The Biological Effect of Platelet-Rich Plasma on Rotator Cuff Tears: A Prospective Randomized In Vivo Study
Abstract
:1. Introduction
2. Results
2.1. Demographics
2.2. Optical Microscopy Evaluation
2.3. Electron Microscopy Evaluation
3. Materials and Methods
3.1. Study Design
3.2. Patient Selection
3.3. Preparation of PRP
3.4. Injection of PRP
3.5. Tendon Sample Harvesting
3.6. Tendon Sample Preparation for Optical Microcopy
3.7. Tendon Sample Preparation for Transmission Electron Microscopy
3.8. Assessment of Tendon Sample
3.9. Visual Analogue Scale
3.10. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clark, J.M.; Harryman, D.T., 2nd. Tendons, ligaments, and capsule of the rotator cuff. Gross and microscopic anatomy. J. Bone Jt. Surg. 1992, 74, 713–725. [Google Scholar] [CrossRef]
- DeFranco, M.J.; Cole, B.J. Current perspectives on rotator cuff anatomy. Arthroscopy 2009, 25, 305–320. [Google Scholar] [CrossRef] [PubMed]
- Galatz, L.; Rothermich, S.; VanderPloeg, K.; Petersen, B.; Sandell, L.; Thomopoulos, S. Development of the supraspinatus tendon-to-bone insertion: Localized expression of extracellular matrix and growth factor genes. J. Orthop. Res. 2007, 25, 1621–1628. [Google Scholar] [CrossRef] [PubMed]
- Thomopoulos, S.; Williams, G.R.; Gimbel, J.A.; Favata, M.; Soslowsky, L.J. Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J. Orthop. Res. 2003, 21, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ju, W.; Chen, X.; Zhao, Y.; Feng, L.; Yin, Z.; Chen, X. Hierarchical ultrastructure: An overview of what is known about tendons and future perspective for tendon engineering. Bioact. Mater. 2022, 8, 124–139. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.; Ehirchiou, D.; Kilts, T.M.; Inkson, C.A.; Embree, M.C.; Sonoyama, W.; Li, L.; Leet, A.I.; Seo, B.M.; Zhang, L.; et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat. Med. 2007, 13, 1219–1227. [Google Scholar] [CrossRef] [PubMed]
- McNeilly, C.M.; Banes, A.J.; Benjamin, M.; Ralphs, J.R. Tendon cells in vivo form a three dimensional network of cell processes linked by gap junctions. J. Anat. 1996, 189 Pt 3, 593–600. [Google Scholar]
- Thorpe, C.T.; Screen, H.R. Tendon Structure and Composition. Adv. Exp. Med. Biol. 2016, 920, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Banos, C.C.; Thomas, A.H.; Kuo, C.K. Collagen fibrillogenesis in tendon development: Current models and regulation of fibril assembly. Birth Defects Res. Part C Embryo Today Rev. 2008, 84, 228–244. [Google Scholar] [CrossRef]
- Xu, M.; Liu, J.; Sun, J.; Xu, X.; Hu, Y.; Liu, B. Optical Microscopy and Electron Microscopy for the Morphological Evaluation of Tendons: A Mini Review. Orthop. Surg. 2020, 12, 366–371. [Google Scholar] [CrossRef]
- Yang, Y.; Rupani, A.; Bagnaninchi, P.; Wimpenny, I.; Weightman, A. Study of optical properties and proteoglycan content of tendons by polarization sensitive optical coherence tomography. J. Biomed. Opt. 2012, 17, 081417. [Google Scholar] [CrossRef] [PubMed]
- Fêo, H.B.; Biancalana, A.; Nakagaki, W.R.; De Aro, A.A.; Gomes, L. Biochemical and morphological alterations of the extracellular matrix of chicken calcaneal tendon during maturation. Microsc. Res. Tech. 2015, 78, 949–957. [Google Scholar] [CrossRef] [PubMed]
- Cury, D.P.; Dias, F.J.; Miglino, M.A.; Watanabe, I.S. Structural and Ultrastructural Characteristics of Bone-Tendon Junction of the Calcaneal Tendon of Adult and Elderly Wistar Rats. PLoS ONE 2016, 11, e0153568. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wu, Y.; Yu, J.; Jiao, Z.; Ao, Y.; Yu, C.; Wang, J.; Cui, G. Effect of repeated freezing-thawing on the Achilles tendon of rabbits. Knee Surg. Sports Traumatol. Arthrosc. 2011, 19, 1028–1034. [Google Scholar] [CrossRef] [PubMed]
- Maffulli, N.; Longo, U.G.; Franceschi, F.; Rabitti, C.; Denaro, V. Movin and Bonar scores assess the same characteristics of tendon histology. Clin. Orthop. Relat. Res. 2008, 466, 1605–1611. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.R. Transmission electron microscopy in molecular structural biology: A historical survey. Arch. Biochem. Biophys. 2015, 581, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Jiang, C.; Shen, L.; Zhang, W.; Zhu, L. Optimal number of chemical extraction treatments for maintaining the biological properties of an allogeneic tendon. Cell Tissue Bank. 2018, 19, 629–636. [Google Scholar] [CrossRef]
- Bedi, A.; Bishop, J.; Keener, J.; Lansdown, D.A.; Levy, O.; MacDonald, P.; Maffulli, N.; Oh, J.H.; Sabesan, V.J.; Sanchez-Sotelo, J.; et al. Rotator cuff tears. Nat. Rev. Dis. Primers 2024, 10, 8. [Google Scholar] [CrossRef]
- Magnusson, S.P.; Langberg, H.; Kjaer, M. The pathogenesis of tendinopathy: Balancing the response to loading. Nat. Rev. Rheumatol. 2010, 6, 262–268. [Google Scholar] [CrossRef]
- Frandsen, J.J.; Quinlan, N.J.; Smith, K.M.; Lu, C.C.; Chalmers, P.N.; Tashjian, R.Z. Symptomatic Rotator Cuff Tear Progression: Conservatively Treated Full- and Partial-Thickness Tears Continue to Progress. Arthrosc. Sports Med. Rehabil. 2022, 4, e1091–e1096. [Google Scholar] [CrossRef]
- Furrer, P.R.; Borbas, P.; Egli, R.J.; Zindel, C.; Wieser, K.; Bouaicha, S. MRI findings of traumatic and degenerative rotator cuff tears and introduction of the “cobra sign”. JSES Int. 2023, 7, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Paliczak, A.; Delgado, D. Evidence-based indications of platelet-rich plasma therapy. Expert Rev. Hematol. 2021, 14, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Cole, B.J.; Seroyer, S.T.; Filardo, G.; Bajaj, S.; Fortier, L.A. Platelet-rich plasma: Where are we now and where are we going? Sports Health 2010, 2, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Di Martino, A.; Boffa, A.; Andriolo, L.; Romandini, I.; Altamura, S.A.; Cenacchi, A.; Roverini, V.; Zaffagnini, S.; Filardo, G. Leukocyte-Rich versus Leukocyte-Poor Platelet-Rich Plasma for the Treatment of Knee Osteoarthritis: A Double-Blind Randomized Trial. Am. J. Sports Med. 2022, 50, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Martínez, A.; Ruiz-Santiago, F.; García-Espinosa, J. Platelet-rich plasma: Myth or reality? Radiologia 2018, 60, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Le, A.D.K.; Enweze, L.; DeBaun, M.R.; Dragoo, J.L. Platelet-Rich Plasma. Clin. Sports Med. 2019, 38, 17–44. [Google Scholar] [CrossRef]
- Liu, B.; Jeong, H.J.; Yeo, J.H.; Oh, J.H. Efficacy of Intraoperative Platelet-Rich Plasma Augmentation and Postoperative Platelet-Rich Plasma Booster Injection for Rotator Cuff Healing: A Randomized Controlled Clinical Trial. Orthop. J. Sports Med. 2021, 9, 23259671211006100. [Google Scholar] [CrossRef] [PubMed]
- Floryan, K.M.; Berghoff, W.J. Intraoperative use of autologous platelet-rich and platelet-poor plasma for orthopedic surgery patients. AORN J. 2004, 80, 668–674, quiz 668–675. [Google Scholar] [CrossRef] [PubMed]
- Amable, P.R.; Carias, R.B.; Teixeira, M.V.; da Cruz Pacheco, I.; Corrêa do Amaral, R.J.; Granjeiro, J.M.; Borojevic, R. Platelet-rich plasma preparation for regenerative medicine: Optimization and quantification of cytokines and growth factors. Stem Cell Res. Ther. 2013, 4, 67. [Google Scholar] [CrossRef]
- Gupta, A.; Migliorini, F.; Maffulli, N. Management of rotator cuff injuries using allogenic platelet-rich plasma. J. Orthop. Surg. Res. 2024, 19, 165. [Google Scholar] [CrossRef]
- MS, A.H.; Sazlina, S.G. Platelet-rich plasma for rotator cuff tendinopathy: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0251111. [Google Scholar] [CrossRef]
- Hudgens, J.L.; Sugg, K.B.; Grekin, J.A.; Gumucio, J.P.; Bedi, A.; Mendias, C.L. Platelet-Rich Plasma Activates Proinflammatory Signaling Pathways and Induces Oxidative Stress in Tendon Fibroblasts. Am. J. Sports Med. 2016, 44, 1931–1940. [Google Scholar] [CrossRef] [PubMed]
- Prodromos, C.C.; Finkle, S.; Prodromos, A.; Chen, J.L.; Schwartz, A.; Wathen, L. Treatment of Rotator Cuff Tears with platelet rich plasma: A prospective study with 2 year follow-up. BMC Musculoskelet. Disord. 2021, 22, 499. [Google Scholar] [CrossRef] [PubMed]
- Meadows, M.C.; Levy, D.M.; Ferry, C.M.; Gardner, T.R.; Teratani, T.; Ahmad, C.S. Effects of Platelet-Rich Plasma and Indomethacin on Biomechanics of Rotator Cuff Repair. Am. J. Orthop. (Belle Mead NJ) 2017, 46, E336–E343. [Google Scholar] [PubMed]
- Han, L.; Hu, N.; Wang, C.; Ye, Z.; Wang, T.; Lan, F. Platelet-rich plasma-derived exosomes promote rotator cuff tendon-bone healing. Injury 2024, 55, 111212. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.Y.; Lee, S.Y.; Shin, S.; Yoon, K.S.; Jo, C.H. Comparative Analysis of Platelet-rich Plasma Effect on Tenocytes from Normal Human Rotator Cuff Tendon and Human Rotator Cuff Tendon with Degenerative Tears. Clin. Shoulder Elb. 2018, 21, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Fang, W.L.; Jin, B.; Xu, S.C.; Zheng, X.; Hu, Y.G. Enhancement of tendon-bone healing after rotator cuff injuries using combined therapy with mesenchymal stem cells and platelet rich plasma. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 9075–9084. [Google Scholar] [CrossRef] [PubMed]
- Pauly, S.; Klatte-Schulz, F.; Stahnke, K.; Scheibel, M.; Wildemann, B. The effect of autologous platelet rich plasma on tenocytes of the human rotator cuff. BMC Musculoskelet. Disord. 2018, 19, 422. [Google Scholar] [CrossRef] [PubMed]
- Giovannetti de Sanctis, E.; Franceschetti, E.; De Dona, F.; Palumbo, A.; Paciotti, M.; Franceschi, F. The Efficacy of Injections for Partial Rotator Cuff Tears: A Systematic Review. J. Clin. Med. 2020, 10, 51. [Google Scholar] [CrossRef]
- Peng, Y.; Du, L.; Yang, B.; Fan, D.; Jia, S.; Zheng, C. Efficacy of platelet-rich plasma and platelet-rich fibrin in arthroscopic rotator cuff repair: A systematic review and meta-analysis. PM R J. 2023, 15, 1643–1653. [Google Scholar] [CrossRef]
- Chen, X.; Jones, I.A.; Togashi, R.; Park, C.; Vangsness, C.T., Jr. Use of Platelet-Rich Plasma for the Improvement of Pain and Function in Rotator Cuff Tears: A Systematic Review and Meta-analysis with Bias Assessment. Am. J. Sports Med. 2020, 48, 2028–2041. [Google Scholar] [CrossRef] [PubMed]
- DeOrio, J.K.; Cofield, R.H. Results of a second attempt at surgical repair of a failed initial rotator-cuff repair. J. Bone Jt. Surg. 1984, 66, 563–567. [Google Scholar] [CrossRef]
- Fuchs, B.; Weishaupt, D.; Zanetti, M.; Hodler, J.; Gerber, C. Fatty degeneration of the muscles of the rotator cuff: Assessment by computed tomography versus magnetic resonance imaging. J. Shoulder Elb. Surg. 1999, 8, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Kesikburun, S.; Tan, A.K.; Yilmaz, B.; Yaşar, E.; Yazicioğlu, K. Platelet-rich plasma injections in the treatment of chronic rotator cuff tendinopathy: A randomized controlled trial with 1-year follow-up. Am. J. Sports Med. 2013, 41, 2609–2616. [Google Scholar] [CrossRef]
- Cook, J.L.; Feller, J.A.; Bonar, S.F.; Khan, K.M. Abnormal tenocyte morphology is more prevalent than collagen disruption in asymptomatic athletes’ patellar tendons. J. Orthop. Res. 2004, 22, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Chillemi, C.; Petrozza, V.; Garro, L.; Sardella, B.; Diotallevi, R.; Ferrara, A.; Gigante, A.; Di Cristofano, C.; Castagna, A.; Della Rocca, C. Rotator cuff re-tear or non-healing: Histopathological aspects and predictive factors. Knee Surg. Sports Traumatol. Arthrosc. 2011, 19, 1588–1596. [Google Scholar] [CrossRef] [PubMed]
- Ricci, V.; Ricci, C.; Tamborrini, G.; Chang, K.V.; Mezian, K.; Zunica, F.; Naňka, O.; Kara, M.; Özçakar, L. From histology to sonography in synovitis: EURO-MUSCULUS/USPRM approach. Pathol. Res. Pract. 2023, 241, 154273. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, S.; Griffin, D.R.; Parsons, N.; Lawrence, T.M.; Modi, C.S.; Drew, S.J.; Smith, C.D. Microvascular blood flow in normal and pathologic rotator cuffs. J. Shoulder Elb. Surg. 2015, 24, 1954–1960. [Google Scholar] [CrossRef]
- Nixon, J.E.; DiStefano, V. Ruptures of the rotator cuff. Orthop. Clin. N. Am. 1975, 6, 423–447. [Google Scholar] [CrossRef]
- Hashimoto, T.; Nobuhara, K.; Hamada, T. Pathologic evidence of degeneration as a primary cause of rotator cuff tear. Clin. Orthop. Relat. Res. 2003, 415, 111–120. [Google Scholar] [CrossRef]
- Fukuda, H.; Hamada, K.; Yamanaka, K. Pathology and pathogenesis of bursal-side rotator cuff tears viewed from en bloc histologic sections. Clin. Orthop. Relat. Res. 1990, 254, 75–80. [Google Scholar] [CrossRef]
- Abate, M.; Silbernagel, K.G.; Siljeholm, C.; Di Iorio, A.; De Amicis, D.; Salini, V.; Werner, S.; Paganelli, R. Pathogenesis of tendinopathies: Inflammation or degeneration? Arthritis Res. Ther. 2009, 11, 235. [Google Scholar] [CrossRef]
- Pingel, J.; Lu, Y.; Starborg, T.; Fredberg, U.; Langberg, H.; Nedergaard, A.; Weis, M.; Eyre, D.; Kjaer, M.; Kadler, K.E. 3-D ultrastructure and collagen composition of healthy and overloaded human tendon: Evidence of tenocyte and matrix buckling. J. Anat. 2014, 224, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wu, T.; Liu, S. Identification and Distinction of Tenocytes and Tendon-Derived Stem Cells. Front. Cell Dev. Biol. 2021, 9, 629515. [Google Scholar] [CrossRef]
- Chalidis, B.; Givissis, P.; Papadopoulos, P.; Pitsilos, C. Molecular and Biologic Effects of Platelet-Rich Plasma (PRP) in Ligament and Tendon Healing and Regeneration: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 2744. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, J.; Wu, H.; Hogan, M.V.; Wang, J.H. The differential effects of leukocyte-containing and pure platelet-rich plasma (PRP) on tendon stem/progenitor cells-implications of PRP application for the clinical treatment of tendon injuries. Stem Cell Res. Ther. 2015, 6, 173. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Al-Ani, M.K.; Sun, Y.; Xu, W.; Pan, L.; Song, Y.; Xu, Z.; Pan, X.; Yang, L. Platelet-rich plasma activates tendon-derived stem cells to promote regeneration of Achilles tendon rupture in rats. J. Tissue Eng. Regen. Med. 2017, 11, 1173–1184. [Google Scholar] [CrossRef] [PubMed]
- Anitua, E.; Sanchez, M.; Nurden, A.T.; Zalduendo, M.; de la Fuente, M.; Azofra, J.; Andia, I. Reciprocal actions of platelet-secreted TGF-beta1 on the production of VEGF and HGF by human tendon cells. Plast. Reconstr. Surg. 2007, 119, 950–959. [Google Scholar] [CrossRef]
- Anitua, E.; Sanchez, M.; Nurden, A.T.; Zalduendo, M.; de la Fuente, M.; Orive, G.; Azofra, J.; Andia, I. Autologous fibrin matrices: A potential source of biological mediators that modulate tendon cell activities. J. Biomed. Mater. Res. Part A 2006, 77, 285–293. [Google Scholar] [CrossRef]
- Cross, J.A.; Cole, B.J.; Spatny, K.P.; Sundman, E.; Romeo, A.A.; Nicholson, G.P.; Wagner, B.; Fortier, L.A. Leukocyte-Reduced Platelet-Rich Plasma Normalizes Matrix Metabolism in Torn Human Rotator Cuff Tendons. Am. J. Sports Med. 2015, 43, 2898–2906. [Google Scholar] [CrossRef]
- de Mos, M.; van der Windt, A.E.; Jahr, H.; van Schie, H.T.; Weinans, H.; Verhaar, J.A.; van Osch, G.J. Can platelet-rich plasma enhance tendon repair? A cell culture study. Am. J. Sports Med. 2008, 36, 1171–1178. [Google Scholar] [CrossRef] [PubMed]
- Jo, C.H.; Kim, J.E.; Yoon, K.S.; Shin, S. Platelet-rich plasma stimulates cell proliferation and enhances matrix gene expression and synthesis in tenocytes from human rotator cuff tendons with degenerative tears. Am. J. Sports Med. 2012, 40, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, F.; Augi, T.; Williamson, K.M.; Onishi, K.; Hogan, M.V.; Neal, M.D.; Wang, J.H. Platelet HMGB1 in Platelet-Rich Plasma (PRP) promotes tendon wound healing. PLoS ONE 2021, 16, e0251166. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Nie, D.; Williamson, K.; Rocha, J.L.; Hogan, M.V.; Wang, J.H. Selectively activated PRP exerts differential effects on tendon stem/progenitor cells and tendon healing. J. Tissue Eng. 2019, 10, 2041731418820034. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Saita, Y.; Takaku, T.; Yokomizo, T.; Nishio, H.; Ikeda, H.; Takazawa, Y.; Nagao, M.; Kaneko, K.; Komatsu, N. Platelet-rich plasma (PRP) accelerates murine patellar tendon healing through enhancement of angiogenesis and collagen synthesis. J. Exp. Orthop. 2020, 7, 49. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, D.; Akizuki, S.; Takizawa, T.; Omae, S.; Kato, H. Compact platelet-rich fibrin scaffold to improve healing of patellar tendon defects and for medial collateral ligament reconstruction. Knee 2013, 20, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.Y.; Pang, J.S.; Lin, L.P.; Cheng, J.W.; Liu, S.J.; Tsai, W.C. Platelet-Rich Plasma Releasate Promotes Early Healing in Tendon After Acute Injury. Orthop. J. Sports Med. 2021, 9, 2325967121990377. [Google Scholar] [CrossRef] [PubMed]
- Hanisch, K.; Wedderkopp, N. Platelet-rich plasma (PRP) treatment of noninsertional Achilles tendinopathy in a two case series: No significant difference in effect between leukocyte-rich and leukocyte-poor PRP. Orthop. Res. Rev. 2019, 11, 55–60. [Google Scholar] [CrossRef]
- Lin, K.Y.; Chen, P.; Chen, A.C.; Chan, Y.S.; Lei, K.F.; Chiu, C.H. Leukocyte-Rich Platelet-Rich Plasma Has Better Stimulating Effects on Tenocyte Proliferation Compared with Leukocyte-Poor Platelet-Rich Plasma. Orthop. J. Sports Med. 2022, 10, 23259671221084706. [Google Scholar] [CrossRef]
- Nishio, H.; Saita, Y.; Kobayashi, Y.; Takaku, T.; Fukusato, S.; Uchino, S.; Wakayama, T.; Ikeda, H.; Kaneko, K. Platelet-rich plasma promotes recruitment of macrophages in the process of tendon healing. Regen. Ther. 2020, 14, 262–270. [Google Scholar] [CrossRef]
- Peng, Y.; Guanglan, W.; Jia, S.; Zheng, C. Leukocyte-rich and Leukocyte-poor Platelet-rich Plasma in Rotator Cuff Repair: A Meta-analysis. Int. J. Sports Med. 2022, 43, 921–930. [Google Scholar] [CrossRef] [PubMed]
- Jaworski, Ł.; Zabrzyńska, M.; Klimaszewska-Wiśniewska, A.; Zielińska, W.; Grzanka, D.; Gagat, M. Advances in Microscopic Studies of Tendinopathy: Literature Review and Current Trends, with Special Reference to Neovascularization Process. J. Clin. Med. 2022, 11, 1572. [Google Scholar] [CrossRef]
- Lundgreen, K.; Lian, Ø.; Scott, A.; Engebretsen, L. Increased levels of apoptosis and p53 in partial-thickness supraspinatus tendon tears. Knee Surg. Sports Traumatol. Arthrosc. 2013, 21, 1636–1641. [Google Scholar] [CrossRef] [PubMed]
- Zabrzyńska, M.; Grzanka, D.; Zielińska, W.; Jaworski, Ł.; Pękala, P.; Gagat, M. The Bonar Score in the Histopathological Assessment of Tendinopathy and Its Clinical Relevance-A Systematic Review. Med. (Kaunas Lith.) 2021, 57, 367. [Google Scholar] [CrossRef]
- Sethi, P.M.; Sheth, C.D.; Pauzenberger, L.; McCarthy, M.B.R.; Cote, M.P.; Soneson, E.; Miller, S.; Mazzocca, A.D. Macroscopic Rotator Cuff Tendinopathy and Histopathology Do Not Predict Repair Outcomes of Rotator Cuff Tears. Am. J. Sports Med. 2018, 46, 779–785. [Google Scholar] [CrossRef]
- Kennedy, M.S.; Nicholson, H.D.; Woodley, S.J. Clinical anatomy of the subacromial and related shoulder bursae: A review of the literature. Clin. Anat. 2017, 30, 213–226. [Google Scholar] [CrossRef]
- Tamburini, L.M.; Levy, B.J.; McCarthy, M.B.; Kriscenski, D.E.; Cote, M.P.; Applonie, R.; Lebaschi, A.; Sethi, P.M.; Blaine, T.A.; Mazzocca, A.D. The interaction between human rotator cuff tendon and subacromial bursal tissue in co-culture. J. Shoulder Elb. Surg. 2021, 30, 1494–1502. [Google Scholar] [CrossRef]
- Lanham, N.S.; Swindell, H.W.; Levine, W.N. The Subacromial Bursa: Current Concepts Review. JBJS Rev. 2021, 9. [Google Scholar] [CrossRef] [PubMed]
- Marshall, B.P.; Ferrer, X.E.; Kunes, J.A.; Innis, A.C.; Luzzi, A.J.; Forrester, L.A.; Burt, K.G.; Lee, A.J.; Song, L.; Hung, C.T.; et al. The subacromial bursa is a key regulator of the rotator cuff and a new therapeutic target for improving repair. bioRxiv 2023. [Google Scholar] [CrossRef]
- Levy, B.J.; McCarthy, M.B.; Lebaschi, A.; Sanders, M.M.; Cote, M.P.; Mazzocca, A.D. Subacromial Bursal Tissue and Surrounding Matrix of Patients Undergoing Rotator Cuff Repair Contains Progenitor Cells. Arthroscopy 2022, 38, 1115–1123. [Google Scholar] [CrossRef]
- Muench, L.N.; Tamburini, L.; Kriscenski, D.; Berthold, D.P.; Rupp, M.C.; Cote, M.P.; McCarthy, M.B.; Mazzocca, A.D. The effect of augmenting suture material with magnesium and platelet-rich plasma on the in vitro adhesion and proliferation potential of subacromial bursa-derived progenitor cells. JSES Int. 2023, 7, 2367–2372. [Google Scholar] [CrossRef] [PubMed]
- Marshall, B.P.; Ashinsky, B.G.; Ferrer, X.E.; Kunes, J.A.; Innis, A.C.; Luzzi, A.J.; Forrester, L.A.; Burt, K.G.; Lee, A.J.; Song, L.; et al. The subacromial bursa modulates tendon healing after rotator cuff injury in rats. Sci. Transl. Med. 2024, 16, eadd8273. [Google Scholar] [CrossRef] [PubMed]
Parameter | PRP Group (10 Patient) | Control Group (10 Patients) | p-Value |
---|---|---|---|
Gender (M/F) | 8/2 | 8/2 | |
Age * (O/M/F) (years) | 58 (range; 46–63)/57/62 | 60.3 (range; 54–62)/60.6/59 | 0.186 ** |
Duration of symptoms * (O/M/F) (months) | 6.8 (range; 4–12)/6.5/8 | 5.2 (range; 3–12)/5/6 | 0.217 ** |
VAS * (O/M/F) | 6.6 (range; 3–8)/6.9/5.5 | 6.4 (range: 4–9)/6.5/6 | 0.355 ** |
Smoking (M/F) | 2/0 | 2/0 | |
Hypertension (M/F) | 2/0 | 2/0 | |
Dyslipidemia (M/F) | 1/1 | 1/0 | |
Hyperthyroidism (M/F) | 0 | 1/0 |
Scores | Experimental Group | Control Group | p-Value |
---|---|---|---|
Tenocyte morphology | 0.1 (range; 0–1) | 1.2 (range; 1–2) | 0.001 |
Ground substance | 0.1 (range; 0–1) | 0.1 (range; 0–1) | 1 |
Collagen architecture | 0.1 (range; 0–1) | 1.6 (range; 1–2) | 0.002 |
Vascularity | 0.1 (range; 0–1) | 0.1 (range; 0–1) | 1 |
Total | 0.4 (range; 0–1) | 3 (range; 2–4) | 0.004 |
Variables | Grade 0 | Grade 1 | Grade 2 | Grade 3 |
---|---|---|---|---|
Tenocyte morphology | Inconspicuous elongated spindle shaped nuclei with no obvious cytoplasm at light microscopy | Increased roundness: nucleus becomes more ovoid to round in shape without conspicuous cytoplasm | Increased roundness and size: the nucleus is round, slightly enlarged and a small amount of cytoplasm is visible | Nucleus is round, large with abundant cytoplasm and lacuna formation (chondroid change) |
Ground substance | No stainable ground substance | Stainable mucin between fibers but bundles still discrete | Stainable mucin between fibers with loss of clear demarcation of bundles | Abundant mucin throughout with inconspicuous collagen staining |
Collagen architecture | Collagen arranged in tightly cohesive well-demarcated bundles with a smooth dense bright homogeneous polarization pattern with normal crimping | Diminished fiber polarization: separation of individual fibers with maintenance of demarcated bundles | Bundle changes: separation of fibers with loss of demarcation of bundles giving rise to expansion of the tissue overall and clear loss of normal polarization pattern | Marked separation of fibers with complete loss of architecture |
Vascularity | Inconspicuous blood vessels coursing between bundles | Occasional cluster of capillaries, less than one per 10 high-power fields | 1–2 clusters of capillaries per 10 high power fields | Greater than two clusters per 10 high-power fields |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pitsilos, C.; Karachrysafi, S.; Fragou, A.; Gigis, I.; Papadopoulos, P.; Chalidis, B. The Biological Effect of Platelet-Rich Plasma on Rotator Cuff Tears: A Prospective Randomized In Vivo Study. Int. J. Mol. Sci. 2024, 25, 7957. https://doi.org/10.3390/ijms25147957
Pitsilos C, Karachrysafi S, Fragou A, Gigis I, Papadopoulos P, Chalidis B. The Biological Effect of Platelet-Rich Plasma on Rotator Cuff Tears: A Prospective Randomized In Vivo Study. International Journal of Molecular Sciences. 2024; 25(14):7957. https://doi.org/10.3390/ijms25147957
Chicago/Turabian StylePitsilos, Charalampos, Sofia Karachrysafi, Aikaterini Fragou, Ioannis Gigis, Pericles Papadopoulos, and Byron Chalidis. 2024. "The Biological Effect of Platelet-Rich Plasma on Rotator Cuff Tears: A Prospective Randomized In Vivo Study" International Journal of Molecular Sciences 25, no. 14: 7957. https://doi.org/10.3390/ijms25147957
APA StylePitsilos, C., Karachrysafi, S., Fragou, A., Gigis, I., Papadopoulos, P., & Chalidis, B. (2024). The Biological Effect of Platelet-Rich Plasma on Rotator Cuff Tears: A Prospective Randomized In Vivo Study. International Journal of Molecular Sciences, 25(14), 7957. https://doi.org/10.3390/ijms25147957