, 20, 2097–2105. [Google Scholar] [CrossRef]
- Godfrey, K.M. The role of the placenta in fetal programming-a review. Placenta 2002, 23 (Suppl. A), S20–S27. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J.; Bull, A.R.; Osmond, C.; Simmonds, S.J. Fetal and placental size and risk of hypertension in adult life. BMJ 1990, 301, 259–262. [Google Scholar] [CrossRef]
- Forsén, T.; Eriksson, J.G.; Tuomilehto, J.; Teramo, K.; Osmond, C.; Barker, D.J. Mother’s weight in pregnancy and coronary heart disease in a cohort of Finnish men: Follow up study. BMJ 1997, 315, 837–840. [Google Scholar] [CrossRef]
- Martyn, C.N.; Barker, D.J.; Osmond, C. Mothers’ pelvic size, fetal growth, and death from stroke and coronary heart disease in men in the UK. Lancet 1996, 348, 1264–1268. [Google Scholar] [CrossRef]
- Taageby Nielsen, S.; Mohr Lytsen, R.; Strandkjær, N.; Juul Rasmussen, I.; Sillesen, A.-S.; Vøgg, R.O.B.; Axelsson Raja, A.; Nordestgaard, B.G.; Kamstrup, P.R.; Iversen, K.; et al. Significance of lipids, lipoproteins, and apolipoproteins during the first 14–16 months of life. Eur. Heart J. 2023, 44, 4408–4418. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Y.; Ma, Z.; Zhu, Y.; Chen, Z. Altered amino acid metabolism between coronary heart disease patients with and without type 2 diabetes by quantitative 1H NMR based metabolomics. J. Pharm. Biomed. Anal. 2021, 206, 114381. [Google Scholar] [CrossRef] [PubMed]
- Siomkajło, M.; Daroszewski, J. Branched chain amino acids: Passive biomarkers or the key to the pathogenesis of cardiometabolic diseases? Adv. Clin. Exp. Med. 2019, 28, 1263–1269. [Google Scholar] [CrossRef]
- Yoo, H.-S.; Shanmugalingam, U.; Smith, P.D. Potential roles of branched-chain amino acids in neurodegeneration. Nutrition 2022, 103–104, 111762. [Google Scholar] [CrossRef]
- Arany, Z.; Neinast, M. Branched Chain Amino Acids in Metabolic Disease. Curr. Diab. Rep. 2018, 18, 76. [Google Scholar] [CrossRef]
- Yao, M.; Yang, Z.; Rong, X.; Hu, X.; Yao, N.; Zhu, M.; Wang, X.; Zhu, X.; Yin, J. The Exploration of Fetal Growth Restriction Based on Metabolomics: A Systematic Review. Metabolites 2022, 12, 860. [Google Scholar] [CrossRef]
- Choi, W.; Kim, J.; Ko, J.W.; Choi, A.; Kwon, Y.H. Effects of maternal branched-chain amino acid and alanine supplementation on growth and biomarkers of protein metabolism in dams fed a low-protein diet and their offspring. Amino Acids 2022, 54, 977–988. [Google Scholar] [CrossRef] [PubMed]
- van Lee, L.; Crozier, S.R.; Aris, I.M.; Tint, M.T.; Sadananthan, S.A.; Michael, N.; Quah, P.L.; Robinson, S.M.; Inskip, H.M.; Harvey, N.C.; et al. Prospective associations of maternal choline status with offspring body composition in the first 5 years of life in two large mother-offspring cohorts: The Southampton Women’s Survey cohort and the Growing Up in Singapore Towards healthy Outcomes cohort. Int. J. Epidemiol. 2019, 48, 433–444. [Google Scholar] [CrossRef]
- Lowe, W.L.; Bain, J.R.; Nodzenski, M.; Reisetter, A.C.; Muehlbauer, M.J.; Stevens, R.D.; Ilkayeva, O.R.; Lowe, L.P.; Metzger, B.E.; Newgard, C.B.; et al. Maternal BMI and Glycemia Impact the Fetal Metabolome. Diabetes Care 2017, 40, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Hoenig, J.M.; Heisey, D.M. The Abuse of Power. Am. Stat. 2001, 55, 19–24. [Google Scholar] [CrossRef]
- Ebner, A.; Thyrian, J.R.; Lange, A.; Lingnau, M.-L.; Scheler-Hofmann, M.; Rosskopf, D.; Zygmunt, M.; Haas, J.-P.; Hoffmann, W.; Fusch, C. Survey of Neonates in Pomerania (SNiP): A population-based birth study—Objectives, design and population coverage. Paediatr. Perinat. Epidemiol. 2010, 24, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Kantorczyk, E.; Domanski, G.; Lange, A.E.; Ittermann, T.; Allenberg, H.; Zygmunt, M.; Heckmann, M. Survey of Neonates in Pomerania (SNiP): Study design and cohort update. Paediatr. Perinat. Epidemiol. 2020, 34, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Voigt, M.; Rochow, N.; Schneider, K.T.M.; Hagenah, H.-P.; Scholz, R.; Hesse, V.; Wittwer-Backofen, U.; Straube, S.; Olbertz, D. Neue Perzentilwerte für die Körpermaße neugeborener Einlinge: Ergebnisse der deutschen Perinatalerhebung der Jahre 2007–2011 unter Beteiligung aller 16 Bundesländer. Z. Geburtshilfe Neonatol. 2014, 218, 210–217. [Google Scholar] [CrossRef]
- Salafia, C.M.; Charles, A.K.; Maas, E.M. Placenta and fetal growth restriction. Clin. Obstet. Gynecol. 2006, 49, 236–256. [Google Scholar] [CrossRef] [PubMed]
- Risnes, K.R.; Romundstad, P.R.; Nilsen, T.I.L.; Eskild, A.; Vatten, L.J. Placental weight relative to birth weight and long-term cardiovascular mortality: Findings from a cohort of 31,307 men and women. Am. J. Epidemiol. 2009, 170, 622–631. [Google Scholar] [CrossRef]
- Pinto, J.; Domingues, M.R.M.; Galhano, E.; Pita, C.; Almeida, M.d.C.; Carreira, I.M.; Gil, A.M. Human plasma stability during handling and storage: Impact on NMR metabolomics. Analyst 2014, 139, 1168–1177. [Google Scholar] [CrossRef]
Pre-Pregnancy BMI | |||||
---|---|---|---|---|---|
n | Underweight (BMI < 18.5 kg/m2) | n | Normal Weight (BMI 18.5–25 kg/m2) | p * | |
Maternal age, years | 239 | 24 (21; 28) | 208 | 28 (24; 32) | <0.01 |
Female sex of child, n (%) | 239 | 106 (44.4) | 208 | 94 (45.2) | 0.92 |
Pre-pregnancy BMI, kg/m2 | 239 | 18.0 (17.4; 18.3) | 208 | 21.5 (20.1; 22.7) | <0.01 |
Placenta weight, g | 125 | 520 (450; 590) | 103 | 555 (485; 610) | 0.01 |
Smoking during pregnancy, n (%) | 239 | 94 (39.3) | 208 | 33 (15.9) | <0.01 |
Neonatal hypoglycemia, n (%) | 239 | 7 (2.9) | 208 | 2 (1.0) | 0.18 |
Gestational weight gain, kg | 239 | 16.0 (13.0; 19.0) | 208 | 16.0 (13.0; 20.0) | 0.32 |
Gestational age, n (%) | 239 | 208 | <0.01 | ||
<32 weeks 32–36 weeks 37–41 weeks >41 weeks | 6 (2.5) 18 (7.5) 212 (88.3) 4 (1.7) | 0 0 201 (96.6) 7 (3.4) | |||
Birth weight, n (%) | 239 | 208 | < 0.01 | ||
AGA SGA LGA | 195 (81.3) 34 (14.2) 11 (4.6) | 204 (98.1) 2 (1.0) 2 (1.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lichtwald, A.; Ittermann, T.; Friedrich, N.; Lange, A.E.; Winter, T.; Kolbe, C.; Allenberg, H.; Nauck, M.; Heckmann, M. Impact of Maternal Pre-Pregnancy Underweight on Cord Blood Metabolome: An Analysis of the Population-Based Survey of Neonates in Pomerania (SNiP). Int. J. Mol. Sci. 2024, 25, 7552. https://doi.org/10.3390/ijms25147552
Lichtwald A, Ittermann T, Friedrich N, Lange AE, Winter T, Kolbe C, Allenberg H, Nauck M, Heckmann M. Impact of Maternal Pre-Pregnancy Underweight on Cord Blood Metabolome: An Analysis of the Population-Based Survey of Neonates in Pomerania (SNiP). International Journal of Molecular Sciences. 2024; 25(14):7552. https://doi.org/10.3390/ijms25147552
Chicago/Turabian StyleLichtwald, Alexander, Till Ittermann, Nele Friedrich, Anja Erika Lange, Theresa Winter, Claudia Kolbe, Heike Allenberg, Matthias Nauck, and Matthias Heckmann. 2024. "Impact of Maternal Pre-Pregnancy Underweight on Cord Blood Metabolome: An Analysis of the Population-Based Survey of Neonates in Pomerania (SNiP)" International Journal of Molecular Sciences 25, no. 14: 7552. https://doi.org/10.3390/ijms25147552
APA StyleLichtwald, A., Ittermann, T., Friedrich, N., Lange, A. E., Winter, T., Kolbe, C., Allenberg, H., Nauck, M., & Heckmann, M. (2024). Impact of Maternal Pre-Pregnancy Underweight on Cord Blood Metabolome: An Analysis of the Population-Based Survey of Neonates in Pomerania (SNiP). International Journal of Molecular Sciences, 25(14), 7552. https://doi.org/10.3390/ijms25147552