Cobalt-Catalyzed Reduction of Aldehydes to Alcohols via the Hydroboration Reaction
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
General Procedure for the Synthesis of Compounds (1a–1t)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iroegbu, A.O.; Hlangothi, S.P. Furfuryl Alcohol a Versatile, Eco-Sustainable Compound in Perspective. Chem. Africa 2019, 2, 223–239. [Google Scholar] [CrossRef]
- An, X.; Xiao, J. Fluorinated Alcohols: Magic Reaction Medium and Promoters for Organic Synthesis. Chem. Rec. 2020, 20, 142–161. [Google Scholar] [CrossRef]
- Tang, S.; Baker, G.A.; Zhao, H. Ether- and Alcohol-Functionalized Task-Specific Ionic Liquids: Attractive Properties and Applications. Chem. Soc. Rev. 2012, 41, 4030–4066. [Google Scholar] [CrossRef]
- Magano, J.; Dunetz, J.R. Large-Scale Carbonyl Reductions in the Pharmaceutical Industry. Org. Process Res. Dev. 2012, 16, 1156–1184. [Google Scholar] [CrossRef]
- Zada, B.; Chen, M.; Chen, C.; Yan, L.; Xu, Q.; Li, W.; Guo, Q.; Fu, Y. Recent Advances in Catalytic Production of Sugar Alcohols and Their Applications. Sci. China Chem. 2017, 60, 853–869. [Google Scholar] [CrossRef]
- Rafique, A.; Mahmood Zia, K.; Zuber, M.; Tabasum, S.; Rehman, S. Chitosan Functionalized Poly(Vinyl Alcohol) for Prospects Biomedical and Industrial Applications: A Review. Int. J. Biol. Macromol. 2016, 87, 141–154. [Google Scholar] [CrossRef]
- Crouch, R.D. Synthetic Communications Reviews: Recent Advances in Silyl Protection of Alcohols. Synth. Commun. 2013, 43, 2265–2279. [Google Scholar] [CrossRef]
- Chelucci, G. Metal-Catalyzed Dehydrogenative Synthesis of Pyrroles and Indoles from Alcohols. Coord. Chem. Rev. 2017, 331, 37–53. [Google Scholar] [CrossRef]
- Du, S.; Zhou, A.X.; Yang, R.; Song, X.R.; Xiao, Q. Recent Advances in the Direct Transformation of Propargylic Alcohols to Allenes. Org. Chem. Front. 2021, 8, 6760–6782. [Google Scholar] [CrossRef]
- Dryzhakov, M.; Richmond, E.; Moran, J. Recent Advances in Direct Catalytic Dehydrative Substitution of Alcohols. Synthesis 2016, 48, 935–959. [Google Scholar] [CrossRef]
- Hatano, M.; Ishihara, K. Recent Progress in the Catalytic Synthesis of Tertiary Alcohols from Ketones with Organometallic Reagents. Synthesis 2008, 2008, 1647–1675. [Google Scholar] [CrossRef]
- Chen, B.S.; Ribeiro de Souza, F.Z. Enzymatic Synthesis of Enantiopure Alcohols: Current State and Perspectives. RSC Adv. 2019, 9, 2102–2115. [Google Scholar] [CrossRef]
- Greeves, N. Reduction of C=O to CHOH by Metal Hydrides. In Comprehensive Organic Synthesis; Elsevier: Amsterdam, The Netherlands, 1991; pp. 1–24. [Google Scholar]
- Hajos, A. Complex Hydrides and Related Reducing Agents in Organic Synthesis; Elsevier: Amsterdam, The Netherlands, 1979. [Google Scholar]
- Kotha, S.S.; Sharma, N.; Sekar, G. An Efficient, Stable and Reusable Palladium Nanocatalyst: Chemoselective Reduction of Aldehydes with Molecular Hydrogen in Water. Adv. Synth. Catal. 2016, 358, 1694–1698. [Google Scholar] [CrossRef]
- Wu, X.; Corcoran, C.; Yang, S.; Xiao, J. A Versatile Iridium Catalyst for Aldehyde ReductioninW Ater. ChemSusChem 2008, 1, 71–74. [Google Scholar] [CrossRef]
- Tan, X.; Wang, G.; Zhu, Z.; Ren, C.; Zhou, J.; Lv, H.; Zhang, X.; Chung, L.W.; Zhang, L.; Zhang, X. Hydrogenation of Aldehydes Catalyzed by an Available Ruthenium Complex. Org. Lett. 2016, 18, 1518–1521. [Google Scholar] [CrossRef]
- Mazza, S.; Scopelliti, R.; Hu, X. Chemoselective Hydrogenation and Transfer Hydrogenation of Aldehydes Catalyzed by Iron(II) PONOP Pincer Complexes. Organometallics 2015, 34, 1538–1545. [Google Scholar] [CrossRef]
- Wang, D.; Astruc, D. The Golden Age of Transfer Hydrogenation. Chem. Rev. 2015, 115, 6621–6686. [Google Scholar] [CrossRef]
- Yang, Z.; Zhu, Z.; Luo, R.; Qiu, X.; Liu, J.T.; Yang, J.K.; Tang, W. Iridium-Catalyzed Highly Efficient Chemoselective Reduction of Aldehydes in Water Using Formic Acid as the Hydrogen Source. Green Chem. 2017, 19, 3296–3301. [Google Scholar] [CrossRef]
- Kuciński, K.; Hreczycho, G. Hydrosilylation and Hydroboration in a Sustainable Manner: From Earth-Abundant Catalysts to Catalyst-Free Solutions. Green Chem. 2020, 22, 5210–5224. [Google Scholar] [CrossRef]
- Royo, B. Recent Advances in Catalytic Hydrosilylation of Carbonyl Groups Mediated by Well-Defined First-Row Late Transition Metals, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; Volume 72, ISBN 9780128171172. [Google Scholar]
- Shegavi, M.L.; Bose, S.K. Recent Advances in the Catalytic Hydroboration of Carbonyl Compounds. Catal. Sci. Technol. 2019, 9, 3307–3336. [Google Scholar] [CrossRef]
- Ojima, I.; Kogure, T. Reduction of Carbonyl Compounds via Hydrosilylation. 4. Highly Regioselective Reductions of α,α-Unsaturated Carbonyl Compounds. Organometallics 1982, 1, 1390–1399. [Google Scholar] [CrossRef]
- Stachowiak, H.; Kaźmierczak, J.; Kuciński, K.; Hreczycho, G. Catalyst-Free and Solvent-Free Hydroboration of Aldehydes. Green Chem. 2018, 20, 1738–1742. [Google Scholar] [CrossRef]
- Geier, S.J.; Vogels, C.M.; Melanson, J.A.; Westcott, S.A. The Transition Metal-Catalysed Hydroboration Reaction. Chem. Soc. Rev. 2022, 51, 8877–8922. [Google Scholar] [CrossRef]
- Kuciński, K.; Hreczycho, G. Lithium Triethylborohydride as Catalyst for Solvent-Free Hydroboration of Aldehydes and Ketones. Green Chem. 2019, 21, 1912–1915. [Google Scholar] [CrossRef]
- Zhu, Z.; Wu, X.; Xu, X.; Wu, Z.; Xue, M.; Yao, Y.; Shen, Q.; Bao, X. N-Butyllithium Catalyzed Selective Hydroboration of Aldehydes and Ketones. J. Org. Chem. 2018, 83, 10677–10683. [Google Scholar] [CrossRef]
- Shin, W.K.; Kim, H.; Jaladi, A.K.; An, D.K. Catalytic Hydroboration of Aldehydes and Ketones with Sodium Hydride: Application to Chemoselective Reduction of Aldehydes over Ketones. Tetrahedron 2018, 74, 6310–6315. [Google Scholar] [CrossRef]
- Wu, Y.; Shan, C.; Ying, J.; Su, J.; Zhu, J.; Liu, L.L.; Zhao, Y. Catalytic Hydroboration of Aldehydes, Ketones, Alkynes and Alkenes Initiated by NaOH. Green Chem. 2017, 19, 4169–4175. [Google Scholar] [CrossRef]
- Query, I.P.; Squier, P.A.; Larson, E.M.; Isley, N.A.; Clark, T.B. Alkoxide-Catalyzed Reduction of Ketones with Pinacolborane. J. Org. Chem. 2011, 76, 6452–6456. [Google Scholar] [CrossRef]
- Wang, W.; Lu, K.; Qin, Y.; Yao, W.; Yuan, D.; Pullarkat, S.A.; Xu, L.; Ma, M. Grignard Reagents-Catalyzed Hydroboration of Aldehydes and Ketones. Tetrahedron 2020, 76, 131145. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, D.; Camacho-Bunquin, J.; Zhang, G.; Yang, D.; López-Encarnación, J.M.; Xu, Y.; Ferrandon, M.S.; Niklas, J.; Poluektov, O.G.; et al. Supported Single-Site Ti(IV) on a Metal-Organic Framework for the Hydroboration of Carbonyl Compounds. Organometallics 2017, 36, 3921–3930. [Google Scholar] [CrossRef]
- Zhang, G.; Cheng, J.; Davis, K.; Bonifacio, M.G.; Zajaczkowski, C. Practical and Selective Hydroboration of Aldehydes and Ketones in Air Catalysed by an Iron(Ii) Coordination Polymer. Green Chem. 2019, 21, 1114–1121. [Google Scholar] [CrossRef]
- Wu, J.; Zeng, H.; Cheng, J.; Zheng, S.; Golen, J.A.; Manke, D.R.; Zhang, G. Cobalt(II) Coordination Polymer as a Precatalyst for Selective Hydroboration of Aldehydes, Ketones, and Imines. J. Org. Chem. 2018, 83, 9442–9448. [Google Scholar] [CrossRef]
- Zhang, T.; Manna, K.; Lin, W. Metal-Organic Frameworks Stabilize Solution-Inaccessible Cobalt Catalysts for Highly Efficient Broad-Scope Organic Transformations. J. Am. Chem. Soc. 2016, 138, 3241–3249. [Google Scholar] [CrossRef] [PubMed]
- Oluyadi, A.A.; Ma, S.; Muhoro, C.N. Titanocene(II)-Catalyzed Hydroboration of Carbonyl Compounds. Organometallics 2013, 32, 70–78. [Google Scholar] [CrossRef]
- Zhang, G.; Zeng, H.; Wu, J.; Yin, Z.; Zheng, S.; Fettinger, J.C. Highly Selective Hydroboration of Alkenes, Ketones and Aldehydes Catalyzed by a Well-Defined Manganese Complex. Angew. Chem. 2016, 128, 14581–14584. [Google Scholar] [CrossRef]
- Das, U.K.; Higman, C.S.; Gabidullin, B.; Hein, J.E.; Tom Baker, R. Efficient and Selective Iron-Complex-Catalyzed Hydroboration of Aldehydes. ACS Catal. 2018, 8, 1076–1081. [Google Scholar] [CrossRef]
- King, A.E.; Stieber, S.C.E.; Henson, N.J.; Kozimor, S.A.; Scott, B.L.; Smythe, N.C.; Sutton, A.D.; Gordon, J.C. Ni(Bpy)(Cod): A Convenient Entryway into the Efficient Hydroboration of Ketones, Aldehydes, and Imines. Eur. J. Inorg. Chem. 2016, 2016, 1635–1640. [Google Scholar] [CrossRef]
- Bagherzadeh, S.; Mankad, N.P. Extremely Efficient Hydroboration of Ketones and Aldehydes by Copper Carbene Catalysis. Chem. Commun. 2016, 52, 3844–3846. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.S.; Harinath, A.; Narvariya, R.; Panda, T.K. Homoleptic Zinc-Catalyzed Hydroboration of Aldehydes and Ketones in the Presence of HBpin. Eur. J. Inorg. Chem. 2020, 2020, 467–474. [Google Scholar] [CrossRef]
- Ataie, S.; Dudra, S.L.; Johnson, E.R.; Baker, R.T. Selective Cobalt(II)-SNS Dithiolate Complex-Catalyzed Bifunctional Hydroboration of Aldehydes: Kinetics and Mechanistic Studies. ACS Catal. 2023, 13, 10076–10084. [Google Scholar] [CrossRef]
- Verma, P.K.; Sethulekshmi, A.; Geetharani, K. Markovnikov-Selective Co(I)-Catalyzed Hydroboration of Vinylarenes and Carbonyl Compounds. Org. Lett. 2018, 20, 7840–7845. [Google Scholar] [CrossRef] [PubMed]
- Tamang, S.R.; Bedi, D.; Shafiei-Haghighi, S.; Smith, C.R.; Crawford, C.; Findlater, M. Cobalt-Catalyzed Hydroboration of Alkenes, Aldehydes, and Ketones. Org. Lett. 2018, 20, 6695–6700. [Google Scholar] [CrossRef] [PubMed]
- Broniarz, K.; Hreczycho, G. Access to Unsaturated Organogermanes via (De)Hydrosilylation Mediated by Cobalt Complexes. Org. Lett. 2023, 25, 6528–6533. [Google Scholar] [CrossRef] [PubMed]
- Szafoni, E.; Kuciński, K.; Hreczycho, G. Cobalt-Catalyzed Synthesis of Silyl Ethers via Cross-Dehydrogenative Coupling between Alcohols and Hydrosilanes. Green Chem. Lett. Rev. 2022, 15, 757–764. [Google Scholar] [CrossRef]
- Szafoni, E.; Kuciński, K.; Hreczycho, G. Cobalt-Catalyzed Dehydrogenative Cross-Coupling Reaction: Selective Access to Dihydrosiloxanes, Hydrosiloxanes and Functionalized Silsesquioxanes. J. Catal. 2023, 423, 1–9. [Google Scholar] [CrossRef]
- Stachowiak, H.; Kuciński, K.; Kallmeier, F.; Kempe, R.; Hreczycho, G. Cobalt-Catalyzed Dehydrogenative C−H Silylation of Alkynylsilanes. Chem. Eur. J. 2022, 28, e202103629. [Google Scholar] [CrossRef] [PubMed]
- Stachowiak-Dłużyńska, H.; Kuciński, K.; Wyrzykiewicz, B.; Kempe, R.; Hreczycho, G. Co-Catalyzed Selective Syn-Hydrosilylation of Internal Alkynes. ChemCatChem 2023, 15, e202300592. [Google Scholar] [CrossRef]
- Junge, K.; Papa, V.; Beller, M. Cobalt–Pincer Complexes in Catalysis. Chem. Eur. J. 2019, 25, 122–143. [Google Scholar] [CrossRef] [PubMed]
- Peris, E.; Crabtree, R.H. Key Factors in Pincer Ligand Design. Chem. Soc. Rev. 2018, 47, 1959–1968. [Google Scholar] [CrossRef]
- Lewandowski, D.; Cytlak, T.; Kempe, R.; Hreczycho, G. Ligand-Controlled Cobalt-Catalyzed Formation of Carbon–Boron Bonds: Hydroboration vs C–H/B–H Dehydrocoupling. J. Catal. 2022, 413, 728–734. [Google Scholar] [CrossRef]
- Lewandowski, D.; Hreczycho, G. Cobalt Pincer-Type Complexes Demonstrating Unique Selectivity for the Hydroboration Reaction of Olefins under Mild Conditions. Inorg. Chem. Front. 2023, 10, 3656–3663. [Google Scholar] [CrossRef]
- Lewandowski, D.; Hreczycho, G. Selective Hydrosilylation and Hydroboration of Allenes Catalyzed by Cobalt-Pincer Complexes. Adv. Synth. Catal. 2024, 366, 2775–2783. [Google Scholar] [CrossRef]
- Stachowiak-Dłużyńska, H.; Hreczycho, G. Co-Catalyzed Hydrosilylation of Ketones under Base-Free Conditions: A Convenient Route to Silyl Ethers or Secondary Alcohols. ChemCatChem 2023, 15, e202300781. [Google Scholar] [CrossRef]
- Rösler, S.; Ertl, M.; Irrgang, T.; Kempe, R. Cobalt-Catalyzed Alkylation of Aromatic Amines by Alcohols. Angew. Chem. Int. Ed. 2015, 54, 15046–15050. [Google Scholar] [CrossRef]
- Rösler, S.; Obenauf, J.; Kempe, R. A Highly Active and Easily Accessible Cobalt Catalyst for Selective Hydrogenation of C=O Bonds. J. Am. Chem. Soc. 2015, 137, 7998–8001. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Pabst, T.P.; Hierlmeier, G.; Chirik, P.J. Exploring the Effect of Pincer Rigidity on Oxidative Addition Reactions with Cobalt(I) Complexes. Organometallics 2023, 42, 708–718. [Google Scholar] [CrossRef] [PubMed]
- Shimada, S.; Batsanov, A.S.; Howard, J.A.K.; Marder, T.B. Formation of Aryl- and Benzylboronate Esters by Rhodium-Catalyzed C-H Bond Functionalization with Pinacolborane. Angew. Chem. Int. Ed. 2001, 40, 2168–2171. [Google Scholar] [CrossRef]
- Deibl, N.; Kempe, R. General and Mild Cobalt-Catalyzed C-Alkylation of Unactivated Amides and Esters with Alcohols. J. Am. Chem. Soc. 2016, 138, 10786–10789. [Google Scholar] [CrossRef]
- Sharma, P.K.; Nielsen, P. New Ruthenium-Based Protocol for Cleavage of Terminal Olefins to Primary Alcohols: Improved Synthesis of a Bicyclic Nucleoside. J. Org. Chem. 2004, 69, 5742–5745. [Google Scholar] [CrossRef]
- Shaikh, N.S.; Junge, K.; Beller, M. A Convenient and General Iron-Catalyzed Hydrosilylation of Aldehydes. Org. Lett. 2007, 9, 5429–5432. [Google Scholar] [CrossRef]
- Wang, R.; Tang, Y.; Xu, M.; Meng, C.; Li, F. Transfer Hydrogenation of Aldehydes and Ketones with Isopropanol under Neutral Conditions Catalyzed by a Metal-Ligand Bifunctional Catalyst [Cp∗Ir(2,2-BpyO)(H2O)]. J. Org. Chem. 2018, 83, 2274–2281. [Google Scholar] [CrossRef] [PubMed]
- Griffin, P.R.; Kamenecka, T.M.; Doebelin, C.; Chang, M.R. RORγ Modulators; WO 2018/52903; World Intellectual Property Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Aboo, A.H.; Bennett, E.L.; Deeprose, M.; Robertson, C.M.; Iggo, J.A.; Xiao, J. Methanol as Hydrogen Source: Transfer Hydrogenation of Aromatic Aldehydes with a Rhodacycle. Chem. Commun. 2018, 54, 11805–11808. [Google Scholar] [CrossRef] [PubMed]
- Zanon, J.; Klapars, A.; Buchwald, S.L. Copper-Catalyzed Domino Halide Exchange-Cyanation of Aryl Bromides. J. Am. Chem. Soc. 2003, 125, 2890–2891. [Google Scholar] [CrossRef] [PubMed]
- Denmark, S.E.; Butler, C.R. Vinylation of Aryl Bromides Using an Inexpensive Vinylpolysiloxane. Org. Lett. 2006, 8, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Talwar, D.; Wu, X.; Saidi, O.; Salguero, N.P.; Xiao, J. Versatile Iridicycle Catalysts for Highly Efficient and Chemoselective Transfer Hydrogenation of Carbonyl Compounds in Water. Chem. Eur. J. 2014, 20, 12835–12842. [Google Scholar] [CrossRef]
- Doni, E.; O’Sullivan, S.; Murphy, J.A. Metal-Free Reductive Cleavage of Benzylic Esters and Ethers: Fragmentations Result from Single and Double Electron Transfers. Angew. Chem. Int. Ed. 2013, 52, 2239–2242. [Google Scholar] [CrossRef]
No. | Catalyst | Time | Temperature | Conversion of Aldehyde 1 |
---|---|---|---|---|
1 | precat. A | 10 min | 25 °C | 15% |
2 | precat. A | 30 min | 25 °C | 21% |
3 | precat. A | 30 min | 35 °C | 54% |
4 | precat. A | 60 min | 35 °C | 72% |
5 | precat. B | 60 min | 35 °C | 32% |
6 | precat. C | 60 min | 35 °C | 17% |
7 | precat. D | 60 min | 35 °C | 99% |
8 | - | 60 min | 35 °C | 11% |
9 | CoCl2 | 60 min | 35 °C | 14% |
10 | ligand A | 60 min | 35 °C | 0% |
11 | ligand B | 60 min | 35 °C | 2% |
12 | ligand C | 60 min | 35 °C | 3% |
13 | ligand D | 60 min | 35 °C | 3% |
Aldehyde | Conversion in Catalyst-Free Conditions 1 | Conversion with Addition of Catalyst 2 |
---|---|---|
11% | 99% | |
2% | 95% | |
10% | 99% | |
<1% | 93% 3 | |
6% | 97% | |
2% | 98% | |
2% | 85% 3 | |
8% | 97% 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewandowski, D.; Hreczycho, G. Cobalt-Catalyzed Reduction of Aldehydes to Alcohols via the Hydroboration Reaction. Int. J. Mol. Sci. 2024, 25, 7894. https://doi.org/10.3390/ijms25147894
Lewandowski D, Hreczycho G. Cobalt-Catalyzed Reduction of Aldehydes to Alcohols via the Hydroboration Reaction. International Journal of Molecular Sciences. 2024; 25(14):7894. https://doi.org/10.3390/ijms25147894
Chicago/Turabian StyleLewandowski, Dariusz, and Grzegorz Hreczycho. 2024. "Cobalt-Catalyzed Reduction of Aldehydes to Alcohols via the Hydroboration Reaction" International Journal of Molecular Sciences 25, no. 14: 7894. https://doi.org/10.3390/ijms25147894
APA StyleLewandowski, D., & Hreczycho, G. (2024). Cobalt-Catalyzed Reduction of Aldehydes to Alcohols via the Hydroboration Reaction. International Journal of Molecular Sciences, 25(14), 7894. https://doi.org/10.3390/ijms25147894