Exploring Mitochondrial Interactions with Pulsed Electromagnetic Fields: An Insightful Inquiry into Strategies for Addressing Neuroinflammation and Oxidative Stress in Diabetic Neuropathy
Abstract
:1. Introduction
2. Results
2.1. CMFs Do Not Affect the Biologically Related Proliferation Rate of Cells
2.2. CMFs Affect miRNA Synthesis Related to Anti-Inflammatory and Antioxidant Pathways
2.3. CMFs Affect Mitochondrial Activity
2.4. Safety Profile of the Treatment
2.5. In Vitro Mutagenic Profile Evaluation
3. Discussion
4. Materials and Methods
4.1. CMF Treatment
4.2. Cell Cultures
4.3. MTT Assay
4.4. Hemolysis Assay
4.5. Ames Test
4.6. Mitochondrial Membrane Potential
4.7. miRNA Extraction
4.8. Library Preparation, RNA Sequencing, and Drop PCR
4.9. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Funk, R.H.; Monsees, T.; Ozkucur, N. Electromagnetic effects—From cell biology to medicine. Prog. Histochem. Cytochem. 2009, 43, 177–264. [Google Scholar] [CrossRef]
- Seyhan, N.; Canseven, A.G. In vivo effects of ELF MFs on collagen synthesis, free radical processes, natural antioxidant system, respiratory burst system, immune system activities, and electrolytes in the skin, plasma, spleen, lung, kidney, and brain tissues. Electromagn. Biol. Med. 2006, 25, 291–305. [Google Scholar] [CrossRef] [PubMed]
- Chalidis, B.; Sachinis, N.; Assiotis, A.; Maccauro, G. Stimulation of bone formation and fracture healing with pulsed electromagnetic fields: Biologic responses and clinical implications. Int. J. Immunopathol. Pharmacol. 2011, 24, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Xie, Y.; Ni, Z.; Chen, L. Effects and Mechanisms of Exogenous Electromagnetic Field on Bone Cells: A Review. Bioelectromagnetics 2020, 41, 263–278. [Google Scholar] [CrossRef] [PubMed]
- Merighi, S.; Gessi, S.; Bencivenni, S.; Battistello, E.; Vincenzi, F.; Setti, S.; Cadossi, M.; Borea, P.A.; Cadossi, R.; Varani, K. Signaling pathways involved in anti-inflammatory effects of Pulsed Electromagnetic Field in microglial cells. Cytokine 2020, 125, 154777. [Google Scholar] [CrossRef] [PubMed]
- Huan Barar, U.; Safia, H.; Parvez, A.; Shaziya, A.; Moinuddin, A.; Asif, A. Pathophysiological Role of Peroxynitrite Induced DNA Damage in Human Diseases: A Special Focus on Poly(ADP-ribose) Polymerase (PARP). Indian. J. Clin. Biochem. 2015, 30, 368–385. [Google Scholar] [CrossRef]
- Zanotti, F.; Trentini, M.; Zanolla, I.; Tiengo, E.; Mantarro, C.; Dalla Paola, L.; Tremoli, E.; Sambataro, M.; Sambado, L.; Picari, M.; et al. Playing with Biophysics: How a Symphony of Different Electromagnetic Fields Acts to Reduce the Inflammation in Diabetic Derived Cells. Int. J. Mol. Sci. 2023, 24, 1754. [Google Scholar] [CrossRef]
- Ehnert, S.; Schröter, S.; Aspera-Werz, R.H.; Eisler, W.; Falldorf, K.; Ronniger, M.; Nussler, A.K. Translational Insights into Extremely Low Frequency Pulsed Electromagnetic Fields (ELF-PEMFs) for Bone Regeneration after Trauma and Orthopedic Surgery. J. Clin. Med. 2019, 8, 2028. [Google Scholar] [CrossRef]
- Weintraub, M.I.; Herrmann, D.N.; Smith, A.G.; Backonja, M.M.; Cole, S.P. Arch Pulsed electromagnetic fields to reduce diabetic neuropathic pain and stimulate neuronal repair: A randomized controlled trial. Phys. Med. Rehabil. 2009, 90, 1102–1109. [Google Scholar] [CrossRef]
- Tiengo, E.; Fermi, E.; Zanolla, I.; Zanotti, F.; Trentini, M.; Pasquino, E.; Palmieri, M.C.; Soliani, G.; Leo, S.; Tremoli, E.; et al. In Vitro Model for the Evaluation of Innovative Transcatheter Debridement Device (TDD): Pericardium-Based Scaffold and Stem Cells to Reproduce Calcificated Valves. Biomedicines 2022, 10, 2352. [Google Scholar] [CrossRef]
- Chen, Y.; Braun, B.J.; Menger, M.M.; Ronniger, M.; Falldorf, K.; Histing, T.; Nussler, A.K.; Ehnert, S.J. Intermittent Exposure to a 16 Hz Extremely Low Frequency Pulsed Electromagnetic Field Promotes Osteogenesis In Vitro through Activating Piezo 1-Induced Ca2+ Influx in Osteoprogenitor Cells. Funct. Biomater. 2023, 14, 165. [Google Scholar] [CrossRef] [PubMed]
- Foletti, A.; Brizhik, L. Nonlinearity, coherence and complexity: Biophysical aspects related to health and disease. Electromagn. Biol. Med. 2017, 36, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Casciati, A.; Tanori, M.; Gianlorenzi, I.; Rampazzo, E.; Persano, L.; Viola, G.; Cani, A.; Bresolin, S.; Marino, C.; Mancuso, M.; et al. Effects of Ultra-Short Pulsed Electric Field Exposure on Glioblastoma Cells. Int. J. Mol. Sci. 2022, 23, 3001. [Google Scholar] [CrossRef] [PubMed]
- Merla, C.; Liberti, M.; Consales, C.; Denzi, A.; Apollonio, F.; Marino, C.; Benassi, B. Evidences of plasma membrane-mediated ROS generation upon ELF exposure in neuroblastoma cells supported by a computational multiscale approach. Biochim. Biophys. Acta Biomembr. 2019, 1861, 1446–1457. [Google Scholar] [CrossRef] [PubMed]
- Ferroni, L.; Bellin, G.; Emer, V.; Rizzuto, R.; Isola, M.; Gardin, C.; Zavan, B. Treatment by Therapeutic Magnetic Resonance (TMR (TM)) increases fibroblastic activity and keratinocyte differentiation in an in vitro model of 3D artificial skin. J. Tissue Eng. Regen. Med. 2017, 11, 1332–1342. [Google Scholar] [CrossRef] [PubMed]
- Ferroni, L.; Gardin, C.; Dolkart, O.; Salai, M.; Barak, S.; Piattelli, A.; Amir-Barak, H.; Zavan, B. Pulsed electromagnetic fields increase osteogenetic commitment of MSCs via the mTOR pathway in TNF-alpha mediated inflammatory conditions: An in-vitro study. Sci. Rep. 2018, 8, 5108. [Google Scholar] [CrossRef] [PubMed]
- Barak, S.; Matalon, S.; Dolkart, O.; Zavan, B.; Mortellaro, C.; Piattelli, A. Miniaturized Electromagnetic Device Abutment Improves Stability of the Dental Implants. J. Craniofac. Surg. 2019, 30, 1055–1057. [Google Scholar] [CrossRef] [PubMed]
- Ferroni, L.; Gardin, C.; De Pieri, A.; Sambataro, M.; Seganfreddo, E.; Iacopi, E.; Goretti, C.; Zavan, B.; Piaggesi, A. Treatment of diabetic foot ulcers with Therapeutic Magnetic Resonance (TMR (R)) improves the quality of granulation tissue. Eur. J. Histochem. 2017, 61, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Sendera, A.; Pikuła, B.; Banaś-Ząbczyk, A. Preconditioning of Mesenchymal Stem Cells with Electromagnetic Fields and Its Impact on Biological Responses and “Fate”-Potential Use in Therapeutic Applications. Front. Biosci. 2023, 28, 285. [Google Scholar] [CrossRef] [PubMed]
- ISO 10993-18; Biological Evaluation of Medical Devices. International Organization for Standardization: Geneva, Switzerland, 2020.
- Sendera, A.; Adamczyk-Grochala, J.; Pikuła, B.; Cholewa, M.; Banaś-Ząbczyk, A. Electromagnetic field (50 Hz) enhance metabolic potential and induce adaptive/reprogramming response mediated by the increase of N6-methyladenosine RNA methylation in adipose-derived mesenchymal stem cells in vitro. Toxicol. In Vitro 2024, 95, 105743. [Google Scholar] [CrossRef]
- Hamid, H.A.; Sarmadi, V.H.; Prasad, V.; Ramasamy, R.; Miskon, A. Electromagnetic field exposure as a plausible approach to enhance the proliferation and differentiation of mesenchymal stem cells in clinically relevant scenarios. J. Zhejiang Univ. Sci. B 2022, 23, 42–57. [Google Scholar] [CrossRef] [PubMed]
- Franco-Obregón, A. Harmonizing Magnetic Mitohormetic Regenerative Strategies: Developmental Implications of a Calcium-Mitochondrial Axis Invoked by Magnetic Field Exposure. Bioengineering 2023, 10, 1176. [Google Scholar] [CrossRef] [PubMed]
- Trzyna, A.; Bądziul, D.B.; Jakubczyk, P.; Bocak, D.S.; Cholewa, M.; Banaś-Ząbczyk, A. The Dynamic(s) of Adipose Stem Cell System, Their Survival, and Cessation under the Influence of Electromagnetic Fields. J. Med. Phys. 2021, 46, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Costantini, E.; Marconi, G.D.; Fonticoli, L.; Aielli, L.; Trubiani, O.; Rajan, T.S.; Pizzicannella, J.; Reale, M.; Diomede, F. Improved osteogenic differentiation by extremely low electromagnetic field exposure: Possible application for bone engineering. Histochem Cell Biol. 2022, 158, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.S.; Tsai, L.K.; Yeh, T.Y.; Li, T.S.; Li, C.H.; Wei, Z.H.; Lo, N.W.; Ju, J.C. Effects of electromagnetic waves on oocyte maturation and embryonic development in pigs. J. Reprod. Dev. 2021, 67, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Haroutunian, G.G.; Tsaghikian, A.; Fedorova, E.; Chaurasia, P.; Gusella, G.L.; Mosoian, A. Electromagnetic Fields Generated by the IteraCoil Device Differentiate Mesenchymal Stem Progenitor Cells into the Osteogenic Lineage. Bioelectromagnetics 2022, 43, 245–256. [Google Scholar] [CrossRef]
- Colciago, A.; Audano, M.; Bonalume, V.; Melfi, V.; Mohamed, T.; Reid, A.J.; Faroni, A.; Greer, P.A.; Mitro, N.; Magnaghi, V. Transcriptomic Profile Reveals Deregulation of Hearing-Loss Related Genes in Vestibular Schwannoma Cells Following Electromagnetic Field Exposure. Cells 2021, 10, 1840. [Google Scholar] [CrossRef] [PubMed]
- Goldshmit, Y.; Shalom, M.; Ruban, A. Treatment with Pulsed Extremely Low Frequency Electromagnetic Field (PELF-EMF) Exhibit Anti-Inflammatory and Neuroprotective Effect in Compression Spinal Cord Injury Model. Biomedicines 2022, 10, 325. [Google Scholar] [CrossRef] [PubMed]
- ISO 10993-12; Biological Evaluation of Medical Devices Part 12: Sample Preparation and Reference Materials. International Organization for Standardization: Geneva, Switzerland, 2021.
- Yu, S.; Li, Y.; Lu, X.; Han, Z.; Li, C.; Yuan, X.; Guo, D. The regulatory role of miRNA and lncRNA on autophagy in diabetic nephropathy. Cell Signal. 2024, 118, 111144. [Google Scholar] [CrossRef]
- Chattopadhyay, A.; Tak, H.; Anirudh, J.; Naick, B.H. Gene Meta-analysis of Circulatory mitomiRs in stress Response: Unveiling the significance of miR-34a and miR-146a. Gene 2024, 912, 148370. [Google Scholar] [CrossRef]
- Liu, X.; Cui, H.; Bai, Q.; Piao, H.; Song, Y.; Yan, G. miR-128-3p alleviates airway inflammation in asthma by targeting SIX1 to regulate mitochondrial fission and fusion. Int. Immunopharmacol. 2024, 130, 111703. [Google Scholar] [CrossRef] [PubMed]
- Currim, F.; Shukla, S.; Singh, J.; Gohel, D.; Mane, M.; Shinde, A.; Roy, M.; Goyani, S.; Vasiyani, H.; Chandran, A.; et al. Neuronal exosomal miRNAs modulate mitochondrial functions and cell death in bystander neuronal cells under Parkinson’s disease stress conditions. Neurotoxicology 2024, 101, 102–116. [Google Scholar] [CrossRef]
- Naso, F.D.; Bruqi, K.; Manzini, V.; Chiurchiù, V.; D’Onofrio, M.; Arisi, I.; Strappazzon, F. miR-218-5p and doxorubicin combination enhances anticancer activity in breast cancer cells through Parkin-dependent mitophagy inhibition. Cell Death Discov. 2024, 10, 149. [Google Scholar] [CrossRef]
- Ward, A.S.; Hall, C.N.; Tree, M.O.; Kohtz, D.S. Spheroid architecture strongly enhances miR-221/222 expression and promotes oxidative phosphorylation in an ovarian cancer cell line through a mechanism that includes restriction of miR-9 expression. Mol. Biol. Rep. 2024, 51, 275. [Google Scholar] [CrossRef] [PubMed]
- Markham, B.N.; Ramnarine, C.; Kim, S.; Grever, W.E.; Soto-Beasley, A.I.; Heckman, M.; Ren, Y.; Osborne, A.C.; Bhagwate, A.V.; Liu, Y.; et al. miRNA family miR-29 inhibits PINK1-PRKN dependent mitophagy via ATG9A. bioRxiv 2024. 2024.01.17.576122. [Google Scholar] [CrossRef]
(A) | |||
Scheme | OD | Hemolysis index | Results |
Positive control | 0.943% ± 0.023 | 100% | Hemolytic |
Negative Control | 0.023% ± 0.067 | 0 | Non hemolytic |
CMF treatment | 0.034% ± 0.056 | 0.042% | Non hemolytic |
No Treatment | 0.033% ± 0.072 | 0.038% | Non hemolytic |
(B) | |||
Sample | OD | Hemolysis index | Results |
Positive control | 0.875% ± 0.018 | 100% | Hemolytic |
Negative Control | 0.013% ± 0.054 | 0 | Non hemolytic |
CMF treatment | 0.023% ± 0.042 | 0.087% | Non hemolytic |
No Treatment | 0.029% ± 0.042 | 0.096% | Non hemolytic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chianese, D.; Bonora, M.; Sambataro, M.; Sambato, L.; Paola, L.D.; Tremoli, E.; Cappucci, I.P.; Scatto, M.; Pinton, P.; Picari, M.; et al. Exploring Mitochondrial Interactions with Pulsed Electromagnetic Fields: An Insightful Inquiry into Strategies for Addressing Neuroinflammation and Oxidative Stress in Diabetic Neuropathy. Int. J. Mol. Sci. 2024, 25, 7783. https://doi.org/10.3390/ijms25147783
Chianese D, Bonora M, Sambataro M, Sambato L, Paola LD, Tremoli E, Cappucci IP, Scatto M, Pinton P, Picari M, et al. Exploring Mitochondrial Interactions with Pulsed Electromagnetic Fields: An Insightful Inquiry into Strategies for Addressing Neuroinflammation and Oxidative Stress in Diabetic Neuropathy. International Journal of Molecular Sciences. 2024; 25(14):7783. https://doi.org/10.3390/ijms25147783
Chicago/Turabian StyleChianese, Diego, Massimo Bonora, Maria Sambataro, Luisa Sambato, Luca Dalla Paola, Elena Tremoli, Ilenia Pia Cappucci, Marco Scatto, Paolo Pinton, Massimo Picari, and et al. 2024. "Exploring Mitochondrial Interactions with Pulsed Electromagnetic Fields: An Insightful Inquiry into Strategies for Addressing Neuroinflammation and Oxidative Stress in Diabetic Neuropathy" International Journal of Molecular Sciences 25, no. 14: 7783. https://doi.org/10.3390/ijms25147783
APA StyleChianese, D., Bonora, M., Sambataro, M., Sambato, L., Paola, L. D., Tremoli, E., Cappucci, I. P., Scatto, M., Pinton, P., Picari, M., Ferroni, L., & Zavan, B. (2024). Exploring Mitochondrial Interactions with Pulsed Electromagnetic Fields: An Insightful Inquiry into Strategies for Addressing Neuroinflammation and Oxidative Stress in Diabetic Neuropathy. International Journal of Molecular Sciences, 25(14), 7783. https://doi.org/10.3390/ijms25147783