Potential Consequences of the Use of Adipose-Derived Stem Cells in the Treatment of Hepatocellular Carcinoma
Abstract
:1. Introduction
2. Stem Cells as a Novel Cancer Treatment
3. ADSC Characteristics
4. Advantages and Disadvantages of the Therapeutic Use of ADSCs in Cancer Therapy
4.1. The Effect of ADSCs on Hepatocellular Carcinoma Cells
4.2. ADSCs as a Potential Complementary Treatment in Standard Therapies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rumgay, H.; Ferlay, J.; De Martel, C.; Georges, D.; Ibrahim, A.S.; Zheng, R.; Wei, W.; Lemmens, V.E.P.P.; Soerjomataram, I. Global, Regional and National Burden of Primary Liver Cancer by Subtype. Eur. J. Cancer 2022, 161, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, P.; Kulik, L.M. Hepatocellular Carcinoma. Clin. Liver Dis. 2023, 27, 85–102. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.; Cervantes, A.; Chau, I.; Daniele, B.; Llovet, J.M.; Meyer, T.; Nault, J.-C.; Neumann, U.; Ricke, J.; Sangro, B.; et al. Hepatocellular Carcinoma: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2018, 29, iv238–iv255. [Google Scholar] [CrossRef]
- Sperandio, R.C.; Pestana, R.C.; Miyamura, B.V.; Kaseb, A.O. Hepatocellular Carcinoma Immunotherapy. Annu. Rev. Med. 2022, 73, 267–278. [Google Scholar] [CrossRef]
- Sangro, B.; Sarobe, P.; Hervás-Stubbs, S.; Melero, I. Advances in Immunotherapy for Hepatocellular Carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 525–543. [Google Scholar] [CrossRef]
- Yu, Y.; Feng, M. Radiotherapy for Hepatocellular Carcinoma. Semin. Radiat. Oncol. 2018, 28, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.-T.; Nguyen, T.T.; Tien, N.L.B.; Tran, D.-K.; Jeong, J.-H.; Anh, P.G.; Thanh, V.V.; Truong, D.T.; Dinh, T.C. Recent Progress of Stem Cell Therapy in Cancer Treatment: Molecular Mechanisms and Potential Applications. Cells 2020, 9, 563. [Google Scholar] [CrossRef]
- Steenbruggen, T.G.; Steggink, L.C.; Seynaeve, C.M.; Van Der Hoeven, J.J.M.; Hooning, M.J.; Jager, A.; Konings, I.R.; Kroep, J.R.; Smit, W.M.; Tjan-Heijnen, V.C.G.; et al. High-Dose Chemotherapy with Hematopoietic Stem Cell Transplant in Patients with High-Risk Breast Cancer and 4 or More Involved Axillary Lymph Nodes: 20-Year Follow-up of a Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 528. [Google Scholar] [CrossRef]
- Zeng, N.; Chen, H.; Wu, Y.; Liu, Z. Adipose Stem Cell-Based Treatments for Wound Healing. Front. Cell Dev. Biol. 2022, 9, 821652. [Google Scholar] [CrossRef]
- Shi, L.; Huang, H.; Lu, X.; Yan, X.; Jiang, X.; Xu, R.; Wang, S.; Zhang, C.; Yuan, X.; Xu, Z.; et al. Effect of Human Umbilical Cord-Derived Mesenchymal Stem Cells on Lung Damage in Severe COVID-19 Patients: A Randomized, Double-Blind, Placebo-Controlled Phase 2 Trial. Signal Transduct. Target. Ther. 2021, 6, 58. [Google Scholar] [CrossRef]
- Leng, Z.; Zhu, R.; Hou, W.; Feng, Y.; Yang, Y.; Han, Q.; Shan, G.; Meng, F.; Du, D.; Wang, S.; et al. Transplantation of ACE2- Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia. Aging Dis. 2020, 11, 216. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Chen, J.; Li, T.; Wu, H.; Yang, W.; Li, Y.; Li, J.; Yu, C.; Nie, F.; Ma, Z.; et al. Clinical Remission of a Critically Ill COVID-19 Patient Treated by Human Umbilical Cord Mesenchymal Stem Cells: A Case Report. Medicine 2020, 99, e21429. [Google Scholar] [CrossRef] [PubMed]
- Snowden, J.A.; Sánchez-Ortega, I.; Corbacioglu, S.; Basak, G.W.; Chabannon, C.; De La Camara, R.; Dolstra, H.; Duarte, R.F.; Glass, B.; Greco, R.; et al. Indications for Haematopoietic Cell Transplantation for Haematological Diseases, Solid Tumours and Immune Disorders: Current Practice in Europe, 2022. Bone Marrow Transplant. 2022, 57, 1217–1239. [Google Scholar] [CrossRef] [PubMed]
- Hawsawi, Y.M.; Al-Zahrani, F.; Mavromatis, C.; Baghdadi, M.A.; Saggu, S.; Oyouni, A.A.A. Stem Cell Applications for Treatment of Cancer and Autoimmune Diseases: Its Promises, Obstacles, and Future Perspectives. Technol. Cancer Res. Treat. 2018, 17, 153303381880691. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.-B.; He, X.-W.; Zhang, L.-J.; Qin, H.-B.; Lin, X.-T.; Liu, X.-H.; Zhou, C.; Liu, H.-S.; Hu, T.; Cheng, H.-C.; et al. Bone Marrow-Derived CXCR4-Overexpressing MSCs Display Increased Homing to Intestine and Ameliorate Colitis-Associated Tumorigenesis in Mice. Gastroenterol. Rep. 2019, 7, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Lundstrom, K. Therapeutic Applications for Oncolytic Self-Replicating RNA Viruses. Int. J. Mol. Sci. 2022, 23, 15622. [Google Scholar] [CrossRef] [PubMed]
- Davies, A.; Sage, B.; Kolluri, K.; Alrifai, D.; Graham, R.; Weil, B.; Rego, R.; Bain, O.; Patrick, P.; Champion, K.; et al. TACTICAL: A Phase I/II Trial to Assess the Safety and Efficacy of MSCTRAIL in the Treatment of Metastatic Lung Adenocarcinoma. J. Clin. Oncol. 2019, 37, TPS9116. [Google Scholar] [CrossRef]
- Ruano, D.; López-Martín, J.A.; Moreno, L.; Lassaletta, Á.; Bautista, F.; Andión, M.; Hernández, C.; González-Murillo, Á.; Melen, G.; Alemany, R.; et al. First-in-Human, First-in-Child Trial of Autologous MSCs Carrying the Oncolytic Virus Icovir-5 in Patients with Advanced Tumors. Mol. Ther. 2020, 28, 1033–1042. [Google Scholar] [CrossRef] [PubMed]
- Sowa, Y.; Mazda, O.; Tsuge, I.; Inafuku, N.; Kishida, T.; Morimoto, N. Roles of Adipose-Derived Stem Cells in Cell-Based Therapy: Current Status and Future Scope—A Narrative Review. Dig. Med. Res. 2022, 5, 57. [Google Scholar] [CrossRef]
- Strioga, M.; Viswanathan, S.; Darinskas, A.; Slaby, O.; Michalek, J. Same or Not the Same? Comparison of Adipose Tissue-Derived Versus Bone Marrow-Derived Mesenchymal Stem and Stromal Cells. Stem Cells Dev. 2012, 21, 2724–2752. [Google Scholar] [CrossRef]
- Alstrup, T.; Eijken, M.; Brunbjerg, M.E.; Hammer-Hansen, N.; Møller, B.K.; Damsgaard, T.E. Measured Levels of Human Adipose Tissue–Derived Stem Cells in Adipose Tissue Is Strongly Dependent on Harvesting Method and Stem Cell Isolation Technique. Plast. Reconstr. Surg. 2020, 145, 142–150. [Google Scholar] [CrossRef]
- Huang, S.-J.; Fu, R.-H.; Shyu, W.-C.; Liu, S.-P.; Jong, G.-P.; Chiu, Y.-W.; Wu, H.-S.; Tsou, Y.-A.; Cheng, C.-W.; Lin, S.-Z. Adipose-Derived Stem Cells: Isolation, Characterization, and Differentiation Potential. Cell Transplant. 2013, 22, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.C.; Percegona, L.S.; França, A.L.; Dos Santos, T.M.; Perini, C.C.; González, P.; Rebelatto, C.L.K.; Câmara, N.O.S.; Aita, C.A.M. Expression of Pancreatic Endocrine Markers by Mesenchymal Stem Cells From Human Adipose Tissue. Transplant. Proc. 2012, 44, 2495–2496. [Google Scholar] [CrossRef]
- Lee, S.; Chae, D.-S.; Song, B.-W.; Lim, S.; Kim, S.W.; Kim, I.-K.; Hwang, K.-C. ADSC-Based Cell Therapies for Musculoskeletal Disorders: A Review of Recent Clinical Trials. Int. J. Mol. Sci. 2021, 22, 10586. [Google Scholar] [CrossRef]
- Zhu, M.; Heydarkhan-Hagvall, S.; Hedrick, M.; Benhaim, P.; Zuk, P. Manual Isolation of Adipose-Derived Stem Cells from Human Lipoaspirates. J. Vis. Exp. 2013, 79, 50585. [Google Scholar] [CrossRef]
- Eto, H.; Suga, H.; Matsumoto, D.; Inoue, K.; Aoi, N.; Kato, H.; Araki, J.; Yoshimura, K. Characterization of Structure and Cellular Components of Aspirated and Excised Adipose Tissue. Plast. Reconstr. Surg. 2009, 124, 1087–1097. [Google Scholar] [CrossRef] [PubMed]
- Divoux, A.; Whytock, K.L.; Halasz, L.; Hopf, M.E.; Sparks, L.M.; Osborne, T.F.; Smith, S.R. Distinct Subpopulations of Human Subcutaneous Adipose Tissue Precursor Cells Revealed by Single-Cell RNA Sequencing. Am. J. Physiol. Cell Physiol. 2024, 326, C1248–C1261. [Google Scholar] [CrossRef] [PubMed]
- Vijay, J.; Gauthier, M.-F.; Biswell, R.L.; Louiselle, D.A.; Johnston, J.J.; Cheung, W.A.; Belden, B.; Pramatarova, A.; Biertho, L.; Gibson, M.; et al. Single-Cell Analysis of Human Adipose Tissue Identifies Depot- and Disease-Specific Cell Types. Nat. Metab. 2019, 2, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Nahmgoong, H.; Jeon, Y.G.; Park, E.S.; Choi, Y.H.; Han, S.M.; Park, J.; Ji, Y.; Sohn, J.H.; Han, J.S.; Kim, Y.Y.; et al. Distinct Properties of Adipose Stem Cell Subpopulations Determine Fat Depot-Specific Characteristics. Cell Metab. 2022, 34, 458–472.e6. [Google Scholar] [CrossRef] [PubMed]
- Côrtes, I.; Alves, G.; Claudio-Da-Silva, C.; Baptista, L.S. Mimicking Lipolytic, Adipogenic, and Secretory Capacities of Human Subcutaneous Adipose Tissue by Spheroids from Distinct Subpopulations of Adipose Stromal/Stem Cells. Front. Cell Dev. Biol. 2023, 11, 1219218. [Google Scholar] [CrossRef]
- Smakaj, A.; De Mauro, D.; Rovere, G.; Pietramala, S.; Maccauro, G.; Parolini, O.; Lattanzi, W.; Liuzza, F. Clinical Application of Adipose Derived Stem Cells for the Treatment of Aseptic Non-Unions: Current Stage and Future Perspectives—Systematic Review. Int. J. Mol. Sci. 2022, 23, 3057. [Google Scholar] [CrossRef]
- Li, C.; Wei, S.; Xu, Q.; Sun, Y.; Ning, X.; Wang, Z. Application of ADSCs and Their Exosomes in Scar Prevention. Stem Cell Rev. Rep. 2022, 18, 952–967. [Google Scholar] [CrossRef]
- Senesi, L.; De Francesco, F.; Marchesini, A.; Pangrazi, P.P.; Bertolini, M.; Riccio, V.; Riccio, M. Efficacy of Adipose-Derived Mesenchymal Stem Cells and Stromal Vascular Fraction Alone and Combined to Biomaterials in Tendinopathy or Tendon Injury: Systematic Review of Current Concepts. Medicina 2023, 59, 273. [Google Scholar] [CrossRef]
- Musa, M.; Zeppieri, M.; Enaholo, E.S.; Salati, C.; Parodi, P.C. Adipose Stem Cells in Modern-Day Ophthalmology. Clin. Pract. 2023, 13, 230–245. [Google Scholar] [CrossRef]
- Jiang, T.; Liu, S.; Wu, Z.; Li, Q.; Ren, S.; Chen, J.; Xu, X.; Wang, C.; Lu, C.; Yang, X.; et al. ADSC-exo@MMP-PEG Smart Hydrogel Promotes Diabetic Wound Healing by Optimizing Cellular Functions and Relieving Oxidative Stress. Mater. Today Bio 2022, 16, 100365. [Google Scholar] [CrossRef]
- Tak, Y.J.; Lee, S.Y.; Cho, A.R.; Kim, Y.S. A Randomized, Double-Blind, Vehicle-Controlled Clinical Study of Hair Regeneration Using Adipose-Derived Stem Cell Constituent Extract in Androgenetic Alopecia. Stem Cells Transl. Med. 2020, 9, 839–849. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Z.; Xing, H.; Wang, Y.; Guo, Y. Exosomes Derived from miR-188-3p-Modified Adipose-Derived Mesenchymal Stem Cells Protect Parkinson’s Disease. Mol. Ther. Nucleic Acids 2021, 23, 1334–1344. [Google Scholar] [CrossRef]
- Cao, Y.; Kan, H.; Ma, X.; Zhang, Y.; Huang, J.; Long, X. Autologous Fat or Adipose-Derived Stem Cell Grafting in Systemic Sclerosis Treatment: A Systematic Review and Meta-Analysis. Clin. Exp. Rheumatol. 2023, 41, 1659–1669. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; Yang, J.; Huang, J.; Cai, J.; Zhang, S.; Feng, X.; Wang, Q. Influence of Extracellular Nanovesicles Derived from Adipose-derived Stem Cells on Nucleus Pulposus Cell from Patients with Intervertebral Disc Degeneration. Exp. Ther. Med. 2021, 22, 1431. [Google Scholar] [CrossRef] [PubMed]
- Torres-Torrillas, M.; Rubio, M.; Damia, E.; Cuervo, B.; Del Romero, A.; Peláez, P.; Chicharro, D.; Miguel, L.; Sopena, J. Adipose-Derived Mesenchymal Stem Cells: A Promising Tool in the Treatment of Musculoskeletal Diseases. Int. J. Mol. Sci. 2019, 20, 3105. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Duan, X.; Pang, N.; Wang, H.; Yuan, H.; Zhang, R.; Cui, L. Adipose Tissue-derived Stem Cells Modulate Immune Function In Vivo and Promote Long-term Hematopoiesis In Vitro Using the aGVHD Model. Exp. Ther. Med. 2020, 19, 1725–1732. [Google Scholar] [CrossRef]
- Dung, T.N.; Han, V.D.; Tien, G.N.; Lam, H.Q. Autologous Adipose-Derived Stem Cells (ADSCs) Transplantation in the Management of Chronic Wounds. Wound Pract. Res. 2021, 29, 41–48. [Google Scholar] [CrossRef]
- Tien, N.L.B.; Hoa, N.D.; Thanh, V.V.; Van Thach, N.; Ngoc, V.T.N.; Dinh, T.C.; Phuong, T.N.T.; Toi, P.L.; Chu, D.T. Autologous Transplantation of Adipose-Derived Stem Cells to Treat Acute Spinal Cord Injury: Evaluation of Clinical Signs, Mental Signs, and Quality of Life. Open Access Maced. J. Med. Sci. 2019, 7, 4399–4405. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Pontecorvi, P.; Anastasiadou, E.; Napoli, C.; Marchese, C. Immunomodulatory Effect of Adipose-Derived Stem Cells: The Cutting Edge of Clinical Application. Front. Cell Dev. Biol. 2020, 8, 236. [Google Scholar] [CrossRef]
- Naderi, N.; Combellack, E.J.; Griffin, M.; Sedaghati, T.; Javed, M.; Findlay, M.W.; Wallace, C.G.; Mosahebi, A.; Butler, P.E.; Seifalian, A.M.; et al. The Regenerative Role of Adipose-derived Stem Cells (ADSC) in Plastic and Reconstructive Surgery. Int. Wound J. 2017, 14, 112–124. [Google Scholar] [CrossRef]
- Fu, Y.; Deng, J.; Jiang, Q.; Wang, Y.; Zhang, Y.; Yao, Y.; Cheng, F.; Chen, X.; Xu, F.; Huang, M.; et al. Rapid Generation of Functional Hepatocyte-like Cells from Human Adipose-Derived Stem Cells. Stem Cell Res. Ther. 2016, 7, 105. [Google Scholar] [CrossRef] [PubMed]
- Mohammadpour, A.; Arjmand, S.; Lotfi, A.S.; Tavana, H.; Kabir-Salmani, M. Promoting Hepatogenic Differentiation of Human Mesenchymal Stem Cells Using a Novel Laminin-Containing Gelatin Cryogel Scaffold. Biochem. Biophys. Res. Commun. 2018, 507, 15–21. [Google Scholar] [CrossRef]
- Qu, Y.; Zhang, Q.; Cai, X.; Li, F.; Ma, Z.; Xu, M.; Lu, L. Exosomes Derived from miR-181-5p-modified Adipose-derived Mesenchymal Stem Cells Prevent Liver Fibrosis via Autophagy Activation. J. Cell. Mol. Med. 2017, 21, 2491–2502. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Feng, J.; Guo, J.; Wang, J.; Xiu, G.; Xu, J.; Ning, K.; Ling, B.; Fu, Q.; Xu, J. ADSCs-Derived Exosomes Ameliorate Hepatic Fibrosis by Suppressing Stellate Cell Activation and Remodeling Hepatocellular Glutamine Synthetase-Mediated Glutamine and Ammonia Homeostasis. Stem Cell Res. Ther. 2022, 13, 494. [Google Scholar] [CrossRef]
- Han, H.S.; Lee, H.; You, D.; Nguyen, V.Q.; Song, D.-G.; Oh, B.H.; Shin, S.; Choi, J.S.; Kim, J.D.; Pan, C.-H.; et al. Human Adipose Stem Cell-Derived Extracellular Nanovesicles for Treatment of Chronic Liver Fibrosis. J. Control. Release 2020, 320, 328–336. [Google Scholar] [CrossRef]
- Lai, Y.-J.; Sung, Y.-T.; Lai, Y.-A.; Chen, L.-N.; Chen, T.-S.; Chien, C.-T. L-Theanine-Treated Adipose-Derived Mesenchymal Stem Cells Alleviate the Cytotoxicity Induced by N-Nitrosodiethylamine in Liver. Tissue Eng. Regen. Med. 2022, 19, 1207–1221. [Google Scholar] [CrossRef] [PubMed]
- Niu, Q.; Wang, T.; Wang, Z.; Wang, F.; Huang, D.; Sun, H.; Liu, H. Adipose-Derived Mesenchymal Stem Cell-Secreted Extracellular Vesicles Alleviate Non-Alcoholic Fatty Liver Disease via Delivering miR-223-3p. Adipocyte 2022, 11, 572–587. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Jiao, Z.; Liu, X.; Zhang, Q.; Piao, C.; Xu, J.; Wang, H. Protective Effect of Adipose-Derived Stromal Cell-Secretome Attenuate Autophagy Induced by Liver Ischemia–Reperfusion and Partial Hepatectomy. Stem Cell Res. Ther. 2022, 13, 427. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Zhang, L.; Zhang, Y.; Sun, C.; Chen, X.; Wang, Y. Adipose-Derived Mesenchymal Stem Cells Promote Liver Regeneration and Suppress Rejection in Small-for-Size Liver Allograft. Transpl. Immunol. 2017, 45, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kalinina, N.; Kharlampieva, D.; Loguinova, M.; Butenko, I.; Pobeguts, O.; Efimenko, A.; Ageeva, L.; Sharonov, G.; Ischenko, D.; Alekseev, D.; et al. Characterization of Secretomes Provides Evidence for Adipose-Derived Mesenchymal Stromal Cells Subtypes. Stem Cell Res. Ther. 2015, 6, 221. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, R.; Mellows, B.; Sheard, J.; Antonioli, M.; Kretz, O.; Chambers, D.; Zeuner, M.-T.; Tomkins, J.E.; Denecke, B.; Musante, L.; et al. Secretome of Adipose-Derived Mesenchymal Stem Cells Promotes Skeletal Muscle Regeneration through Synergistic Action of Extracellular Vesicle Cargo and Soluble Proteins. Stem Cell Res. Ther. 2019, 10, 116. [Google Scholar] [CrossRef] [PubMed]
- Nakagami, H.; Morishita, R.; Maeda, K.; Kikuchi, Y.; Ogihara, T.; Kaneda, Y. Adipose Tissue-Derived Stromal Cells as a Novel Option for Regenerative Cell Therapy. J. Atheroscler. Thromb. 2006, 13, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Dzhoyashvili, N.A.; Efimenko, A.Y.; Kochegura, T.N.; Kalinina, N.I.; Koptelova, N.V.; Sukhareva, O.Y.; Shestakova, M.V.; Akchurin, R.S.; Tkachuk, V.A.; Parfyonova, Y.V. Disturbed Angiogenic Activity of Adipose-Derived Stromal Cells Obtained from Patients with Coronary Artery Disease and Diabetes Mellitus Type 2. J. Transl. Med. 2014, 12, 337. [Google Scholar] [CrossRef] [PubMed]
- Miceli, V.; Bulati, M.; Iannolo, G.; Zito, G.; Gallo, A.; Conaldi, P.G. Therapeutic Properties of Mesenchymal Stromal/Stem Cells: The Need of Cell Priming for Cell-Free Therapies in Regenerative Medicine. Int. J. Mol. Sci. 2021, 22, 763. [Google Scholar] [CrossRef]
- Chen, W. TGF-β Regulation of T Cells. Annu. Rev. Immunol. 2023, 41, 483–512. [Google Scholar] [CrossRef]
- De Araújo Farias, V.; Carrillo-Gálvez, A.B.; Martín, F.; Anderson, P. TGF-β and Mesenchymal Stromal Cells in Regenerative Medicine, Autoimmunity and Cancer. Cytokine Growth Factor Rev. 2018, 43, 25–37. [Google Scholar] [CrossRef]
- Najar, M.; Raicevic, G.; Boufker, H.I.; Kazan, H.F.; Bruyn, C.D.; Meuleman, N.; Bron, D.; Toungouz, M.; Lagneaux, L. Mesenchymal Stromal Cells Use PGE2 to Modulate Activation and Proliferation of Lymphocyte Subsets: Combined Comparison of Adipose Tissue, Wharton’s Jelly and Bone Marrow Sources. Cell. Immunol. 2010, 264, 171–179. [Google Scholar] [CrossRef]
- Barpour, N.; Ghorbani, M.; Baradaran, B.; Jodari-Mohammadpour, Z.; Nejati-Koshki, K.; Abdollahpour-Alitappeh, M.; Dabbaghi, R.; Gharibi, T. Development of an Injectable Chitosan-Based Hydrogel Containing Nano-Hydroxy-Apatite and Alendronate for MSC-Based Therapy. Int. J. Biol. Macromol. 2024, 261, 129737. [Google Scholar] [CrossRef] [PubMed]
- Heidari, F.; Razmkhah, M.; Razban, V.; Erfani, N. Effects of Indoleamine 2,3-dioxygenase (IDO) Silencing on Immunomodulatory Function and Cancer-promoting Characteristic of Adipose-derived Mesenchymal Stem Cells (ASCs). Cell Biol. Int. 2021, 45, 2544–2556. [Google Scholar] [CrossRef]
- Albini, A.; Gallazzi, M.; Palano, M.T.; Carlini, V.; Ricotta, R.; Bruno, A.; Stetler-Stevenson, W.G.; Noonan, D.M. TIMP1 and TIMP2 Downregulate TGFβ Induced Decidual-like Phenotype in Natural Killer Cells. Cancers 2021, 13, 4955. [Google Scholar] [CrossRef] [PubMed]
- Preisner, F.; Leimer, U.; Sandmann, S.; Zoernig, I.; Germann, G.; Koellensperger, E. Impact of Human Adipose Tissue-Derived Stem Cells on Malignant Melanoma Cells in An In Vitro Co-Culture Model. Stem Cell Rev. Rep. 2018, 14, 125–140. [Google Scholar] [CrossRef] [PubMed]
- Zambelli, A.; Biamonti, G.; Amato, A. HGF/c-Met Signalling in the Tumor Microenvironment. In Tumor Microenvironment; Birbrair, A., Ed.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2021; Volume 1270, pp. 31–44. ISBN 978-3-030-47188-0. [Google Scholar]
- Hermann, M.; Peddi, A.; Gerhards, A.; Schmid, R.; Schmitz, D.; Arkudas, A.; Weisbach, V.; Horch, R.E.; Kengelbach-Weigand, A. Secretome of Adipose-Derived Stem Cells Cultured in Platelet Lysate Improves Migration and Viability of Keratinocytes. Int. J. Mol. Sci. 2023, 24, 3522. [Google Scholar] [CrossRef]
- An, Y.-H.; Kim, D.H.; Lee, E.J.; Lee, D.; Park, M.J.; Ko, J.; Kim, D.W.; Koh, J.; Hong, H.S.; Son, Y.; et al. High-Efficient Production of Adipose-Derived Stem Cell (ADSC) Secretome through Maturation Process and Its Non-Scarring Wound Healing Applications. Front. Bioeng. Biotechnol. 2021, 9, 681501. [Google Scholar] [CrossRef]
- Assis-Ribas, T.; Forni, M.F.; Winnischofer, S.M.B.; Sogayar, M.C.; Trombetta-Lima, M. Extracellular Matrix Dynamics during Mesenchymal Stem Cells Differentiation. Dev. Biol. 2018, 437, 63–74. [Google Scholar] [CrossRef]
- Ganguly, K.; Cox, J.L.; Ghersi, D.; Grandgenett, P.M.; Hollingsworth, M.A.; Jain, M.; Kumar, S.; Batra, S.K. Mucin 5AC–Mediated CD44/ITGB1 Clustering Mobilizes Adipose-Derived Mesenchymal Stem Cells to Modulate Pancreatic Cancer Stromal Heterogeneity. Gastroenterology 2022, 162, 2032–2046.e12. [Google Scholar] [CrossRef]
- Ritter, A.; Kreis, N.-N.; Roth, S.; Friemel, A.; Safdar, B.K.; Hoock, S.C.; Wildner, J.M.; Allert, R.; Louwen, F.; Solbach, C.; et al. Cancer-Educated Mammary Adipose Tissue-Derived Stromal/Stem Cells in Obesity and Breast Cancer: Spatial Regulation and Function. J. Exp. Clin. Cancer Res. 2023, 42, 35. [Google Scholar] [CrossRef] [PubMed]
- Meechem, M.; Jadli, A.S.; Patel, V.B. Uncovering the Link Between Diabetes and Cardiovascular Disease: Insights from Adipose-Derived Stem Cells. Can. J. Physiol. Pharmacol. 2024, 102, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Harasymiak-Krzyżanowska, I.; Niedojadło, A.; Karwat, J.; Kotuła, L.; Gil-Kulik, P.; Sawiuk, M.; Kocki, J. Adipose Tissue-Derived Stem Cells Show Considerable Promise for Regenerative Medicine Applications. Cell. Mol. Biol. Lett. 2013, 18, 479–493. [Google Scholar] [CrossRef] [PubMed]
- O’Halloran, N.; Courtney, D.; Kerin, M.J.; Lowery, A.J. Adipose-Derived Stem Cells in Novel Approaches to Breast Reconstruction: Their Suitability for Tissue Engineering and Oncological Safety. Breast Cancer 2017, 11, 117822341772677. [Google Scholar] [CrossRef] [PubMed]
- Rezaei-Tazangi, F.; Samadi, A.; Azandeh, S.; Khoshnood, S.; Mahmoudvand, S. Secretome of Adipose Derived Stem Cells Induced Apoptosis in Anaplastic Thyroid Carcinoma C-643 Cells. Immunopathol. Persa 2021, 8, e20. [Google Scholar] [CrossRef]
- Wang, T.; Yu, X.; Lin, J.; Qin, C.; Bai, T.; Xu, T.; Wang, L.; Liu, X.; Li, S. Adipose-Derived Stem Cells Inhibited the Proliferation of Bladder Tumor Cells by S Phase Arrest and Wnt/β-Catenin Pathway. Cell. Reprogramming 2019, 21, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Oh, E.; Han, Y.S.; Lee, S.H.; Song, Y.S. Enhanced Inhibition of Tumor Growth Using TRAIL-Overexpressing Adipose-Derived Stem Cells in Combination with the Chemotherapeutic Agent CPT-11 in Castration-Resistant Prostate Cancer. Prostate Int. 2021, 9, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Takahara, K.; Ii, M.; Inamoto, T.; Komura, K.; Ibuki, N.; Minami, K.; Uehara, H.; Hirano, H.; Nomi, H.; Kiyama, S.; et al. Adipose-Derived Stromal Cells Inhibit Prostate Cancer Cell Proliferation Inducing Apoptosis. Biochem. Biophys. Res. Commun. 2014, 446, 1102–1107. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Yokoi, A.; Uno, K.; Yoshida, K.; Kitagawa, M.; Asano-Inami, E.; Matsuo, S.; Nagao, Y.; Suzuki, K.; Nakamura, K.; et al. Small Extracellular Vesicles from Adipose-Derived Stem Cells Suppress Cell Proliferation by Delivering the Let-7 Family of microRNAs in Ovarian Cancer. Biochem. Biophys. Res. Commun. 2023, 680, 211–219. [Google Scholar] [CrossRef]
- Khodayar, M.J.; Rezaei Tazangi, F.; Samimi, A.; Alidadi, H. Adipose-Derived Mesenchymal Stem Cells Secretome Induces Apoptosis in Colon Carcinoma HT-29 Cells. Jentashapir J. Cell. Mol. Biol. 2023, 13, e133934. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Z.; Cui, Q.; Zhao, L.; Hu, Y.; Zhao, S. Human Adipose-Derived Mesenchymal Stem Cells Inhibit Proliferation and Induce Apoptosis of Human Gastric Cancer HGC-27 Cells. 3 Biotech 2020, 10, 129. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Ren, G.; Zhang, L.; Zhang, Z.; Liu, J.; Kuang, P.; Yin, Z.; Wang, X. Efficacy of Mesenchymal Stem Cells Derived from Human Adipose Tissue in Inhibition of Hepatocellular Carcinoma Cells In Vitro. Cancer Biother. Radiopharm. 2012, 27, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Serhal, R.; Saliba, N.; Hilal, G.; Moussa, M.; Hassan, G.; Atat, O.E.; Alaaeddine, N. Effect of Adipose-Derived Mesenchymal Stem Cells on Hepatocellular Carcinoma: In Vitro Inhibition of Carcinogenesis. World J. Gastroenterol. 2019, 25, 567–583. [Google Scholar] [CrossRef] [PubMed]
- Ghufran, H.; Azam, M.; Mehmood, A.; Ashfaq, R.; Baig, M.T.; Malik, K.; Shahid, A.A.; Riazuddin, S. Tumoricidal Effects of Unprimed and Curcumin-Primed Adipose-Derived Stem Cells on Human Hepatoma HepG2 Cells under Oxidative Conditions. Tissue Cell 2022, 79, 101968. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Tang, Q.; Yin, X.; Yan, D.; Tang, M.; Xin, J.; Pan, Q.; Ma, C.; Yan, S. The Therapeutic Potential of Adipose Tissue-Derived Mesenchymal Stem Cells to Enhance Radiotherapy Effects on Hepatocellular Carcinoma. Front. Cell Dev. Biol. 2019, 7, 267. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Narjus-Sterba, M.; Tuomainen, K.; Kaur, S.; Seppänen-Kaijansinkko, R.; Salo, T.; Mannerström, B.; Al-Samadi, A. Adipose-Derived Mesenchymal Stem Cells Do Not Affect the Invasion and Migration Potential of Oral Squamous Carcinoma Cells. Int. J. Mol. Sci. 2020, 21, 6455. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Fresnedo, A.; Al-Kharboosh, R.; Twohy, E.L.; Basil, A.N.; Szymkiewicz, E.C.; Zubair, A.C.; Trifiletti, D.M.; Durand, N.; Dickson, D.W.; Middlebrooks, E.H.; et al. Phase 1, Dose Escalation, Nonrandomized, Open-Label, Clinical Trial Evaluating the Safety and Preliminary Efficacy of Allogenic Adipose-Derived Mesenchymal Stem Cells for Recurrent Glioblastoma: A Clinical Trial Protocol. Neurosurg. Pract. 2024, 4, e00062. [Google Scholar]
- Frommer, M.L.; Langridge, B.J.; Awad, L.; Jasionowska, S.; Denton, C.P.; Abraham, D.J.; Abu-Hanna, J.; Butler, P.E.M. Single-Cell Analysis of ADSC Interactions with Fibroblasts and Endothelial Cells in Scleroderma Skin. Cells 2023, 12, 1784. [Google Scholar] [CrossRef] [PubMed]
- Tilotta, V.; Vadalà, G.; Ambrosio, L.; Cicione, C.; Di Giacomo, G.; Russo, F.; Papalia, R.; Denaro, V. Mesenchymal Stem Cell-Derived Secretome Enhances Nucleus Pulposus Cell Metabolism and Modulates Extracellular Matrix Gene Expression In Vitro. Front. Bioeng. Biotechnol. 2023, 11, 1152207. [Google Scholar] [CrossRef]
- Schmid, R.; Wolf, K.; Robering, J.W.; Strauß, S.; Strissel, P.L.; Strick, R.; Rübner, M.; Fasching, P.A.; Horch, R.E.; Kremer, A.E.; et al. ADSCs and Adipocytes Are the Main Producers in the Autotaxin–Lysophosphatidic Acid Axis of Breast Cancer and Healthy Mammary Tissue In Vitro. BMC Cancer 2018, 18, 1273. [Google Scholar] [CrossRef]
- Ambrosio, M.R.; Mosca, G.; Migliaccio, T.; Liguoro, D.; Nele, G.; Schonauer, F.; D’Andrea, F.; Liotti, F.; Prevete, N.; Melillo, R.M.; et al. Glucose Enhances Pro-Tumorigenic Functions of Mammary Adipose-Derived Mesenchymal Stromal/Stem Cells on Breast Cancer Cell Lines. Cancers 2022, 14, 5421. [Google Scholar] [CrossRef] [PubMed]
- Di Franco, S.; Bianca, P.; Sardina, D.S.; Turdo, A.; Gaggianesi, M.; Veschi, V.; Nicotra, A.; Mangiapane, L.R.; Lo Iacono, M.; Pillitteri, I.; et al. Adipose Stem Cell Niche Reprograms the Colorectal Cancer Stem Cell Metastatic Machinery. Nat. Commun. 2021, 12, 5006. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Zhang, G.; Li, H. The Role of Extracellular Matrix in Wound Healing. Dermatol. Surg. 2023, 49, S41–S48. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhang, L.; Wan, D.; Zhou, L.; Zheng, S.; Lin, S.; Qiao, Y. Extracellular Matrix and Its Therapeutic Potential for Cancer Treatment. Signal Transduct. Target. Ther. 2021, 6, 153. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.M.; Iyer, R.; Chakraborty, S. The Extracellular Matrix in Hepatocellular Carcinoma: Mechanisms and Therapeutic Vulnerability. Cell Rep. Med. 2023, 4, 101170. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Wang, Y.; Peng, W.; Xu, L.; Liu, M.; Li, J.; Hu, X.; Li, Y.; Zuo, J.; Ye, Y. STAT3 Activation by IL-6 from Adipose-Derived Stem Cells Promotes Endometrial Carcinoma Proliferation and Metastasis. Biochem. Biophys. Res. Commun. 2018, 500, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.-H.; Wei, H.-J.; Peng, B.-Y.; Chou, H.-H.; Chen, W.-H.; Liu, H.-Y.; Deng, W.-P. Adipose-Derived Stem Cells Enhance Cancer Stem Cell Property and Tumor Formation Capacity in Lewis Lung Carcinoma Cells through an Interleukin-6 Paracrine Circuit. Stem Cells Dev. 2016, 25, 1833–1842. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.-J.; Zeng, R.; Lu, J.-H.; Lai, W.-F.T.; Chen, W.-H.; Liu, H.-Y.; Chang, Y.-T.; Deng, W.-P. Adipose-Derived Stem Cells Promote Tumor Initiation and Accelerate Tumor Growth by Interleukin-6 Production. Oncotarget 2015, 6, 7713–7726. [Google Scholar] [CrossRef] [PubMed]
- Goto, H.; Shimono, Y.; Funakoshi, Y.; Imamura, Y.; Toyoda, M.; Kiyota, N.; Kono, S.; Takao, S.; Mukohara, T.; Minami, H. Adipose-Derived Stem Cells Enhance Human Breast Cancer Growth and Cancer Stem Cell-like Properties through Adipsin. Oncogene 2019, 38, 767–779. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Qian, C.; Ma, F.; Liu, M.; Sun, X.; Liu, X.; Liu, C.; Chen, Z.; Ma, W.; Liu, J.; et al. MAPK/ERK-CBP-RFPL-3 Mediates Adipose-Derived Stem Cell-Induced Tumor Growth in Breast Cancer Cells by Activating Telomerase Reverse Transcriptase Expression. Stem Cells Int. 2022, 2022, 8540535. [Google Scholar] [CrossRef]
- Xu, H.; Li, W.; Luo, S.; Yuan, J.; Hao, L. Adipose Derived Stem Cells Promote Tumor Metastasis in Breast Cancer Cells by Stem Cell Factor Inhibition of miR20b. Cell. Signal. 2019, 62, 109350. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhao, G.; Huo, X.; Wang, Y.; Tigyi, G.; Zhu, B.-M.; Yue, J.; Zhang, W. Adipose-Derived Stem Cells Facilitate Ovarian Tumor Growth and Metastasis by Promoting Epithelial to Mesenchymal Transition through Activating the TGF-β Pathway. Front. Oncol. 2021, 11, 756011. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Liu, H.; Zhang, Y.; Xiong, L.; Zeng, Z.; He, X.; Wang, F.; Wu, X.; Lan, P. Cyr61 from Adipose-derived Stem Cells Promotes Colorectal Cancer Metastasis and Vasculogenic Mimicry Formation via Integrin αVβ5. Mol. Oncol. 2021, 15, 3447–3467. [Google Scholar] [CrossRef] [PubMed]
- Mohd Ali, N.; Yeap, S.K.; Ho, W.Y.; Boo, L.; Ky, H.; Satharasinghe, D.A.; Tan, S.W.; Cheong, S.K.; Huang, H.D.; Lan, K.C.; et al. Adipose MSCs Suppress MCF7 and MDA-MB-231 Breast Cancer Metastasis and EMT Pathways Leading to Dormancy via Exosomal-miRNAs Following Co-Culture Interaction. Pharmaceuticals 2020, 14, 8. [Google Scholar] [CrossRef] [PubMed]
- Airuddin, S.S.; Halim, A.S.; Wan Sulaiman, W.A.; Kadir, R.; Nasir, N.A.M. Adipose-Derived Stem Cell: “Treat or Trick”. Biomedicines 2021, 9, 1624. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Zhu, C.; Wang, Q.; Liu, M.; Wan, W.; Zhou, J.; Han, R.; Yang, J.; Luo, W.; Liu, C.; et al. Adipose-derived Mesenchymal Stem Cells Induced PAX8 Promotes Ovarian Cancer Cell Growth by Stabilizing TAZ Protein. J. Cell. Mol. Med. 2021, 25, 4434–4443. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; You, M.; Zhang, J.; Gao, G.; Han, R.; Luo, W.; Liu, T.; Zuo, J.; Wang, F. Adipose-Derived Mesenchymal Stem Cells Enhance Ovarian Cancer Growth and Metastasis by Increasing Thymosin Beta 4X-Linked Expression. Stem Cells Int. 2019, 2019, 9037197. [Google Scholar] [CrossRef]
- Chu, Y.; Tang, H.; Guo, Y.; Guo, J.; Huang, B.; Fang, F.; Cai, J.; Wang, Z. Adipose-Derived Mesenchymal Stem Cells Promote Cell Proliferation and Invasion of Epithelial Ovarian Cancer. Exp. Cell Res. 2015, 337, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Adelipour, M.; Allameh, A.; Sheikhi, A.; Ranjbaran, M.; Naghashpour, M.; Nazeri, Z.; Mojiri-Foroshani, H.; Golabi, S. Role of the Mesenchymal Stem Cells Derived from Adipose Tissue in Changing the Rate of Breast Cancer Cell Proliferation and Autophagy, In Vitro and In Vivo. Iran. J. Basic Med. Sci. 2021, 24, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wang, Y.; Yuan, Z.; Wang, S.; Du, H.; Liu, X.; Wang, Q.; Zhu, X. Human Adipose-derived Mesenchymal Stem Cells Promote Breast Cancer MCF7 Cell Epithelial-mesenchymal Transition by Cross Interacting with the TGF-β/Smad and PI3K/AKT Signaling Pathways. Mol. Med. Rep. 2018, 19, 177–186. [Google Scholar] [CrossRef]
- De Miranda, M.C.; Ferreira, A.D.F.; De Melo, M.I.A.; Kunrath-Lima, M.; Goes, A.M.D.; Rodrigues, M.A.; Gomes, D.A.; Faria, J.A.Q.A. Adipose-Derived Stem/Stromal Cell Secretome Modulates Breast Cancer Cell Proliferation and Differentiation State towards Aggressiveness. Biochimie 2021, 191, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Eterno, V.; Zambelli, A.; Pavesi, L.; Villani, L.; Zanini, V.; Petrolo, G.; Manera, S.; Tuscano, A.; Amato, A. Adipose-Derived Mesenchymal Stem Cells (ASCs) May Favour Breast Cancer Recurrence via HGF/c-Met Signaling. Oncotarget 2014, 5, 613–633. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, X.; Wang, J.; Liu, D.; Wang, Y.; Huang, Z.; Tan, H. Hypoxia-Induced Secretion of IL-10 from Adipose-Derived Mesenchymal Stem Cell Promotes Growth and Cancer Stem Cell Properties of Burkitt Lymphoma. Tumor Biol. 2016, 37, 7835–7842. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Chen, F.; Liu, D.; Gu, F.; Wang, Y. Adipose Tissue-Derived Stem Cells in Breast Reconstruction: A Brief Review on Biology and Translation. Stem Cell Res. Ther. 2021, 12, 8. [Google Scholar] [CrossRef] [PubMed]
- Valente, D.S.; Ely, P.B.; Kieling, L.; Konzen, A.T.; Steffen, L.P.; Lazzaretti, G.S.; Zanella, R.K. Breast Fat Grafting and Cancer: A Systematic Review of the Science behind Enhancements and Concerns. Transl. Breast Cancer Res. 2024, 5, 14. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Sachs, P.C.; Wang, X.; Dumur, C.I.; Idowu, M.O.; Robila, V.; Francis, M.P.; Ware, J.; Beckman, M.; Rizki, A.; et al. Mesenchymal Stem Cells in Mammary Adipose Tissue Stimulate Progression of Breast Cancer Resembling the Basal-Type. Cancer Biol. Ther. 2012, 13, 782–792. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Liao, N.; Lan, F.; Cai, Z.; Liu, X.; Liu, J. 3D-Cultured Adipose Tissue-Derived Stem Cells Inhibit Liver Cancer Cell Migration and Invasion through Suppressing Epithelial-Mesenchymal Transition. Int. J. Mol. Med. 2017, 41, 1385–1396. [Google Scholar] [CrossRef]
- Teshima, T.; Matsumoto, H.; Koyama, H. Soluble Factors from Adipose Tissue-Derived Mesenchymal Stem Cells Promote Canine Hepatocellular Carcinoma Cell Proliferation and Invasion. PLoS ONE 2018, 13, e0191539. [Google Scholar] [CrossRef] [PubMed]
- Salah, R.A.; Nasr, M.A.; El-Derby, A.M.; Abd Elkodous, M.; Mohamed, R.H.; El-Ekiaby, N.; Osama, A.; Elshenawy, S.E.; Hamad, M.H.M.; Magdeldin, S.; et al. Hepatocellular Carcinoma Cell Line-Microenvironment Induced Cancer-Associated Phenotype, Genotype and Functionality in Mesenchymal Stem Cells. Life Sci. 2022, 288, 120168. [Google Scholar] [CrossRef]
- Wang, Y.; Lee, J.-H.; Shirahama, H.; Seo, J.; Glenn, J.S.; Cho, N.-J. Extracellular Matrix Functionalization and Huh-7.5 Cell Coculture Promote the Hepatic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells in a 3D ICC Hydrogel Scaffold. ACS Biomater. Sci. Eng. 2016, 2, 2255–2265. [Google Scholar] [CrossRef]
- Liu, T.; Li, T.; Zheng, Y.; Xu, X.; Sun, R.; Zhan, S.; Guo, X.; Zhao, Z.; Zhu, W.; Feng, B.; et al. Evaluating Adipose-derived Stem Cell Exosomes as miRNA Drug Delivery Systems for the Treatment of Bladder Cancer. Cancer Med. 2022, 11, 3687–3699. [Google Scholar] [CrossRef] [PubMed]
- Borghese, C.; Casagrande, N.; Corona, G.; Aldinucci, D. Adipose-Derived Stem Cells Primed with Paclitaxel Inhibit Ovarian Cancer Spheroid Growth and Overcome Paclitaxel Resistance. Pharmaceutics 2020, 12, 401. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, S.; Ma, T.; Zeng, J.; Zhou, X.; Li, H.; Tang, M.; Liu, X.; Li, F.; Jiang, B.; et al. Secreted TRAIL Gene-modified Adipose-derived Stem Cells Exhibited Potent Tumor-suppressive Effect in Hepatocellular Carcinoma Cells. Immun. Inflamm. Dis. 2021, 9, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Niu, H.; Li, L.; Han, J.; Liu, Z.; Chu, M.; Sha, X.; Zhao, J. Anti-CHAC1 Exosomes for Nose-to-Brain Delivery of miR-760-3p in Cerebral Ischemia/Reperfusion Injury Mice Inhibiting Neuron Ferroptosis. J. Nanobiotechnol. 2023, 21, 109. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Han, C.; Du, B.; Nan, D.; Zhang, W.; He, G. Isolation and Identification of Adipose Stem Cell Exosomes and the Study of Its Potential as Drug Delivery Carrier In Vitro. Appl. Biochem. Biotechnol. 2022, 194, 2594–2603. [Google Scholar] [CrossRef] [PubMed]
- Scioli, M.G.; Artuso, S.; D’Angelo, C.; Porru, M.; D’Amico, F.; Bielli, A.; Gentile, P.; Cervelli, V.; Leonetti, C.; Orlandi, A. Adipose-Derived Stem Cell-Mediated Paclitaxel Delivery Inhibits Breast Cancer Growth. PLoS ONE 2018, 13, e0203426. [Google Scholar] [CrossRef] [PubMed]
- Lou, G.; Song, X.; Yang, F.; Wu, S.; Wang, J.; Chen, Z.; Liu, Y. Exosomes Derived from miR-122-Modified Adipose Tissue-Derived MSCs Increase Chemosensitivity of Hepatocellular Carcinoma. J. Hematol. Oncol. 2015, 8, 122. [Google Scholar] [CrossRef] [PubMed]
- Lou, G.; Chen, L.; Xia, C.; Wang, W.; Qi, J.; Li, A.; Zhao, L.; Chen, Z.; Zheng, M.; Liu, Y. MiR-199a-Modified Exosomes from Adipose Tissue-Derived Mesenchymal Stem Cells Improve Hepatocellular Carcinoma Chemosensitivity through mTOR Pathway. J. Exp. Clin. Cancer Res. 2020, 39, 4. [Google Scholar] [CrossRef] [PubMed]
- Pham, P.V.; Nguyen, S.T.; Phan, N.L.-C.; Do, N.M.; Vo, P.H. Adipose-Derived Stem Cells Can Replace Fibroblasts as Cell Control for Anti-Tumor Screening Assay. OncoTargets Ther. 2020, 13, 6417–6423. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Vykoukal, J.; Abdelsalam, M.; Recio-Boiles, A.; Huang, Q.; Qiao, Y.; Singhana, B.; Wallace, M.; Avritscher, R.; Melancon, M.P. Stem Cell-Mediated Delivery of SPIO-Loaded Gold Nanoparticles for the Theranosis of Liver Injury and Hepatocellular Carcinoma. Nanotechnology 2014, 25, 405101. [Google Scholar] [CrossRef]
- Arzumanian, V.A.; Kiseleva, O.I.; Poverennaya, E.V. The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int. J. Mol. Sci. 2021, 22, 13135. [Google Scholar] [CrossRef] [PubMed]
Study Number | Cancer Type | ADSC Source | ADSC Quantity | Administration | Results | Ref. |
---|---|---|---|---|---|---|
NCT 05789394 | Glioblastoma multiforme | Allogeneic transplant | 5 × 106 −2 × 107 | Intratumoral | Ongoing study | [88] |
NCT 04087889 | Pancreatic cancer | Allogeneic transplant from a first-degree relative | 2 × 108 | Intravenous | Ongoing study | Unpublished |
NCT 02068794 | Ovarian cancer | Not specified | Not specified | Intraperitoneal | Ongoing study | Unpublished |
Factor | Effect on Cancer Cell Growth | Ref. |
---|---|---|
Il-6 | ↑ | [97,98,99] |
Adipsin | ↑ | [100] |
Stem cell factor (SCF) | ↑ | [101,102] |
TGFβ | ↑ | [103] |
Cysteine-rich angiogenic inducer 61 (Cyr61) | ↑ | [104] |
Pro-apoptotic factors (not specified) | ↓ | [76,77,81,82] |
miR-941 | ↓ | [105] |
Effect | Method | Cell Line | Ref. |
---|---|---|---|
Inhibition of proliferation | Co-culture with ADSCs | HepG2 | [84,85] |
PLC-PRF-5 | [84] | ||
Culture with ADSC-derived conditioned medium | HepG2 | [83,84,118] | |
Huh7 | [83] | ||
SMMC7721 | [83] | ||
Bel7402 | [83] | ||
Induction of apoptosis | Co-culture with ADSCs | HepG2 | [84,85] |
PLC-PRF-5 | [84] | ||
Culture with ADSC-derived | SMMC7721 | [83] | |
conditioned medium | HepG2 | [84,118] | |
PLC-PRF-5 | [84] | ||
Inhibition of migration | Co-culture with ADSCs | HepG2 | [84,85] |
PLC-PRF-5 | [84] | ||
Culture with ADSC-derived conditioned medium | HepG2 | [84,118] | |
Reduction of invasiveness | Co-culture with ADSCs | HepG2 | [84] |
Culture with ADSC-derived conditioned medium | HepG2 | [84,85,118] | |
Promotion of proliferation and migration | Culture with ADSC-derived conditioned medium | AZACH | [119] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gładyś, A.; Mazurski, A.; Czekaj, P. Potential Consequences of the Use of Adipose-Derived Stem Cells in the Treatment of Hepatocellular Carcinoma. Int. J. Mol. Sci. 2024, 25, 7806. https://doi.org/10.3390/ijms25147806
Gładyś A, Mazurski A, Czekaj P. Potential Consequences of the Use of Adipose-Derived Stem Cells in the Treatment of Hepatocellular Carcinoma. International Journal of Molecular Sciences. 2024; 25(14):7806. https://doi.org/10.3390/ijms25147806
Chicago/Turabian StyleGładyś, Aleksandra, Adam Mazurski, and Piotr Czekaj. 2024. "Potential Consequences of the Use of Adipose-Derived Stem Cells in the Treatment of Hepatocellular Carcinoma" International Journal of Molecular Sciences 25, no. 14: 7806. https://doi.org/10.3390/ijms25147806
APA StyleGładyś, A., Mazurski, A., & Czekaj, P. (2024). Potential Consequences of the Use of Adipose-Derived Stem Cells in the Treatment of Hepatocellular Carcinoma. International Journal of Molecular Sciences, 25(14), 7806. https://doi.org/10.3390/ijms25147806