Molecular Characteristics and Functional Identification of a Key Alpha-Amylase-Encoding Gene AMY11 in Musa acuminata
Abstract
:1. Introduction
2. Results
2.1. Identification and Physicochemical Characterization of MaAMY Proteins in Banana
2.2. Motifs, Gene Structure, and Multiple Sequence Alignments of MaAMY Family Members
2.3. Evolutionary Relationships of AMYs from Banana and Other Plant Species
2.4. Chromosomal Localization and Tandem Duplication of MaAMYs and Cis-acting Element Analyses of MaAMY Gene Promoters
2.5. Intergenomic and Intragenomic Collinearity Analysis
2.6. MaAMY11 Exhibits Higher Expression than Other MaAMYs in the Fruit or during Ripening
2.7. Co-Localization of Four Expressed MaAMY Proteins
2.8. Banana MaAMY11 Plays a Crucial Role in Fruit Starch Degradation
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Genome-Wide Identification of Banana AMY Family Genes
4.3. Motifs, Structures, and Multiple Sequence Alignment
4.4. Phylogenetic Tree and AMY Gene Family Evolutionary Selection Pressure Analysis
4.5. Chromosome Localization, Gene Duplication and Collinearity, and Promoter Cis-Acting Element Analyses
4.6. Transcriptomic Analysis
4.7. Quantitative Real-Time Polymerase Chain Reaction and Statistical Analysis
4.8. Transient Silencing or Transient Overexpression of MaAMY11 in Banana Fruit
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seung, D.; Smith, A.M. Starch granule initiation and morphogenesis-progress in Arabidopsis and cereals. J. Exp. Bot. 2019, 70, 771–784. [Google Scholar] [CrossRef]
- David, L.C.; Lee, S.K.; Bruderer, E.; Abt, M.R.; Fischer-Stettler, M.; Tschopp, M.A.; Solhaug, E.M.; Sanchez, K.; Zeeman, S.C. BETA-AMYLASE9 is a plastidial nonenzymatic regulator of leaf starch degradation. Plant Physiol. 2022, 188, 191–207. [Google Scholar] [CrossRef] [PubMed]
- Damaris, R.N.; Lin, Z.; Yang, P.; He, D. The rice alpha-amylase, conserved regulator of seed maturation and germination. Int. J. Mol. Sci. 2019, 20, 450. [Google Scholar] [CrossRef]
- Zhang, Q.; Pritchard, J.; Mieog, J.; Byrne, K.; Colgrave, M.L.; Wang, J.R.; Ral, J.F. Overexpression of a wheat alpha-amylase type 2 impact on starch metabolism and abscisic acid sensitivity during grain germination. Plant J. 2021, 108, 378–393. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Pei, W.; He, L.; Ma, B.; Tang, C.; Zhu, L.; Wang, L.; Zhong, Y.; Chen, G.; Wang, Q.; et al. ZmEREB92 plays a negative role in seed germination by regulating ethylene signaling and starch mobilization in maize. PLoS Genet. 2023, 19, e1011052. [Google Scholar] [CrossRef] [PubMed]
- Peroni, F.H.; Koike, C.; Louro, R.P.; Purgatto, E.; do Nascimento, J.R.; Lajolo, F.M.; Cordenunsi, B.R. Mango starch degradation. ll. The binding of alpha-amylase and beta-amylase to the starch granule. J. Agric. Food Chem. 2008, 56, 7416–7421. [Google Scholar] [CrossRef] [PubMed]
- Nardozza, S.; Boldingh, H.L.; Osorio, S.; Höhne, M.; Wohlers, M.; Gleave, A.P.; MacRae, E.A.; Richardson, A.C.; Atkinson, R.G.; Sulpice, R.; et al. Metabolic analysis of kiwifruit (Actinidia deliciosa) berries from extreme genotypes reveals hallmarks for fruit starch metabolism. J. Exp. Box. 2013, 64, 5049–5063. [Google Scholar] [CrossRef]
- Miao, H.X.; Sun, P.G.; Zhu, W.N.; Liu, Q.; Zhang, J.B.; Jia, C.H.; Sun, J.M.; Zhu, Z.; Xie, J.H.; Wang, W.; et al. Exploring the function of MaPHO1 in starch degradation and its protein interactions in postharvest banana fruits. Postharvest Biol. Technol. 2024, 209, 112687. [Google Scholar] [CrossRef]
- Sethi, S.; Saini, J.S.; Mohan, A.; Brar, N.K.; Verma, S.; Sarao, N.K.; Gill, K.S. Comparative and evolutionary analysis of α-amylase gene across monocots and dicots. Funct. Integr. Genom. 2016, 16, 545–555. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Li, H.; Li, L.; Wei, W.; Huang, Y.; Xiong, F.; Wei, M. Genome-wide characterization and expression analysis of alpha-amylase and beta-amylase genes underlying drought tolerance in cassava. BMC Genom. 2023, 24, 190. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.S.; Li, C.D. Comparisons of copy number, genomic structure, and conserved motifs for α-amylase genes from barley, rice, and wheat. Front. Plant Sci. 2017, 8, 1727. [Google Scholar] [CrossRef] [PubMed]
- Bak-Jensen, K.S.; Laugesen, S.; Ostergaard, O.; Finnie, C.; Roepstorff, P.; Svensson, B. Spatio-temporal profiling and degradation of alpha-amylase isozymes during barley seed germination. FEBS J. 2007, 274, 2552–2565. [Google Scholar] [CrossRef]
- Stanley, D.; Fitzgerald, A.M.; Farnden, K.; Macrae, E.A. Characterisation of putative alpha-amylases from apple (Malus domestica) and Arabidopsis thaliana. In Proceedings of the 1st Symposium on the Alpha-Amylase Family, Smolenice Castle, Slovakia, 30 September–4 October 2002. [Google Scholar]
- Søgaard, M.; Svensson, B. Expression of cDNAs encoding barley alpha-amylases 1 and 2 in yeast and characterization of the secreted proteins. Gene 1990, 94, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Doyle, E.A.; Lane, A.M.; Sides, J.M.; Mudgett, M.B.; Monroe, J.D. An alpha-amylase (At4g25000) in Arabidopsis leaves is secreted and induced by biotic and abiotic stress. Plant Cell Environ. 2007, 30, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Karrer, E.E.; Litts, J.C.; Rodriguez, R.L. Differential expression of alpha-amylase genes in germinating rice and barley seeds. Plant Mol. Biol. 1991, 16, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Derkx, A.P.; Mares, D.J. Late-maturity α-amylase expression in wheat is influenced by genotype, temperature and stage of grain development. Planta 2020, 251, 51. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Pritchard, J.; Mieog, J.; Byrne, K.; Colgrave, M.L.; Wang, J.R.; Ral, J.P. Over-expression of a wheat late maturity alpha-amylase type 1 impact on starch properties during grain development and germination. Front. Plant Sci. 2022, 13, 811728. [Google Scholar] [CrossRef] [PubMed]
- Asatsuma, S.; Sawada, C.; Itoh, K.; Okito, M.; Kitajima, A.; Mitsui, T. Involvement of alpha-amylase I-1 in starch degradation in rice chloroplasts. Plant Cell Physiol. 2005, 46, 858–869. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.K.; Majumdar, R.; Rajasekaran, K.; Chen, Z.Y.; Wei, Q.; Sickler, C.M.; Lebar, M.D.; Cary, J.W.; Frame, B.R.; Wang, K. RNA interference-based silencing of the alpha-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels. Planta 2018, 247, 1465–1473. [Google Scholar] [CrossRef] [PubMed]
- Hakata, M.; Kuroda, M.; Miyashita, T.; Yamaguchi, T.; Kojima, M.; Sakakibara, H.; Mitsui, T.; Yamakawa, H. Suppression of α-amylase genes improves quality of rice grain ripened under high temperature. Plant Biotechnol. J. 2012, 10, 1110–1117. [Google Scholar] [CrossRef]
- Leonel, M.; Bolfarini, A.C.B.; da Silva, M.J.R.; Souza, J.M.A.; Leonel, S. Banana fruits with high content of resistant starch: Effect of genotypes and phosphorus fertilization. Int. J. Biol. Macromol. 2020, 50, 1020–1026. [Google Scholar] [CrossRef] [PubMed]
- Bassinello, P.Z.; Cordenunsi, B.R.; Lajolo, F.M. Amylolytic acitivity in fruits: Comparison of different substrates and methods using banana as model. J. Agric. Food Chem. 2002, 50, 5781–5786. [Google Scholar] [CrossRef] [PubMed]
- Junior, A.V.; do Nascimento, J.R.O.; Lajolo, F.M. Molecular cloning and characterization of an alpha-amylase occurring in the pulp of ripening bananas and its expression in Pichia pastoris. J. Agric. Food Chem. 2006, 54, 8222–8228. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.Y.; Zhu, X.Y.; Lai, X.H.; Chen, H.C.; Wang, L.H.; Yao, Y.L.; Chen, W.X.; Li, X.P. MaBEL1 regulates banana fruit ripening by activating cell wall and starch degradation-related genes. J. Integr. Plant Biol. 2023, 65, 2036–2055. [Google Scholar] [CrossRef] [PubMed]
- D’Hont, A.; Denoeud, F.; Aury, J.M.; Baurens, F.C.; Carreel, F.; Garsmeur, O.; Noel, B.; Bocs, S.; Droc, G.; Rouard, M.; et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 2012, 488, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Miao, H.X.; Liu, J.H.; Xu, B.Y.; Yao, X.M.; Xu, C.Y.; Zhao, S.C.; Fang, X.D.; Jia, C.H.; Wang, J.Y.; et al. Musa balbisiana genome reveals subgenome evolution and functional divergence. Nat. Plants 2019, 5, 810–821. [Google Scholar] [CrossRef] [PubMed]
- Miao, H.X.; Sun, P.G.; Liu, W.X.; Xu, B.Y.; Jin, Z.Q. Identification of genes encoding granule-bound starch synthase involved in amylose metabolism in banana fruit. PLoS ONE 2014, 9, e88077. [Google Scholar] [CrossRef]
- Miao, H.X.; Sun, P.G.; Liu, Q.; Liu, J.H.; Xu, B.Y.; Jin, Z.Q. The AGPase family proteins in banana: Genome-wide identification, phylogeny, and expression analyses reveal their involvement in the development, ripening, and abiotic/biotic stress responses. Int. J. Mol. Sci. 2017, 18, 1581. [Google Scholar] [CrossRef] [PubMed]
- Miao, H.X.; Sun, P.G.; Liu, Q.; Jia, C.H.; Liu, J.H.; Hu, W.; Jin, Z.Q.; Xu, B.Y. Soluble starch synthase III-1 in amylopectin metabolism of banana fruit: Characterization, expression, enzyme activity, and functional analyses. Front. Plant Sci. 2017, 8, 454. [Google Scholar] [CrossRef] [PubMed]
- Miao, H.X.; Sun, P.G.; Liu, Q.; Liu, J.H.; Jia, C.H.; Zhao, D.F.; Xu, B.Y.; Jin, Z.Q. Molecular identification of the key starch branching enzyme-encoding gene SBE2.3 and its interacting transcription factors in banana fruits. Hortic. Res. 2020, 7, 101. [Google Scholar] [CrossRef] [PubMed]
- Miao, H.X.; Sun, P.G.; Miao, Y.L.; Liu, J.H.; Zhang, J.B.; Jia, C.H.; Wang, J.Y.; Wang, Z.; Jin, Z.Q.; Xu, B.Y. Genome-wide identification and expression analysis of the β-amylase genes strongly associated with fruit development, ripening, and abiotic stress response in two banana cultivars. Front. Agr. Sci. Eng. 2016, 3, 346–356. [Google Scholar] [CrossRef]
- Fan, Z.Q.; Ba, L.J.; Shan, W.; Xiao, Y.Y.; Lu, W.J.; Kuang, J.F.; Chen, J.Y. A banana R2R3-MYB transcription factor MaMYB3 is involved in fruit ripening through modulation of starch degradation by repressing starch degradation-related genes and MabHLH6. Plant J. 2018, 96, 1191–1205. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.Y.; Kuang, J.F.; Qi, X.N.; Ye, Y.J.; Wu, Z.X.; Chen, J.Y.; Lu, W.J. A comprehensive investigation of starch degradation process and identification of a transcriptional activator MabHLH6 during banana fruit ripening. Plant Biotechnol. J. 2018, 16, 151–164. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.X.; Zhang, D.D.; Li, Z.W.; Liang, H.Z.; Deng, R.F.; Su, X.G.; Jiang, Y.M.; Duan, X.W. Alternative splicing of MaMYB16L regulates starch degradation in banana fruit during ripening. J. Integr. Plant Biol. 2021, 63, 1341–1352. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.Y.; Li, Y.; Ouyang, L.J.; Yin, A.G.; Xu, B.; Zhang, L.; Chen, J.Y.; Liu, J.F. A banana transcriptional repressor MaAP2a participates in fruit starch degradation during postharvest ripening. Front. Plant Sci. 2022, 13, 1036719. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.C.; Lai, X.H.; Wang, L.H.; Li, X.P.; Chen, W.X.; Zhu, X.Y. Ethylene response factor MaERF012 modulates fruit ripening by regulating chlorophyII degradation and softening in banana. Foods 2022, 11, 3882. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Yang, Y.Y.; Chen, J.Y.; Lakshmanan, P.; Kuang, J.F.; Lu, W.J.; Shan, W. MaNAC029 modulates ethylene biosynthesis and fruit quality and undergoes MaXB3-mediated proteasomal degradation during banana ripening. J. Adv. Res. 2023, 53, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.Y.; Chen, H.C.; Lai, X.H.; Wang, L.H.; Yao, Y.L.; Qin, J.J.; Pang, X.Q.; Zhu, H.; Chen, W.X.; Li, X.P.; et al. The zinc finger protein MaCCCH33-like2 positively regulates banana fruit ripening by modulating genes in starch and cell wall degradation. Plant Cell Physiol. 2024, 65, 49–67. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Li, W.; Lai, X.; Chen, H.; Wang, L.; Chen, W.; Li, X.; Zhu, X. MaC2H2-IDD regulates fruit softening and involved in softening disorder induced by cold stress in banana. Plant J. 2024, 118, 1937–1954. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Kuang, S.; Zhang, A.D.; Zhang, W.S.; Chen, M.J.; Yin, X.R.; Chen, K.S. Characterization of starch degradation related genes in postharvest kiwifruit. Int. J. Mol. Sci. 2016, 17, 2112. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Hu, R.Y.; Costa, C.; Li, J.K. Genetic drift and purifying selection shaped mitochondrial genome variation in the high royal jelly-producing honeybee strain (Apis mellifera ligustica). Front. Genet. 2022, 9, 835967. [Google Scholar] [CrossRef] [PubMed]
- Paterson, S.; Vogwill, T.; Buckling, A.; Benmayor, R.; Spoers, A.J.; Thomson, N.R.; Quail, M.; Smith, F.; Walker, D.; Libberton, B.; et al. Antagonistic coevolution accelerates molecular evolution. Nature 2010, 464, 275–278. [Google Scholar] [CrossRef] [PubMed]
- Yue, C.; Cao, H.L.; Lin, H.Z.; Hu, J.; Ye, Y.J.; Li, J.M.; Hao, Z.L.; Hao, X.Y.; Sun, Y.; Yang, Y.J.; et al. Expression patterns of alpha-amylase and beta-amylase genes provide insights into the molecular mechanisms underlying the responses of tea plants (Camellia sinensis) to stress and postharvest processing treatments. Planta 2019, 250, 281–298. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.S.; Karrer, E.E.; Thomas, B.R.; Chen, L.; Rodriguez, R.L. Three cis-elements required for rice alpha-amylase Amy3D expression during sugar starvation. Plant Mol. Biol. 1998, 36, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.A.; Lim, E.K.; Yu, S.M. Sugar response sequence in the promoter of a rice alpha-amylase gene serves as a transcriptional enhancer. J. Biol. Chem. 1998, 273, 10120–10131. [Google Scholar] [CrossRef] [PubMed]
- Mrva, K.; Wallwork, M.; Mares, D.J. Alpha-amylase and programmed cell death in aleurone of ripening wheat grains. J. Exp. Bot. 2006, 57, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Liu, T.; Reid, S.; Zhang, H.; Peng, X.; Sun, K.; Du, J.; Sonnewald, U.; Song, B. Silencing of alpha-amylase StAmy23 in potato tuber leads to delayed sprouting. Plant Physiol. Biochem. 2019, 139, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Nakata, M.; Fukamatsu, Y.; Miyashita, T.; Hakata, M.; Kimura, R.; Nakata, Y.; Kuroda, M.; Yamaguchi, T.; Yamakawa, H. High temperature-induced expression of rice alpha-amylases in developing endosperm produces chalky grains. Front. Plant Sci. 2017, 8, 2089. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Zhang, H.; Liu, J.; Reid, S.; Liu, T.; Xu, S.; Tian, Z.; Sonnewald, U.; Song, B.; Xie, C. Amylases StAmy23, StBAMY1 and StBAM9 regulate cold-induced sweetening of potato tubers in distinct ways. J. Exp. Bot. 2017, 68, 2317–2331. [Google Scholar] [CrossRef] [PubMed]
- Whan, A.; Dielen, A.S.; Mieog, J.; Bowerman, A.; Robinson, H.M.; Byrne, K.; Colgrave, M.; Larkin, P.J.; Howitt, C.A.; Morell, M.K.; et al. Engineering α-amylase levels in wheat grain suggests a highly sophisticated level of carbohydrate regulation during development. J. Exp. Bot. 2014, 65, 5443–5457. [Google Scholar] [CrossRef]
- Yu, T.S.; Zeeman, S.C.; Thorneycroft, D.; Fulton, D.C.; Dunstan, H.; Lue, W.L.; Hegemann, B.; Tung, S.Y.; Umemoto, T.; Chapple, A.; et al. Alpha-amylase is not required for breakdown of transitory starch in Arabidopsis leaves. J. Biol. Chen. 2005, 280, 9773–9779. [Google Scholar] [CrossRef] [PubMed]
- Jourda, C.; Cardi, C.; Gibert, O.; Toro, A.G.; Ricci, J.; Mbéguié-A-Mbéguié, D.; Yahiaoui, N. Lineage-specific evolutionary histories and regulation of major starch metabolism genes during banana ripening. Front. Plant Sci. 2016, 7, 1778. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, Z.; Pan, X.; Yao, K.D.; Wang, Y.H.; Yang, T.Y.; Huang, G.H.; Liao, W.B.; Wang, C.L. Genome-wide identification and characterization of tomato fatty acid β-oxidase family genes KAT and MFP. Int. J. Mol. Sci. 2024, 25, 2273. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Zhao, L.L.; Liu, J.Q.; Sun, Y.J.; Li, B.H.; Wang, L.N.; Ren, Z.H.; Chen, C.H. Pan-genome analysis of WOX gene family and function exploration of CsWOX9 in cucumber. Int. J. Mol. Sci. 2023, 24, 17568. [Google Scholar] [CrossRef] [PubMed]
- Türkmen, D.; Bowden, J.; Masoli, J.A.H.; Melzer, D.; Pilling, L.C. SLCO1B1 exome sequencing and statin treatment response in 64,000 UK biobank patients. Int. J. Mol. Sci. 2024, 25, 4426. [Google Scholar] [CrossRef]
- Chen, C.J.; Wu, Y.; Li, J.W.; Wang, X.; Zeng, Z.H.; Xu, J.; Liu, Y.L.; Feng, J.T.; Chen, H.; Feng, J.T.; et al. TBtools-II: A “one of all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zhang, Y.; Guo, X.; Ning, D.L.; Zhou, X.S.; Feng, J.J.; Yuan, M.M.; Liu, S.; Guo, J.J.; Gao, Z.P.; et al. Reduction of microbial diversity in grassland soil is driven by long-term climate warming. Nat. Microbiol. 2022, 7, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Gogarten, S.M.; Bhangale, T.; Conomos, M.P.; Laurie, C.A.; McHugh, C.P.; Painter, I.; Zheng, X.W.; Crosslin, D.R.; Levine, D.; Lumley, T.; et al. GWASTools: An R/Bioconductor package for quality control and analysis of genome-wide association studies. Bioinformatics 2012, 28, 3329–3331. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, H.; Debarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.H.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, P.; Zhu, Z.; Jin, Z.; Xie, J.; Miao, H.; Liu, J. Molecular Characteristics and Functional Identification of a Key Alpha-Amylase-Encoding Gene AMY11 in Musa acuminata. Int. J. Mol. Sci. 2024, 25, 7832. https://doi.org/10.3390/ijms25147832
Sun P, Zhu Z, Jin Z, Xie J, Miao H, Liu J. Molecular Characteristics and Functional Identification of a Key Alpha-Amylase-Encoding Gene AMY11 in Musa acuminata. International Journal of Molecular Sciences. 2024; 25(14):7832. https://doi.org/10.3390/ijms25147832
Chicago/Turabian StyleSun, Peiguang, Zhao Zhu, Zhiqiang Jin, Jianghui Xie, Hongxia Miao, and Juhua Liu. 2024. "Molecular Characteristics and Functional Identification of a Key Alpha-Amylase-Encoding Gene AMY11 in Musa acuminata" International Journal of Molecular Sciences 25, no. 14: 7832. https://doi.org/10.3390/ijms25147832
APA StyleSun, P., Zhu, Z., Jin, Z., Xie, J., Miao, H., & Liu, J. (2024). Molecular Characteristics and Functional Identification of a Key Alpha-Amylase-Encoding Gene AMY11 in Musa acuminata. International Journal of Molecular Sciences, 25(14), 7832. https://doi.org/10.3390/ijms25147832