Mycobacterial Biofilm: Mechanisms, Clinical Problems, and Treatments
Abstract
:1. Introduction
2. The Components of Mycobacterial Biofilm
2.1. Polysaccharides
2.2. Proteins
2.3. eDNA
2.4. Mycolic Acid
3. Genes and Molecules Involved in Mycobacterial Biofilm Development
3.1. ABC Transporter
3.2. Pks1
3.3. Peptidyl-Prolyl Isomerase-B (PpiB)
3.4. GroEL1
3.5. MprB
3.6. Stringent Response-Related Molecules
3.6.1. (P)ppGpp
3.6.2. Poly(P)
3.7. c-di-GMP
4. Clinical Problems
4.1. Does Mycobacterial Biofilm Exist In Vivo?
4.2. Virulence
4.3. Biofilm-Associated Infections
4.4. Drug Resistance
5. Treatments
5.1. Drugs Targeting Biofilm
5.1.1. Intervening in RelMtb
5.1.2. Intervening in Trehalose Catalytic Shift
5.1.3. Promoting Biofilm Destruction
5.1.4. Multi-Function of Antibiofilm Agents
5.2. Methods to Assist Antibiofilm Agents
5.2.1. Ultrasound-Triggered Nanoparticles
5.2.2. Nanoparticles with Mucus Penetrating Agents
6. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Mack, W.N.; Mack, J.P.; Ackerson, A.O. Microbial film development in a trickling filter. Microb. Ecol. 1975, 2, 215–226. [Google Scholar] [CrossRef]
- Esteban, J.; García-Coca, M. Mycobacterium Biofilms. Front. Microbiol. 2017, 8, 2651. [Google Scholar] [CrossRef]
- Costerton, J.W.; Geesey, G.G.; Cheng, K.J. How bacteria stick. Sci. Am. 1978, 238, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Ojha, A.K.; Baughn, A.D.; Sambandan, D.; Hsu, T.; Trivelli, X.; Guerardel, Y.; Alahari, A.; Kremer, L.; Jacobs, W.R., Jr.; Hatfull, G.F. Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol. Microbiol. 2008, 69, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Portell-Buj, E.; López-Gavín, A.; González-Martín, J.; Tudó, G. In Vitro Biofilm Formation in Mycobacterium avium-intracellulare Complex. Arch. Bronconeumol. 2021, 57, 140–141. [Google Scholar] [CrossRef]
- Chakraborty, P.; Bajeli, S.; Kaushal, D.; Radotra, B.D.; Kumar, A. Biofilm formation in the lung contributes to virulence and drug tolerance of Mycobacterium tuberculosis. Nat. Commun. 2021, 12, 1606. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Y.; Guo, Q.; He, S.; Fan, J.; Xu, L.; Zhang, Z.; Wu, W.; Chu, H. Antibacterial peptide RP557 increases the antibiotic sensitivity of Mycobacterium abscessus by inhibiting biofilm formation. Sci. Total Environ. 2022, 807 Pt 3, 151855. [Google Scholar] [CrossRef]
- Patel, R.R.; Arun, P.P.; Singh, S.K.; Singh, M. Mycobacterial biofilms: Understanding the genetic factors playing significant role in pathogenesis, resistance and diagnosis. Life Sci. 2024, 351, 122778. [Google Scholar] [CrossRef]
- Global Tuberculosis Report; World Health Organization: Geneva, Switzerland, 2023.
- Muñoz-Egea, M.C.; Akir, A.; Esteban, J. Mycobacterium biofilms. Biofilm 2023, 5, 100107. [Google Scholar] [CrossRef]
- Chakraborty, P.; Kumar, A. The extracellular matrix of mycobacterial biofilms: Could we shorten the treatment of mycobacterial infections? Microb. Cell 2019, 6, 105–122. [Google Scholar] [CrossRef]
- Trivedi, A.; Mavi, P.S.; Bhatt, D.; Kumar, A. Thiol reductive stress induces cellulose-anchored biofilm formation in Mycobacterium tuberculosis. Nat. Commun. 2016, 7, 11392. [Google Scholar] [CrossRef] [PubMed]
- Kolbe, K.; Veleti, S.K.; Reiling, N.; Lindhorst, T.K. Lectins of Mycobacterium tuberculosis—Rarely studied proteins. Beilstein J. Org. Chem. 2019, 15, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kundu, M.; Basu, J.; Chakrabarti, P. Purification and characterization of an extracellular lectin from Mycobacterium smegmatis. FEBS Lett. 1989, 256, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Goswami, S.; Sarkar, S.; Basu, J.; Kundu, M.; Chakrabarti, P. Mycotin: A lectin involved in the adherence of Mycobacteria to macrophages. FEBS Lett. 1994, 355, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Anton, V.; Rougé, P.; Daffé, M. Identification of the sugars involved in mycobacterial cell aggregation. FEMS Microbiol. Lett. 1996, 144, 167–170. [Google Scholar] [CrossRef]
- Sharma, D.K.; Rajpurohit, Y.S. Multitasking functions of bacterial extracellular DNA in biofilms. J. Bacteriol. 2024, 206, e0000624. [Google Scholar] [CrossRef] [PubMed]
- Ilinov, A.; Nishiyama, A.; Namba, H.; Fukushima, Y.; Takihara, H.; Nakajima, C.; Savitskaya, A.; Gebretsadik, G.; Hakamata, M.; Ozeki, Y.; et al. Extracellular DNA of slow growers of mycobacteria and its contribution to biofilm formation and drug tolerance. Sci. Rep. 2021, 11, 10953. [Google Scholar] [CrossRef] [PubMed]
- Rose, S.J.; Babrak, L.M.; Bermudez, L.E. Mycobacterium avium Possesses Extracellular DNA that Contributes to Biofilm Formation, Structural Integrity, and Tolerance to Antibiotics. PLoS ONE 2015, 10, e0128772. [Google Scholar] [CrossRef] [PubMed]
- Rose, S.J.; Bermudez, L.E. Identification of Bicarbonate as a Trigger and Genes Involved with Extracellular DNA Export in Mycobacterial Biofilms. mBio 2016, 7, e01597-16. [Google Scholar] [CrossRef]
- Kurbatfinski, N.; Hill, P.J.; Tobin, N.; Kramer, C.N.; Wickham, J.; Goodman, S.D.; Hall-Stoodley, L.; Bakaletz, L.O. Disruption of nontuberculous mycobacteria biofilms induces a highly vulnerable to antibiotic killing phenotype. Biofilm 2023, 6, 100166. [Google Scholar] [CrossRef]
- Buzzo, J.R.; Devaraj, A.; Gloag, E.S.; Jurcisek, J.A.; Robledo-Avila, F.; Kesler, T.; Wilbanks, K.; Mashburn-Warren, L.; Balu, S.; Wickham, J.; et al. Z-form extracellular DNA is a structural component of the bacterial biofilm matrix. Cell 2021, 184, 5740–5758.e17. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, N.; Takayama, K.; Jordi, H.C.; Schnoes, H.K. Characterization of the purified components of a new homologous series of alpha-mycolic acids from Mycobacterium tuberculosis H37Ra. J. Biol. Chem. 1978, 253, 5411–5417. [Google Scholar] [CrossRef]
- Takayama, K.; Wang, C.; Besra, G.S. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin. Microbiol. Rev. 2005, 18, 81–101. [Google Scholar] [CrossRef]
- Ma, F.; Zhou, H.; Yang, Z.; Wang, C.; An, Y.; Ni, L.; Liu, M.; Wang, Y.; Yu, L. Gene expression profile analysis and target gene discovery of Mycobacterium tuberculosis biofilm. Appl. Microbiol. Biotechnol. 2021, 105, 5123–5134. [Google Scholar] [CrossRef] [PubMed]
- Hegde, S.R. Computational Identification of the Proteins Associated With Quorum Sensing and Biofilm Formation in Mycobacterium tuberculosis. Front. Microbiol. 2019, 10, 3011. [Google Scholar] [CrossRef]
- Pang, J.M.; Layre, E.; Sweet, L.; Sherrid, A.; Moody, D.B.; Ojha, A.; Sherman, D.R. The polyketide Pks1 contributes to biofilm formation in Mycobacterium tuberculosis. J. Bacteriol. 2012, 194, 715–721. [Google Scholar] [CrossRef]
- Kumar, A.; Alam, A.; Grover, S.; Pandey, S.; Tripathi, D.; Kumari, M.; Rani, M.; Singh, A.; Akhter, Y.; Ehtesham, N.Z.; et al. Peptidyl-prolyl isomerase-B is involved in Mycobacterium tuberculosis biofilm formation and a generic target for drug repurposing-based intervention. NPJ Biofilms Microbiomes 2019, 5, 3. [Google Scholar] [CrossRef] [PubMed]
- Ojha, A.; Anand, M.; Bhatt, A.; Kremer, L.; Jacobs, W.R., Jr.; Hatfull, G.F. GroEL1: A dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 2005, 123, 861–873. [Google Scholar] [CrossRef]
- Zeng, S.; Constant, P.; Yang, D.; Baulard, A.; Lefèvre, P.; Daffé, M.; Wattiez, R.; Fontaine, V. Cpn60.1 (GroEL1) Contributes to Mycobacterial Crabtree Effect: Implications for Biofilm Formation. Front. Microbiol. 2019, 10, 1149. [Google Scholar] [CrossRef]
- Lei, Y.; Rahman, K.; Cao, X.; Yang, B.; Zhou, W.; Reheman, A.; Cai, L.; Wang, Y.; Tyagi, R.; Wang, Z.; et al. Epinephrine Stimulates Mycobacterium tuberculosis Growth and Biofilm Formation. Int. J. Mol. Sci. 2023, 24, 17370. [Google Scholar] [CrossRef]
- Weiss, L.A.; Stallings, C.L. Essential roles for Mycobacterium tuberculosis Rel beyond the production of (p)ppGpp. J. Bacteriol. 2013, 195, 5629–5638. [Google Scholar] [CrossRef] [PubMed]
- Chuang, Y.M.; Dutta, N.K.; Hung, C.F.; Wu, T.C.; Rubin, H.; Karakousis, P.C. Stringent Response Factors PPX1 and PPK2 Play an Important Role in Mycobacterium tuberculosis Metabolism, Biofilm Formation, and Sensitivity to Isoniazid In Vivo. Antimicrob. Agents Chemother. 2016, 60, 6460–6470. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, Y.; Hu, J.; Leng, G.; Liu, X.; Cui, Z.; Wang, W.; Ma, Y.; Sha, S. Cellulase Promotes Mycobacterial Biofilm Dispersal in Response to a Decrease in the Bacterial Metabolite Gamma-Aminobutyric Acid. Int. J. Mol. Sci. 2024, 25, 1051. [Google Scholar] [CrossRef] [PubMed]
- Davidson, A.L.; Dassa, E.; Orelle, C.; Chen, J. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol. Mol. Biol. Rev. 2008, 72, 317–364. [Google Scholar] [CrossRef]
- Liang, J.; Liu, F.; Xu, P.; Shangguan, W.; Hu, T.; Wang, S.; Yang, X.; Xiong, Z.; Yang, X.; Guddat, L.W.; et al. Molecular recognition of trehalose and trehalose analogues by Mycobacterium tuberculosis LpqY-SugABC. Proc. Natl. Acad. Sci. USA 2023, 120, e2307625120. [Google Scholar] [CrossRef] [PubMed]
- Adhikary, A.; Chatterjee, D.; Ghosh, A.S. ABC superfamily transporter Rv1273c of Mycobacterium tuberculosis acts as a multidrug efflux pump. FEMS Microbiol. Lett. 2023, 370, fnad114. [Google Scholar] [CrossRef]
- Chatterjee, D.; Panda, A.P.; Daya Manasi, A.R.; Ghosh, A.S. P-type ATPase zinc transporter Rv3270 of Mycobacterium tuberculosis enhances multi-drug efflux activity. Microbiology 2024, 170, 001441. [Google Scholar] [CrossRef] [PubMed]
- Ramos, B.; Gordon, S.V.; Cunha, M.V. Revisiting the expression signature of pks15/1 unveils regulatory patterns controlling phenolphtiocerol and phenolglycolipid production in pathogenic mycobacteria. PLoS ONE 2020, 15, e0229700. [Google Scholar] [CrossRef]
- Pandey, S.; Tripathi, D.; Khubaib, M.; Kumar, A.; Sheikh, J.A.; Sumanlatha, G.; Ehtesham, N.Z.; Hasnain, S.E. Mycobacterium tuberculosis Peptidyl-Prolyl Isomerases Are Immunogenic, Alter Cytokine Profile and Aid in Intracellular Survival. Front. Cell. Infect. Microbiol. 2017, 7, 38. [Google Scholar] [CrossRef]
- Houry, W.A.; Frishman, D.; Eckerskorn, C.; Lottspeich, F.; Hartl, F.U. Identification of in vivo substrates of the chaperonin GroEL. Nature 1999, 402, 147–154. [Google Scholar] [CrossRef]
- Ansari, M.Y.; Batra, S.D.; Ojha, H.; Dhiman, K.; Ganguly, A.; Tyagi, J.S.; Mande, S.C. A novel function of Mycobacterium tuberculosis chaperonin paralog GroEL1 in copper homeostasis. FEBS Lett. 2020, 594, 3305–3323. [Google Scholar] [CrossRef] [PubMed]
- Mediavilla, J.; Jain, S.; Kriakov, J.; Ford, M.E.; Duda, R.L.; Jacobs, W.R., Jr.; Hendrix, R.W.; Hatfull, G.F. Genome organization and characterization of mycobacteriophage Bxb1. Mol. Microbiol. 2000, 38, 955–970. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P.; Kim, A.I.; Hatfull, G.F. The orientation of mycobacteriophage Bxb1 integration is solely dependent on the central dinucleotide of attP and attB. Mol. Cell 2003, 12, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Klebl, D.P.; Zeng, S.; Sobott, F.; Prévost, M.; Soumillion, P.; Vandenbussche, G.; Fontaine, V. Interplays between copper and Mycobacterium tuberculosis GroEL1. Metallomics 2020, 12, 1267–1277. [Google Scholar] [CrossRef] [PubMed]
- Roghanian, M.; Van Nerom, K.; Takada, H.; Caballero-Montes, J.; Tamman, H.; Kudrin, P.; Talavera, A.; Dzhygyr, I.; Ekström, S.; Atkinson, G.C.; et al. (p)ppGpp controls stringent factors by exploiting antagonistic allosteric coupling between catalytic domains. Mol. Cell 2021, 81, 3310–3322.e6. [Google Scholar] [CrossRef] [PubMed]
- Boutte, C.C.; Crosson, S. Bacterial lifestyle shapes stringent response activation. Trends Microbiol. 2013, 21, 174–180. [Google Scholar] [CrossRef]
- Dutta, N.K.; Klinkenberg, L.G.; Vazquez, M.J.; Segura-Carro, D.; Colmenarejo, G.; Ramon, F.; Rodriguez-Miquel, B.; Mata-Cantero, L.; Porras-De Francisco, E.; Chuang, Y.M.; et al. Inhibiting the stringent response blocks Mycobacterium tuberculosis entry into quiescence and reduces persistence. Sci. Adv. 2019, 5, eaav2104. [Google Scholar] [CrossRef] [PubMed]
- Rao, N.N.; Gómez-García, M.R.; Kornberg, A. Inorganic polyphosphate: Essential for growth and survival. Annu. Rev. Biochem. 2009, 78, 605–647. [Google Scholar] [CrossRef]
- Chuang, Y.M.; Bandyopadhyay, N.; Rifat, D.; Rubin, H.; Bader, J.S.; Karakousis, P.C. Deficiency of the novel exopolyphosphatase Rv1026/PPX2 leads to metabolic downshift and altered cell wall permeability in Mycobacterium tuberculosis. mBio 2015, 6, e02428. [Google Scholar] [CrossRef]
- Sureka, K.; Dey, S.; Datta, P.; Singh, A.K.; Dasgupta, A.; Rodrigue, S.; Basu, J.; Kundu, M. Polyphosphate kinase is involved in stress-induced mprAB-sigE-rel signalling in mycobacteria. Mol. Microbiol. 2007, 65, 261–276. [Google Scholar] [CrossRef]
- Choi, M.Y.; Wang, Y.; Wong, L.L.; Lu, B.T.; Chen, W.Y.; Huang, J.D.; Tanner, J.A.; Watt, R.M. The two PPX-GppA homologues from Mycobacterium tuberculosis have distinct biochemical activities. PLoS ONE 2012, 7, e42561. [Google Scholar] [CrossRef] [PubMed]
- Sharma, I.M.; Petchiappan, A.; Chatterji, D. Quorum sensing and biofilm formation in mycobacteria: Role of c-di-GMP and methods to study this second messenger. IUBMB Life 2014, 66, 823–834. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.B.; Bassler, B.L. Quorum sensing in bacteria. Annu. Rev. Microbiol. 2001, 55, 165–199. [Google Scholar] [CrossRef] [PubMed]
- Römling, U.; Galperin, M.Y.; Gomelsky, M. Cyclic di-GMP: The first 25 years of a universal bacterial second messenger. Microbiol. Mol. Biol. Rev. 2013, 77, 1–52. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cao, B.; Yang, L.; Gu, J.D. Biofilm control by interfering with c-di-GMP metabolism and signaling. Biotechnol. Adv. 2022, 56, 107915. [Google Scholar] [CrossRef] [PubMed]
- Ling, X.; Liu, X.; Wang, K.; Guo, M.; Ou, Y.; Li, D.; Xiang, Y.; Zheng, J.; Hu, L.; Zhang, H.; et al. Lsr2 acts as a cyclic di-GMP receptor that promotes keto-mycolic acid synthesis and biofilm formation in mycobacteria. Nat. Commun. 2024, 15, 695. [Google Scholar] [CrossRef] [PubMed]
- Kerns, P.W.; Ackhart, D.F.; Basaraba, R.J.; Leid, J.G.; Shirtliff, M.E. Mycobacterium tuberculosis pellicles express unique proteins recognized by the host humoral response. Pathog. Dis. 2014, 70, 347–358. [Google Scholar] [CrossRef]
- Youngblom, M.A.; Smith, T.M.; Murray, H.J.; Pepperell, C.S. Adaptation of the Mycobacterium tuberculosis transcriptome to biofilm growth. PLoS Pathog. 2024, 20, e1012124. [Google Scholar] [CrossRef] [PubMed]
- Yam, Y.K.; Alvarez, N.; Go, M.L.; Dick, T. Extreme Drug Tolerance of Mycobacterium abscessus “Persisters”. Front. Microbiol. 2020, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, M.; Hall-Stoodley, L.; Allan, R.N.; Faust, S.N. New approaches to the treatment of biofilm-related infections. J. Infect. 2014, 69 (Suppl. S1), S47–S52. [Google Scholar] [CrossRef]
- Costerton, J.W.; Lewandowski, Z.; Caldwell, D.E.; Korber, D.R.; Lappin-Scott, H.M. Microbial biofilms. Annu. Rev. Microbiol. 1995, 49, 711–745. [Google Scholar] [CrossRef]
- Vasiliu, A.; Martinez, L.; Gupta, R.K.; Hamada, Y.; Ness, T.; Kay, A.; Bonnet, M.; Sester, M.; Kaufmann, S.H.E.; Lange, C.; et al. Tuberculosis prevention: Current strategies and future directions. Clin. Microbiol. Infect. 2023; in press. [Google Scholar] [CrossRef]
- Lenaerts, A.J.; Hoff, D.; Aly, S.; Ehlers, S.; Andries, K.; Cantarero, L.; Orme, I.M.; Basaraba, R.J. Location of persisting mycobacteria in a Guinea pig model of tuberculosis revealed by r207910. Antimicrob. Agents Chemother. 2007, 51, 3338–3345. [Google Scholar] [CrossRef]
- Basaraba, R.J.; Ojha, A.K. Mycobacterial Biofilms: Revisiting Tuberculosis Bacilli in Extracellular Necrotizing Lesions. Microbiol. Spectr. 2017, 5. [Google Scholar] [CrossRef]
- Kumar, A. House of cellulose—A new hideout for drug tolerant Mycobacterium tuberculosis. Microb. Cell 2016, 3, 299–301. [Google Scholar] [CrossRef] [PubMed]
- Akir, A.; Senhaji-Kacha, A.; Muñoz-Egea, M.C.; Esteban, J.; Aguilera-Correa, J.J. Biofilm Development by Mycobacterium avium Complex Clinical Isolates: Effect of Clarithromycin in Ultrastructure. Antibiotics 2024, 13, 263. [Google Scholar] [CrossRef] [PubMed]
- Senhaji-Kacha, A.; Akir, A.; Broncano-Lavado, A.; Esteban, J. Biofilm prevention concentration of clarithromycin against clinically relevant species of nontuberculous mycobacteria. Rev. Esp. Quimioter. 2024, 37, 266–269. [Google Scholar] [CrossRef]
- Guilhen, C.; Forestier, C.; Balestrino, D. Biofilm dispersal: Multiple elaborate strategies for dissemination of bacteria with unique properties. Mol. Microbiol. 2017, 105, 188–210. [Google Scholar] [CrossRef]
- Varrot, A.; Leydier, S.; Pell, G.; Macdonald, J.M.; Stick, R.V.; Henrissat, B.; Gilbert, H.J.; Davies, G.J. Mycobacterium tuberculosis strains possess functional cellulases. J. Biol. Chem. 2005, 280, 20181–20184. [Google Scholar] [CrossRef]
- Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: A common cause of persistent infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef]
- Su, K.; Liang, Z.; Zhang, S.; Liao, W.; Gu, J.; Guo, Y.; Li, G.; An, T. The abundance and pathogenicity of microbes in automobile air conditioning filters across the typical cities of China and Europe. J. Hazard. Mater. 2024, 472, 134459. [Google Scholar] [CrossRef]
- Chand, M.; Lamagni, T.; Kranzer, K.; Hedge, J.; Moore, G.; Parks, S.; Collins, S.; Del Ojo Elias, C.; Ahmed, N.; Brown, T.; et al. Insidious Risk of Severe Mycobacterium chimaera Infection in Cardiac Surgery Patients. Clin. Infect. Dis. 2017, 64, 335–342. [Google Scholar] [CrossRef]
- El Helou, G.; Viola, G.M.; Hachem, R.; Han, X.Y.; Raad, I.I. Rapidly growing mycobacterial bloodstream infections. Lancet Infect. Dis. 2013, 13, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Tiwari, M.; Donelli, G.; Tiwari, V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018, 9, 522–554. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Torigoe, S.; Kobayashi, H. Formative evaluation and structural analysis of non-tuberculosis mycobacterial biofilm using material pieces. Cell Surf. 2024, 11, 100125. [Google Scholar] [CrossRef] [PubMed]
- Tortoli, E.; Rindi, L.; Garcia, M.J.; Chiaradonna, P.; Dei, R.; Garzelli, C.; Kroppenstedt, R.M.; Lari, N.; Mattei, R.; Mariottini, A.; et al. Proposal to elevate the genetic variant MAC-A, included in the Mycobacterium avium complex, to species rank as Mycobacterium chimaera sp. nov. Int. J. Syst. Evol. Microbiol. 2004, 54 Pt 4, 1277–1285. [Google Scholar] [CrossRef] [PubMed]
- Kanamori, H.; Weber, D.J.; Rutala, W.A. Healthcare-Associated Mycobacterium chimaera Transmission and Infection Prevention Challenges: Role of Heater-Cooler Units as a Water Source in Cardiac Surgery. Clin. Infect. Dis. 2017, 64, 343–346. [Google Scholar] [CrossRef]
- Cannas, A.; Campanale, A.; Minella, D.; Messina, F.; Butera, O.; Nisii, C.; Mazzarelli, A.; Fontana, C.; Lispi, L.; Maraglino, F.; et al. Epidemiological and Molecular Investigation of the Heater-Cooler Unit (HCU)-Related Outbreak of Invasive Mycobacterium chimaera Infection Occurred in Italy. Microorganisms 2023, 11, 2251. [Google Scholar] [CrossRef]
- Walker, J.; Moore, G.; Collins, S.; Parks, S.; Garvey, M.I.; Lamagni, T.; Smith, G.; Dawkin, L.; Goldenberg, S.; Chand, M. Microbiological problems and biofilms associated with Mycobacterium chimaera in heater-cooler units used for cardiopulmonary bypass. J. Hosp. Infect. 2017, 96, 209–220. [Google Scholar] [CrossRef]
- Wetzstein, N.; Kohl, T.A.; Diricks, M.; Mas-Peiro, S.; Holubec, T.; Kessel, J.; Graf, C.; Koch, B.; Herrmann, E.; Vehreschild, M.J.G.T.; et al. Clinical characteristics and outcome of Mycobacterium chimaera infections after cardiac surgery: Systematic review and meta-analysis of 180 heater-cooler unit-associated cases. Clin. Microbiol. Infect. 2023, 29, 1008–1014. [Google Scholar] [CrossRef]
- Dheda, K.; Mirzayev, F.; Cirillo, D.M.; Udwadia, Z.; Dooley, K.E.; Chang, K.C.; Omar, S.V.; Reuter, A.; Perumal, T.; Horsburgh, C.R., Jr.; et al. Multidrug-resistant tuberculosis. Nat. Rev. Dis. Primers 2024, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Lebeaux, D.; Ghigo, J.M.; Beloin, C. Biofilm-related infections: Bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol. Mol. Biol. Rev. 2014, 78, 510–543. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 2001, 45, 999–1007. [Google Scholar] [CrossRef]
- Datta, D.; Jamwal, S.; Jyoti, N.; Patnaik, S.; Kumar, D. Actionable mechanisms of drug tolerance and resistance in Mycobacterium tuberculosis. FEBS J. 2024; in press. [Google Scholar] [CrossRef] [PubMed]
- Stewart, P.S.; Costerton, J.W. Antibiotic resistance of bacteria in biofilms. Lancet 2001, 358, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Gordon, C.A.; Hodges, N.A.; Marriott, C. Antibiotic interaction and diffusion through alginate and exopolysaccharide of cystic fibrosis-derived Pseudomonas aeruginosa. J. Antimicrob. Chemother. 1988, 22, 667–674. [Google Scholar] [CrossRef]
- Stewart, P.S.; Franklin, M.J. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 2008, 6, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Dheda, K.; Barry, C.E., 3rd; Maartens, G. Tuberculosis. Lancet 2016, 387, 1211–1226. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.J.; Wang, D.; Wen, X.; Weiner, D.M.; Via, L.E. One Size Fits All? Not in In Vivo Modeling of Tuberculosis Chemotherapeutics. Front. Cell. Infect. Microbiol. 2021, 11, 613149. [Google Scholar] [CrossRef]
- Batoni, G.; Maisetta, G.; Esin, S. Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria. Biochim. Biophys. Acta 2016, 1858, 1044–1060. [Google Scholar] [CrossRef]
- Tkachenko, A.G.; Kashevarova, N.M.; Sidorov, R.Y.; Nesterova, L.Y.; Akhova, A.V.; Tsyganov, I.V.; Vaganov, V.Y.; Shipilovskikh, S.A.; Rubtsov, A.E.; Malkov, A.V. A synthetic diterpene analogue inhibits mycobacterial persistence and biofilm formation by targeting (p)ppGpp synthetases. Cell Chem. Biol. 2021, 28, 1420–1432.e9. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.J.; Lee, S.K.; Song, N.; Nathan, T.O.; Swarts, B.M.; Eum, S.Y.; Ehrt, S.; Cho, S.N.; Eoh, H. Transient drug-tolerance and permanent drug-resistance rely on the trehalose-catalytic shift in Mycobacterium tuberculosis. Nat. Commun. 2019, 10, 2928. [Google Scholar] [CrossRef] [PubMed]
- Wolber, J.M.; Urbanek, B.L.; Meints, L.M.; Piligian, B.F.; Lopez-Casillas, I.C.; Zochowski, K.M.; Woodruff, P.J.; Swarts, B.M. The trehalose-specific transporter LpqY-SugABC is required for antimicrobial and anti-biofilm activity of trehalose analogues in Mycobacterium smegmatis. Carbohydr. Res. 2017, 450, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Kalera, K.; Liu, R.; Lim, J.; Pathirage, R.; Swanson, D.H.; Johnson, U.G.; Stothard, A.I.; Lee, J.J.; Poston, A.W.; Woodruff, P.J.; et al. Targeting Mycobacterium tuberculosis Persistence through Inhibition of the Trehalose Catalytic Shift. ACS Infect. Dis. 2024, 10, 1391–1404. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, Y.; Yang, M.; Hu, C.; Liao, H.; Li, D.; Du, Y. Synergistic antibacterial effects of ultrasound combined nanoparticles encapsulated with cellulase and levofloxacin on Bacillus Calmette-Guérin biofilms. Front. Microbiol. 2023, 14, 1108064. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Behera, A.; Tiwari, P.; Karthik, S.; Biswas, M.; Sonawane, A.; Mobin, S.M. Exploring the antimicrobial potential of isoniazid loaded Cu-based metal-organic frameworks as a novel strategy for effective killing of Mycobacterium tuberculosis. J. Mater. Chem. B 2023, 11, 10929–10940. [Google Scholar] [CrossRef]
- Mansour, S.C.; de la Fuente-Núñez, C.; Hancock, R.E. Peptide IDR-1018: Modulating the immune system and targeting bacterial biofilms to treat antibiotic-resistant bacterial infections. J. Pept. Sci. 2015, 21, 323–329. [Google Scholar] [CrossRef]
- Kalscheuer, R.; Koliwer-Brandl, H. Genetics of Mycobacterial Trehalose Metabolism. Microbiol. Spectr. 2014, 2. [Google Scholar] [CrossRef]
- Pohane, A.A.; Carr, C.R.; Garhyan, J.; Swarts, B.M.; Siegrist, M.S. Trehalose Recycling Promotes Energy-Efficient Biosynthesis of the Mycobacterial Cell Envelope. mBio 2021, 12, e02801-20. [Google Scholar] [CrossRef]
- Zou, J.J.; Wei, G.; Xiong, C.; Yu, Y.; Li, S.; Hu, L.; Ma, S.; Tian, J. Efficient oral insulin delivery enabled by transferrin-coated acid-resistant metal-organic framework nanoparticles. Sci. Adv. 2022, 8, eabm4677. [Google Scholar] [CrossRef]
- Farha, O.K.; Eryazici, I.; Jeong, N.C.; Hauser, B.G.; Wilmer, C.E.; Sarjeant, A.A.; Snurr, R.Q.; Nguyen, S.T.; Yazaydın, A.; Hupp, J.T. Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit? J. Am. Chem. Soc. 2012, 134, 15016–15021. [Google Scholar] [CrossRef]
- Singh, N.; Qutub, S.; Khashab, N.M. Biocompatibility and biodegradability of metal organic frameworks for biomedical applications. J. Mater. Chem. B 2021, 9, 5925–5934. [Google Scholar] [CrossRef] [PubMed]
- Flentie, K.; Harrison, G.A.; Tükenmez, H.; Livny, J.; Good, J.A.D.; Sarkar, S.; Zhu, D.X.; Kinsella, R.L.; Weiss, L.A.; Solomon, S.D.; et al. Chemical disarming of isoniazid resistance in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 2019, 116, 10510–10517. [Google Scholar] [CrossRef]
- Haney, E.F.; Straus, S.K.; Hancock, R.E.W. Reassessing the Host Defense Peptide Landscape. Front. Chem. 2019, 7, 43. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.; Goel, M.; Gupta, R.D. Anti-biofilm potential of human senescence marker protein 30 against Mycobacterium smegmatis. World J. Microbiol. Biotechnol. 2023, 40, 45. [Google Scholar] [CrossRef] [PubMed]
- Danhier, F.; Ansorena, E.; Silva, J.M.; Coco, R.; Le Breton, A.; Préat, V. PLGA-based nanoparticles: An overview of biomedical applications. J. Control. Release 2012, 161, 505–522. [Google Scholar] [CrossRef]
- Li, M.; Chen, P.; Lin, Y.; Miao, S.; Bao, H. Preparation and Characterization of a Hypoglycemic Complex of Gallic Acid-Antarctic Krill Polypeptide Based on Polylactic Acid-Hydroxyacetic Acid (PLGA) and High-Pressure Microjet Microencapsulation. Foods 2024, 13, 1177. [Google Scholar] [CrossRef]
- Sigurdsson, H.H.; Kirch, J.; Lehr, C.M. Mucus as a barrier to lipophilic drugs. Int. J. Pharm. 2013, 453, 56–64. [Google Scholar] [CrossRef]
- Lock, J.Y.; Carlson, T.L.; Carrier, R.L. Mucus models to evaluate the diffusion of drugs and particles. Adv. Drug Deliv. Rev. 2018, 124, 34–49. [Google Scholar] [CrossRef]
- Sharma, A.; Vaghasiya, K.; Gupta, P.; Singh, A.K.; Gupta, U.D.; Verma, R.K. Dynamic mucus penetrating microspheres for efficient pulmonary delivery and enhanced efficacy of host defence peptide (HDP) in experimental tuberculosis. J. Control. Release 2020, 324, 17–33. [Google Scholar] [CrossRef]
- Eroshenko, D.; Polyudova, T.; Korobov, V. N-acetylcysteine inhibits growth, adhesion and biofilm formation of Gram-positive skin pathogens. Microb. Pathog. 2017, 105, 145–152. [Google Scholar] [CrossRef] [PubMed]
Factors | Gene Function | Effect on Biofilm | Mechanism | Reference |
---|---|---|---|---|
LpqY-Sug-ABC transporter (lpqY, sugA, subB, sugC) | Trehalose transporter | Promote biofilm formation | Return trehalose to the bacteria, which assists the efflux of mycolic acids outside the bacteria | [26] (M. tuberculosis) |
Pks1 (Rv2946c) | Polyketide synthase involved in lipid synthesis | Promote biofilm maturation | Not clarified | [27] (M. tuberculosis) |
PpiB (Rv2582) | Peptidyl-prolyl cis-trans isomerase accelerating the folding of proteins | Promote biofilm formation | Not clarified | [28] (M. tuberculosis) |
GroEL1 (Rv3417c) | 60 kDa chaperonin 1 promoting the refolding of peptides | Promote biofilm maturation | Physically associated with FASII components to modulate the synthesis of mycolate and mycolic acid | [29,30] (M. smegmatis & M. bovis) |
MprB (Rv0982) | Two component sensor kinase | Promote biofilm formation | Sensor of epinephrine | [31] (M. smegmatis) |
(P)ppGpp | - | Promote biofilm formation | Signal of nutritional stress, regulated by RelMtb | [32] (M. tuberculosis) |
Poly(P) | - | Promote biofilm formation | Modulate stringent response, homeostasis is required | [33] (M. tuberculosis) |
Cyclic-di-GMP | - | Promote biofilm formation; associated with biofilm dispersal | Regulate quorum sensing | [34] (M. smegmatis) |
Agents | Mechanism | Effect on Biofilm | Reference |
---|---|---|---|
DMNP | Target (p)ppGpp synthesizing protein Rel | Inhibit biofilm formation | [92] (M. smegmatis) |
Trehalose analogues (TreAz, TreNH2) | Competitively inhibit TreS-mediated trehalose catalytic shift | Inhibit biofilm formation | [93,94,95] (M. smegmatis & M. tuberculosis) |
Cellulase | Hydrolyze cellulose | Promote biofilm destruction | [6,96] (M. tuberculosis & M. bovis) |
IITI-3 | Not clarified | Inhibit biofilm formation | [97] (M. smegmatis) |
IDR-1018 | Bind and deplete (p)ppGpp | Inhibit biofilm formation, promote biofilm destruction | [98] (P. aeruginosa) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Hu, J.; Wang, W.; Yang, H.; Tao, E.; Ma, Y.; Sha, S. Mycobacterial Biofilm: Mechanisms, Clinical Problems, and Treatments. Int. J. Mol. Sci. 2024, 25, 7771. https://doi.org/10.3390/ijms25147771
Liu X, Hu J, Wang W, Yang H, Tao E, Ma Y, Sha S. Mycobacterial Biofilm: Mechanisms, Clinical Problems, and Treatments. International Journal of Molecular Sciences. 2024; 25(14):7771. https://doi.org/10.3390/ijms25147771
Chicago/Turabian StyleLiu, Xining, Junxing Hu, Wenzhen Wang, Hanyu Yang, Erning Tao, Yufang Ma, and Shanshan Sha. 2024. "Mycobacterial Biofilm: Mechanisms, Clinical Problems, and Treatments" International Journal of Molecular Sciences 25, no. 14: 7771. https://doi.org/10.3390/ijms25147771
APA StyleLiu, X., Hu, J., Wang, W., Yang, H., Tao, E., Ma, Y., & Sha, S. (2024). Mycobacterial Biofilm: Mechanisms, Clinical Problems, and Treatments. International Journal of Molecular Sciences, 25(14), 7771. https://doi.org/10.3390/ijms25147771