Molecular Adaptations of BDNF/NT-4 Neurotrophic and Muscarinic Pathways in Ageing Neuromuscular Synapses
Abstract
:1. Introduction
2. Results
2.1. Metrics of the Weights and Activity of the Animals and the EDL Muscle
2.2. Morphology of the Ageing NMJ
2.3. BDNF and NT-4 Neurotrophins
2.4. Neurotrophic Factor Receptors
2.5. Muscarinic Receptors
2.6. Protein kinases
2.7. Kinase Targets in the SNARE-SM ACh Release Complex
2.8. Acetylcholine Cycle Proteins and Calcium Channels
3. Discussion
3.1. Neurotrophins
3.2. Neurotrophin Receptors
3.3. Muscarinic Receptors
3.4. Downstream Protein Kinases
3.5. Presynaptic Molecular Machinery of Transmitter Release
3.5.1. SNAP-25
3.5.2. Munc18-1
3.6. Presynaptic Acetylcholine Cycle Proteins and Calcium Channels
4. Materials and Methods
4.1. Animal Model
4.2. Video Processing for Rat Behaviour Analysis
4.3. Sample Processing
4.3.1. Whole Cell Lysate
4.3.2. Membrane/Cytosol Fractionated Lysates
4.4. Western Blot
4.5. Immunohistochemistry
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Garcia, N.; Santafe, M.M.; Tomàs, M.; Lanuza, M.A.; Besalduch, N.; Tomàs, J. Involvement of brain-derived neurotrophic factor (BDNF) in the functional elimination of synaptic contacts at polyinnervated neuromuscular synapses during development. J. Neurosci. Res. 2010, 88, 1406–1419. [Google Scholar] [CrossRef]
- Hempstead, B.L. Dissecting the diverse actions of pro- and mature neurotrophins. Curr. Alzheimer Res. 2006, 3, 19–24. [Google Scholar] [CrossRef]
- Herrmann, K.A.; Broihier, H.T. What neurons tell themselves: Autocrine signals play essential roles in neuronal development and function. Curr. Opin. Neurobiol. 2018, 51, 70–79. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tomàs, J.; Garcia, N.; Lanuza, M.A.; Santafé, M.M.; Tomàs, M.; Nadal, L.; Hurtado, E.; Simó, A.; Cilleros, V. Presynaptic Membrane Receptors Modulate ACh Release, Axonal Competition and Synapse Elimination during Neuromuscular Junction Development. Front. Mol. Neurosci. 2017, 10, 132. [Google Scholar] [CrossRef]
- Tomàs, J.; Santafé, M.M.; Garcia, N.; Lanuza, M.A.; Tomàs, M.; Besalduch, N.; Obis, T.; Priego, M.; Hurtado, E. Presynaptic membrane receptors in acetylcholine release modulation in the neuromuscular synapse. J. Neurosci. Res. 2014, 92, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Wess, J. Muscarinic acetylcholine receptor knockout mice: Novel phenotypes and clinical implications. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 423–450. [Google Scholar] [CrossRef] [PubMed]
- Simó, A.; Cilleros-Mañé, V.; Just-Borràs, L.; Hurtado, E.; Nadal, L.; Tomàs, M.; Garcia, N.; Lanuza, M.A.; Tomàs, J. nPKCε Mediates SNAP-25 Phosphorylation of Ser-187 in Basal Conditions and After Synaptic Activity at the Neuromuscular Junction. Mol. Neurobiol. 2019, 56, 5346–5364. [Google Scholar] [CrossRef]
- Simó, A.; Just-Borràs, L.; Cilleros-Mañé, V.; Hurtado, E.; Nadal, L.; Tomàs, M.; Garcia, N.; Lanuza, M.A.; Tomàs, J. BDNF-TrkB Signaling Coupled to nPKCε and cPKCβI Modulate the Phosphorylation of the Exocytotic Protein Munc18-1 During Synaptic Activity at the Neuromuscular Junction. Front. Mol. Neurosci. 2018, 11, 207–227. [Google Scholar] [CrossRef]
- Gaydukov, A.E.; Balezina, O.P. CaMKII Is Involved in the Choline-Induced Downregulation of Acetylcholine Release in Mouse Motor Synapses. Acta Naturae 2017, 9, 110–113. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kidokoro, Y. Roles of SNARE proteins and synaptotagmin I in synaptic transmission: Studies at the Drosophila neuro-muscular synapse. Neurosignals 2003, 12, 13–30. [Google Scholar] [CrossRef] [PubMed]
- Li, M.X.; Jia, M.; Yang, L.X.; Jiang, H.; Lanuza, M.A.; Gonzalez, C.M.; Nelson, P.G. The role of the theta isoform of protein kinase C (PKC) in activity-dependent synapse elimination: Evidence from the PKC theta knock-out mouse in vivo and in vitro. J. Neurosci. 2004, 24, 3762–3769. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Santafé, M.M.; Garcia, N.; Tomàs, M.; Obis, T.; Lanuza, M.A.; Besalduch, N.; Tomàs, J. The interaction between tropomyosin-related kinase B receptors and serine kinases modulates acetylcholine release in adult neuromuscular junctions. Neurosci. Lett. 2014, 561, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Just-Borràs, L.; Cilleros-Mañé, V.; Hurtado, E.; Biondi, O.; Charbonnier, F.; Tomàs, M.; Garcia, N.; Tomàs, J.; Lanuza, M.A. Running and Swimming Differently Adapt the BDNF/TrkB Pathway to a Slow Molecular Pattern at the NMJ. Int. J. Mol. Sci. 2021, 22, 4577. [Google Scholar] [CrossRef]
- Just-Borràs, L.; Hurtado, E.; Cilleros-Mañé, V.; Biondi, O.; Charbonnier, F.; Tomàs, M.; Garcia, N.; Tomàs, J.; Lanuza, M.A. Running and swimming prevent the deregulation of the BDNF/TrkB neurotrophic signalling at the neuromuscular junction in mice with amyotrophic lateral sclerosis. Cell. Mol. Life Sci. 2020, 77, 3027–3040. [Google Scholar] [CrossRef] [PubMed]
- Furlan, I.; Godinho, R.O. Developing skeletal muscle cells express functional muscarinic acetylcholine receptors coupled to different intracellular signaling systems. Br. J. Pharmacol. 2005, 146, 389–396. [Google Scholar] [CrossRef]
- Garcia, N.; Tomas, M.; Santafe, M.M.; Besalduch, N.; Lanuza, M.A.; Tomas, J. The Interaction between Tropomyosin-Related Kinase B Receptors and Presynaptic Muscarinic Receptors Modulates Transmitter Release in Adult Rodent Motor Nerve Terminals. J. Neurosci. 2010, 30, 16514–16522. [Google Scholar] [CrossRef]
- Reyes, R.; Jaimovich, E. Functional muscarinic receptors in cultured skeletal muscle. Arch Biochem. Biophys. 1996, 331, 41–47. [Google Scholar] [CrossRef]
- Santafé, M.M.; Lanuza, M.A.; Garcia, N.; Tomàs, J. Muscarinic autoreceptors modulate transmitter release through protein kinase C and protein kinase A in the rat motor nerve terminal. Eur. J. Neurosci. 2006, 23, 2048–2056. [Google Scholar] [CrossRef]
- Wright, M.C.; Potluri, S.; Wang, X.; Dentcheva, E.; Gautam, D.; Tessler, A.; Wess, J.; Rich, M.M.; Son, Y.J. Distinct muscarinic acetylcholine receptor subtypes contribute to stability and growth, but not compensatory plasticity, of neuromuscular synapses. J. Neurosci. 2009, 29, 14942–14955. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cilleros-Mañé, V.; Just-Borràs, L.; Polishchuk, A.; Durán, M.; Tomàs, M.; Garcia, N.; Tomàs, J.M.; Lanuza, M.A. M 1 and M 2 mAChRs activate PDK1 and regulate PKC βI and ε and the exocytotic apparatus at the NMJ. FASEB J. 2021, 35, e21724. [Google Scholar] [CrossRef]
- Cilleros-Mañé, V.; Just-Borràs, L.; Tomàs, M.; Garcia, N.; Tomàs, J.M.; Lanuza, M.A. The M 2 muscarinic receptor, in association to M1, regulates the neuromuscular PKA molecular dynamics. FASEB J. 2020, 34, 4934–4955. [Google Scholar] [CrossRef] [PubMed]
- Dreyer, H.C.; Fujita, S.; Cadenas, J.G.; Chinkes, D.L.; Volpi, E.; Rasmussen, B.B. Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. J. Physiol. 2006, 576, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Verdijk, L.B.; Koopman, R.; Schaart, G.; Meijer, K.; Savelberg, H.H.C.M.; van Loon, L.J.C. Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly. Am. J. Physiol. -Endocrinol. Metab. 2007, 292, E151–E157. [Google Scholar] [CrossRef]
- Martel, G.F.; Roth, S.M.; Ivey, F.M.; Lemmer, J.T.; Tracy, B.L.; Hurlbut, D.E.; Metter, E.J.; Hurley, B.F.; Rogers, M.A. Age and sex affect human muscle fibre adaptations to heavy-resistance strength training. Exp. Physiol. 2006, 91, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Snijders, T.; Verdijk, L.B.; van Loon, L.J. The impact of sarcopenia and exercise training on skeletal muscle satellite cells. Ageing Res. Rev. 2009, 8, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Crupi, A.N.; Nunnelee, J.S.; Taylor, D.J.; Thomas, A.; Vit, J.-P.; Riera, C.E.; Gottlieb, R.A.; Goodridge, H.S. Oxidative muscles have better mitochondrial homeostasis than glycolytic muscles throughout life and maintain mitochondrial function during aging. Aging 2018, 10, 3327–3352. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Pessin, J.E. Mechanisms for fiber-type specificity of skeletal muscle atrophy. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Valdez, G.; Tapia, J.C.; Kang, H.; Clemenson, G.D.; Gage, F.H.; Lichtman, J.W.; Sanes, J.R. Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise. Proc. Natl. Acad. Sci. USA 2010, 107, 14863–14868. [Google Scholar] [CrossRef] [PubMed]
- Tomàs, J.; Garcia, N.; Lanuza, M.A.; Santafé, M.M.; Tomàs, M.; Nadal, L.; Hurtado, E.; Simó-Ollé, A.; Cilleros-Mañé, V.; Just-Borràs, L. Adenosine Receptors in Developing and Adult Mouse Neuromuscular Junctions and Functional Links With Other Metabotropic Receptor Pathways. Front. Pharmacol. 2018, 9, 397. [Google Scholar] [CrossRef]
- Xu, H.; Czerwinski, P.; Xia, N.; Förstermann, U.; Li, H. Downregulation of BDNF Expression by PKC and by TNF-α in Human Endothelial Cells. Pharmacology 2015, 96, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Polishchuk, A.; Cilleros-Mañé, V.; Just-Borràs, L.; Balanyà-Segura, M.; Vandellòs Pont, G.; Silvera Simón, C.; Tomàs, M.; Garcia, N.; Tomàs, J.; Lanuza, M.A. Synaptic retrograde regulation of the PKA-induced SNAP-25 and Synapsin-1 phosphorylation. Cell. Mol. Biol. Lett. 2023, 28, 17. [Google Scholar] [CrossRef] [PubMed]
- Kurokawa, K.; Mimori, Y.; Tanaka, E.; Kohriyama, T.; Nakamura, S. Age-Related Change in Peripheral Nerve Conduction: Compound Muscle Action Potential Duration and Dispersion. Gerontology 1999, 45, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Banker, B.Q.; Kelly, S.S.; Robbins, N. Neuromuscular transmission and correlative morphology in young and old mice. J. Physiol. 1983, 339, 355–377. [Google Scholar] [CrossRef]
- Bhattacharyya, B.J.; Tsen, K.; Sokoll, M.D. Age-induced alteration of neuromuscular transmission: Effect of halothane. Eur. J. Pharmacol. 1994, 254, 97–104. [Google Scholar] [CrossRef]
- Lyons, P.R.; Slater, C.R. Structure and function of the neuromuscular junction in young adultmdx mice. J. Neurocytol. 1991, 20, 969–981. [Google Scholar] [CrossRef]
- Nagel, A.; Lehmann-Horn, F.; Engel, A.G. Neuromuscular transmission in the mdx mouse. Muscle Nerve 1990, 13, 742–749. [Google Scholar] [CrossRef]
- Chugh, D.; Iyer, C.C.; Bobbili, P.; Blatnik, A.J.; Kaspar, B.K.; Meyer, K.; Burghes, A.H.; Clark, B.C.; Arnold, W.D. Voluntary wheel running with and without follistatin overexpression improves NMJ transmission but not motor unit loss in late life of C57BL/6J mice. Neurobiol. Aging 2021, 101, 285–296. [Google Scholar] [CrossRef]
- Nishimune, H.; Stanford, J.A.; Mori, Y. ROLE of exercise in maintaining the integrity of the neuromuscular junction. Muscle Nerve 2014, 49, 315–324. [Google Scholar] [CrossRef]
- Pratt, J.; De Vito, G.; Narici, M.; Boreham, C. Neuromuscular Junction Aging: A Role for Biomarkers and Exercise. J. Gerontol. Ser. A 2021, 76, 576–585. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, H.; Zeng, Z.; Lv, J.; Huang, J.; Wu, X.; Wang, M.; Xu, J.; Fan, J.; Chen, N. MicroRNA profiling of different exercise interventions for alleviating skeletal muscle atrophy in naturally aging rats. J. Cachexia Sarcopenia Muscle 2023, 14, 356–368. [Google Scholar] [CrossRef]
- Geloneze, B.; de Oliveira, M.d.S.; Vasques, A.C.J.; Novaes, F.S.; Pareja, J.C.; Tambascia, M.A. Impaired incretin secretion and pancreatic dysfunction with older age and diabetes. Metabolism 2014, 63, 922–929. [Google Scholar] [CrossRef]
- Hurtado, E.; Cilleros, V.; Nadal, L.; Simó, A.; Obis, T.; Garcia, N.; Santafé, M.M.; Tomàs, M.; Halievski, K.; Jordan, C.L.; et al. Muscle Contraction Regulates BDNF/TrkB Signaling to Modulate Synaptic Function through Presynaptic cPKCα and cPKCβI. Front. Mol. Neurosci. 2017, 10, 147. [Google Scholar] [CrossRef] [PubMed]
- Lu, B. BDNF and Activity-Dependent Synaptic Modulation. Learn. Mem. 2003, 10, 86–98. [Google Scholar] [CrossRef]
- Mantilla, C.B.; Stowe, J.M.; Sieck, D.C.; Ermilov, L.G.; Greising, S.M.; Zhang, C.; Shokat, K.M.; Sieck, G.C. TrkB kinase activity maintains synaptic function and structural integrity at adult neuromuscular junctions. J. Appl. Physiol. 2014, 117, 910–920. [Google Scholar] [CrossRef]
- Mantilla, C.B.; Zhan, W.-Z.; Sieck, G.C. Neurotrophins improve neuromuscular transmission in the adult rat diaphragm. Muscle Nerve 2004, 29, 381–386. [Google Scholar] [CrossRef]
- Matthews, V.B.; Åström, M.-B.; Chan, M.H.S.; Bruce, C.R.; Krabbe, K.S.; Prelovsek, O.; Åkerström, T.; Yfanti, C.; Broholm, C.; Mortensen, O.H.; et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia 2009, 52, 1409–1418. [Google Scholar] [CrossRef]
- Sleiman, S.F.; Henry, J.; Al-Haddad, R.; El Hayek, L.; Abou Haidar, E.; Stringer, T.; Ulja, D.; Karuppagounder, S.S.; Holson, E.B.; Ratan, R.R.; et al. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. Elife 2016, 5, e15092. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Funakoshi, H.; Belluardo, N.; Arenas, E.; Yamamoto, Y.; Casabona, A.; Persson, H.; Ibáñez, C.F. Muscle-Derived Neurotrophin-4 as an Activity-Dependent Trophic Signal for Adult Motor Neurons. Science 1995, 268, 1495–1499. [Google Scholar] [CrossRef]
- Je, H.S.; Yang, F.; Ji, Y.; Potluri, S.; Fu, X.-Q.; Luo, Z.-G.; Nagappan, G.; Chan, J.P.; Hempstead, B.; Son, Y.-J.; et al. ProBDNF and mature BDNF as punishment and reward signals for synapse elimination at mouse neuromuscular junctions. J. Neurosci. Off. J. Soc. Neurosci. 2013, 33, 9957–9962. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Je, H.-S.; Ji, Y.; Nagappan, G.; Hempstead, B.; Lu, B. ProBDNF induced synaptic depression and retraction at developing neuromuscular synapses. J. Cell Biol. 2009, 185, 727–741. [Google Scholar] [CrossRef]
- Middlemas, D.S.; Lindberg, R.A.; Hunter, T. trkB, a neural receptor protein-tyrosine kinase: Evidence for a full-length and two truncated receptors. Mol. Cell. Biol. 1991, 11, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Reichardt, L.F. Neurotrophin-regulated signalling pathways. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 2006, 361, 1545–1564. [Google Scholar] [CrossRef] [PubMed]
- Baxter, G.T.; Radeke, M.J.; Kuo, R.C.; Makrides, V.; Hinkle, B.; Hoang, R.; Medina-Selby, A.; Coit, D.; Valenzuela, P.; Feinstein, S.C. Signal transduction mediated by the truncated trkB receptor isoforms, trkB.T1 and trkB.T2. J. Neurosci. Off. J. Soc. Neurosci. 1997, 17, 2683–2690. [Google Scholar] [CrossRef] [PubMed]
- Dorsey, S.G.; Lovering, R.M.; Renn, C.L.; Leitch, C.C.; Liu, X.; Tallon, L.J.; Sadzewicz, L.D.; Pratap, A.; Ott, S.; Sengamalay, N.; et al. Genetic deletion of trkB.T1 increases neuromuscular function. Am. J. Physiol.-Cell Physiol. 2012, 302, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Eide, F.F.; Vining, E.R.; Eide, B.L.; Zang, K.; Wang, X.Y.; Reichardt, L.F. Naturally occurring truncated trkB receptors have dominant inhibitory effects on brain-derived neurotrophic factor signaling. J. Neurosci. Off. J. Soc. Neurosci. 1996, 16, 3123–3129. [Google Scholar] [CrossRef]
- Gonzalez, M.; Ruggiero, F.P.; Chang, Q.; Shi, Y.J.; Rich, M.M.; Kraner, S.; Balice-Gordon, R.J. Disruption of Trkb-mediated signaling induces disassembly of postsynaptic receptor clusters at neuromuscular junctions. Neuron 1999, 24, 567–583. [Google Scholar] [CrossRef] [PubMed]
- Haapasalo, A.; Koponen, E.; Hoppe, E.; Wong, G.; Castrén, E. Truncated trkB.T1 Is Dominant Negative Inhibitor of trkB.TK+-Mediated Cell Survival. Biochem. Biophys. Res. Commun. 2001, 280, 1352–1358. [Google Scholar] [CrossRef] [PubMed]
- Rose, C.R.; Blum, R.; Pichler, B.; Lepier, A.; Kafitz, K.W.; Konnerth, A. Truncated TrkB-T1 mediates neurotrophin-evoked calcium signalling in glia cells. Nature 2003, 426, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.; Garner, B. Evidence that truncated TrkB isoform, TrkB-Shc can regulate phosphorylated TrkB protein levels. Biochem. Biophys. Res. Commun. 2012, 420, 331–335. [Google Scholar] [CrossRef]
- Skup, M.; Dwornik, A.; Macias, M.; Sulejczak, D.; Wiater, M.; Czarkowska-Bauch, J. Long-term locomotor training up-regulates TrkB(FL) receptor-like proteins, brain-derived neurotrophic factor, and neurotrophin 4 with different topographies of expression in oligodendroglia and neurons in the spinal cord. Exp. Neurol. 2002, 176, 289–307. [Google Scholar] [CrossRef]
- Bothwell, M. Functional Interactions of Neurotrophins and Neurotrophin Receptors. Annu. Rev. Neurosci. 1995, 18, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Chao, M.V. The p75 neurotrophin receptor. J. Neurobiol. 1994, 25, 1373–1385. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Tébar, A.; Dechant, G.; Götz, R.; Barde, Y.A. Binding of neurotrophin-3 to its neuronal receptors and interactions with nerve growth factor and brain-derived neurotrophic factor. EMBO J. 1992, 11, 917–922. [Google Scholar] [CrossRef] [PubMed]
- Liepinsh, E. NMR structure of the death domain of the p75 neurotrophin receptor. EMBO J. 1997, 16, 4999–5005. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, L.; Cortivo, R.; Berti, T.; Berti, A.; Pea, F.; Mazzo, M.; Moras, M.; Abatangelo, G. Biocompatibility and biodegradation of different hyaluronan derivatives (Hyaff) implanted in rats. Biomaterials 1993, 14, 1154–1160. [Google Scholar] [CrossRef] [PubMed]
- Bibel, M. Biochemical and functional interactions between the neurotrophin receptors trk and p75NTR. EMBO J. 1999, 18, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Clary, D.O.; Weskamp, G.; Austin, L.R.; Reichardt, L.F. TrkA cross-linking mimics neuronal responses to nerve growth factor. Mol. Biol. Cell 1994, 5, 549–563. [Google Scholar] [CrossRef] [PubMed]
- Gaydukov, A.; Bogacheva, P.; Tarasova, E.; Molchanova, A.; Miteva, A.; Pravdivceva, E.; Balezina, O. Regulation of Acetylcholine Quantal Release by Coupled Thrombin/BDNF Signaling in Mouse Motor Synapses. Cells 2019, 8, 762. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Santafé, M.M.; Lanuza, M.A.; Garcia, N.; Tomàs, M.; Tomàs, J. Coupling of presynaptic muscarinic autoreceptors to serine kinases in low and high release conditions on the rat motor nerve terminal. Neuroscience 2007, 148, 432–440. [Google Scholar] [CrossRef]
- Slutsky, I.; Parnas, H.; Parnas, I. Presynaptic effects of muscarine on ACh release at the frog neuromuscular junction. J. Physiol. 1999, 514, 769–782. [Google Scholar] [CrossRef]
- Beavo, J.A.; Bechtel, P.J.; Krebs, E.G. Mechanisms of control for cAMP-dependent protein kinase from skeletal muscle. Adv. Cycl. Nucleotide Res. 1975, 5, 241–251. [Google Scholar]
- Walsh, D.A.; Perkins, J.P.; Krebs, E.G. An adenosine 3′,5′-monophosphate-dependant protein kinase from rabbit skeletal muscle. J. Biol. Chem. 1968, 243, 3763–3765. [Google Scholar] [CrossRef] [PubMed]
- Bellingham, M.C. Pharmacological Dissection of G Protein-Mediated Second Messenger Cascades in Neurons; Springer: Berlin/Heidelberg, Germany, 2013; pp. 61–106. [Google Scholar] [CrossRef]
- Hurtado, E.; Cilleros, V.; Just, L.; Simó, A.; Nadal, L.; Tomàs, M.; Garcia, N.; Lanuza, M.A.; Tomàs, J. Synaptic Activity and Muscle Contraction Increases PDK1 and PKCβI Phosphorylation in the Presynaptic Membrane of the Neuromuscular Junction. Front. Mol. Neurosci. 2017, 10, 270. [Google Scholar] [CrossRef]
- Obis, T.; Hurtado, E.; Nadal, L.; Tomàs, M.; Priego, M.; Simon, A.; Garcia, N.; Santafe, M.M.; Lanuza, M.A.; Tomàs, J. The novel protein kinase C epsilon isoform modulates acetylcholine release in the rat neuromuscular junction. Mol. Brain 2015, 8, 80. [Google Scholar] [CrossRef]
- Taylor, S.S.; Ilouz, R.; Zhang, P.; Kornev, A.P. Assembly of allosteric macromolecular switches: Lessons from PKA. Nat. Rev. Mol. Cell Biol. 2012, 13, 646–658. [Google Scholar] [CrossRef] [PubMed]
- Constantinescu, A.; Gordon, A.S.; Diamond, I. cAMP-dependent Protein Kinase Types I and II Differentially Regulate cAMP Response Element-mediated Gene Expression. J. Biol. Chem. 2002, 277, 18810–18816. [Google Scholar] [CrossRef]
- Gervasi, N.; Hepp, R.; Tricoire, L.; Zhang, J.; Lambolez, B.; Paupardin-Tritsch, D.; Vincent, P. Dynamics of protein kinase A signaling at the membrane, in the cytosol, and in the nucleus of neurons in mouse brain slices. J. Neurosci. 2007, 27, 2744–2750. [Google Scholar] [CrossRef]
- Garrel, G.; Delahaye, R.; Ilemmings, B.A.; Counis, R. Modulation of Regulatory and Catalytic Subunit Levels of cAMP-Dependent Protein Kinase A in Anterior Pituitary Cells in Response to Direct Activation of Protein Kinases A and C or after GnRH Stimulation. Neuroendocrinology 1995, 62, 514–522. [Google Scholar] [CrossRef]
- Spaulding, S.W. The ways in which hormones change cyclic adenosine 3′,5′-monophosphate-dependent protein kinase subunits, and how such changes affect cell behavior. Endocr. Rev. 1993, 14, 632–650. [Google Scholar] [CrossRef]
- Prinz, A.; Diskar, M.; Erlbruch, A.; Herberg, F.W. Novel, isotype-specific sensors for protein kinase A subunit interaction based on bioluminescence resonance energy transfer (BRET). Cell. Signal. 2006, 18, 1616–1625. [Google Scholar] [CrossRef] [PubMed]
- Stakkestad, O.; Larsen, A.C.; Kvissel, A.K.; Eikvar, S.; Ørstavik, S.; Skålhegg, B.S. Protein kinase A type i activates a CRE-element more efficiently than protein kinase A type II regardless of C subunit isoform. BMC Biochem. 2011, 12, 7. [Google Scholar] [CrossRef] [PubMed]
- Vigil, D.; Blumenthal, D.K.; Brown, S.; Taylor, S.S.; Trewhella, J. Differential effects of substrate on type I and type II PKA holoenzyme dissociation. Biochemistry 2004, 43, 5629–5636. [Google Scholar] [CrossRef] [PubMed]
- Amieux, P.S.; Mcknight, G.S. The Essential Role of RIα in the Maintenance of Regulated PKA Activity. Ann. N. Y. Acad. Sci. 2002, 968, 75–95. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, E.; Montiel, M. Activation of MAP kinase by muscarinic cholinergic receptors induces cell proliferation and protein synthesis in human breast cancer cells. J. Cell. Physiol. 2005, 204, 678–686. [Google Scholar] [CrossRef] [PubMed]
- Revest, J.-M.; Le Roux, A.; Roullot-Lacarrière, V.; Kaouane, N.; Vallée, M.; Kasanetz, F.; Rougé-Pont, F.; Tronche, F.; Desmedt, A.; Piazza, P.V. BDNF-TrkB signaling through Erk1/2MAPK phosphorylation mediates the enhancement of fear memory induced by glucocorticoids. Mol. Psychiatry 2014, 19, 1001–1009. [Google Scholar] [CrossRef]
- Wotta, D.R.; Wattenberg, E.V.; Langason, R.B.; El-Fakahany, E.E. M1, M3 and M5 Muscarinic Receptors Stimulate Mitogen-Activated Protein Kinase. Pharmacology 1998, 56, 175–186. [Google Scholar] [CrossRef]
- Meister, M.; Tomasovic, A.; Banning, A.; Tikkanen, R. Mitogen-Activated Protein (MAP) Kinase Scaffolding Proteins: A Recount. Int. J. Mol. Sci. 2013, 14, 4854–4884. [Google Scholar] [CrossRef] [PubMed]
- Moelling, K.; Schad, K.; Bosse, M.; Zimmermann, S.; Schweneker, M. Regulation of Raf-Akt Cross-talk. J. Biol. Chem. 2002, 277, 31099–31106. [Google Scholar] [CrossRef]
- Mohrmann, R.; de Wit, H.; Verhage, M.; Neher, E.; Sørensen, J.B. Fast Vesicle Fusion in Living Cells Requires at Least Three SNARE Complexes. Science 2010, 330, 502–505. [Google Scholar] [CrossRef]
- Söllner, T.; Whiteheart, S.W.; Brunner, M.; Erdjument-Bromage, H.; Geromanos, S.; Tempst, P.; Rothman, J.E. SNAP receptors implicated in vesicle targeting and fusion. Nature 1993, 362, 318–324. [Google Scholar] [CrossRef]
- Nagy, G.; Matti, U.; Nehring, R.B.; Binz, T.; Rettig, J.; Neher, E.; Sørensen, J.B. Protein Kinase C-Dependent Phosphorylation of Synaptosome-Associated Protein of 25 kDa at Ser 187 Potentiates Vesicle Recruitment. J. Neurosci. 2002, 22, 9278–9286. [Google Scholar] [CrossRef] [PubMed]
- Nagy, G.; Reim, K.; Matti, U.; Brose, N.; Binz, T.; Rettig, J.; Neher, E.; Sørensen, J.B. Regulation of Releasable Vesicle Pool Sizes by Protein Kinase A-Dependent Phosphorylation of SNAP-25. Neuron 2004, 41, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Barclay, J.W.; Craig, T.J.; Fisher, R.J.; Ciufo, L.F.; Evans, G.J.O.; Morgan, A.; Burgoyne, R.D. Phosphorylation of Munc18 by protein kinase C regulates the kinetics of exocytosis. J. Biol. Chem. 2003, 278, 10538–10545. [Google Scholar] [CrossRef] [PubMed]
- Fujita, Y.; Sasaki, T.; Fukui, K.; Kotani, H.; Kimura, T.; Hata, Y.; Südhof, T.C.; Scheller, R.H.; Takai, Y. Phosphorylation of Munc-18/n-Sec1/rbSec1 by protein kinase C: Its implication in regulating the interaction of Munc-18/n-Sec1/rbSec1 with syntaxin. J. Biol. Chem. 1996, 271, 7265–7268. [Google Scholar] [CrossRef] [PubMed]
- Morgan, A.; Craig, T.J.; Evans, G.J.O. Use of phospho-specific antibodies to demonstrate phosphorylation of Munc18 nSec1 in chromaffin cells. Cell Biol. Chromaffin Cell 2004, 1, 65–70. [Google Scholar]
- Snyder, D.A.; Kelly, M.L.; Woodbury, D.J. SNARE Complex Regulation by Phosphorylation. Cell Biochem. Biophys. 2006, 45, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, S.K.; King, C.; Kortleven, C.; Huson, V.; Kroon, T.; Kevenaar, J.T.; Schut, D.; Saarloos, I.; Hoetjes, J.P.; de Wit, H.; et al. Presynaptic inhibition upon CB1 or mGlu2/3 receptor activation requires ERK/MAPK phosphorylation of Munc18-1. EMBO J. 2016, 35, 1236–1250. [Google Scholar] [CrossRef] [PubMed]
- Arvidsson, U.; Riedl, M.; Elde, R.; Meister, B. Vesicular acetylcholine transporter (VAChT) protein: A novel and unique marker for cholinergic neurons in the central and peripheral nervous systems. J. Comp. Neurol. 1997, 378, 454–467. [Google Scholar] [CrossRef]
- Trang, A.; Khandhar, P.B. Physiology, Acetylcholinesterase. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar] [PubMed]
- Nishimune, H.; Badawi, Y.; Mori, S.; Shigemoto, K. Dual-color STED microscopy reveals a sandwich structure of Bassoon and Piccolo in active zones of adult and aged mice. Sci. Rep. 2016, 6, 27935. [Google Scholar] [CrossRef]
- Garcia, N.; Hernández, P.; Lanuza, M.A.; Tomàs, M.; Cilleros-Mañé, V.; Just-Borràs, L.; Duran-Vigara, M.; Polishchuk, A.; Balanyà-Segura, M.; Tomàs, J. Involvement of the Voltage-Gated Calcium Channels L- P/Q- and N-Types in Synapse Elimination During Neuromuscular Junction Development. Mol. Neurobiol. 2022, 59, 4044–4064. [Google Scholar] [CrossRef]
- Sugiura, Y.; Ko, C.-P. Novel Modulatory Effect of L-Type Calcium Channels at Newly Formed Neuromuscular Junctions. J. Neurosci. 1997, 17, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- Fahim, M.A. Endurance exercise modulates neuromuscular junction of C57BL/6NNia aging mice. J. Appl. Physiol. 1997, 83, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Aldridge, G.M.; Podrebarac, D.M.; Greenough, W.T.; Weiler, I.J. The use of total protein stains as loading controls: An alternative to high-abundance single-protein controls in semi-quantitative immunoblotting. J. Neurosci. Methods 2008, 172, 250–254. [Google Scholar] [CrossRef]
Target | kDa | Origin Antibody | Reference | Dilution | Blocking Solution | Membrane | Family | |
---|---|---|---|---|---|---|---|---|
VGCC P/Q-Type CaV2.1 | 250 | Rabbit polyclonal | ACC-001 | 1/1000 | milk | PVDF | Calcium channels | |
BDNF | 14/32 | Rabbit polyclonal | 28205-1-AP | 1/1000 | milk | PVDF | Neurotrophics | |
NT4 | 14 | Rabbit polyclonal | 1/500 | milk | PVDF | |||
p75 | 75 | Rabbit polyclonal | 07-476 | 1/1000 | milk | PVDF | ||
pTrkB (Y816) | 145 | Rabbit polyclonal | Novus NBF1-03499 | 1/1000 | BSA | PVDF | TrkB receptors | |
TrkB | 95/145 | Rabbit polyclonal | 4603S 80E3 | 1/1000 | BSA | PVDF | ||
PLCβ | 155 | Mouse monoclonal | sc-5291 | 1/1000 | BSA | PVDF | PLCs | |
pPLCy1(Y783) | 155 | Rabbit polyclonal | 2821S CST | 1/800 | BSA | Nitrocellulose | ||
PLCy1 | 155 | Mouse monoclonal | sc-7290 | 1/1000 | milk | PVDF | ||
M1 mAChR | 100 | Rabbit polyclonal | AMR-001 | 1/1000 | milk | PVDF | Muscarinics | |
M2 mAChR | 90 | Rabbit polyclonal | AMR-002 | 1/1000 | milk | PVDF | ||
p-Raf-C (Ser259) | 74 | Rabbit polyclonal | 9421 CST | 1/1000 | BSA | PVDF | MAPK pathway | |
p-Raf-C (Ser338) | 74 | Rabbit monoclonal | 9427 CST | 1/1000 | BSA | Nitrocellulose | ||
Raf-C | 65–75 | Rabbit monoclonal | 9422 CST | 1/1000 | BSA | PVDF | ||
pMAPK/ERK (Thr202/204) | 42 | Rabbit polyclonal | 9101 CST | 1/1000 | BSA | PVDF | ||
MAPK/ERK | 42 | Rabbit polyclonal | 9102 CST | 1/1000 | BSA | PVDF | ||
pPDK1 (Ser241) | 58–68 | Rabbit polyclonal | CST (3061) | 1/1000 | BSA | PVDF | PKCs | |
PDK1 | 58–68 | Mouse monoclonal | sc-17765 | 1/1000 | BSA | Nitrocellulose | ||
pPKCß1 (Thr642) | 76 | Rabbit polyclonal | ab5782 | 1/1000 | BSA | PVDF | ||
PKCß1 | 76 | Mouse monoclonal | sc-8049 | 1/1000 | milk | PVDF/Nitro | ||
pPKCƐ (Ser729) | 90 | Rabbit polyclonal | sc-12355 | 1/1000 | BSA | PVDF | ||
PKCƐ | 90 | Rabbit polyclonal | sc-214 | 1/1000 | milk | PVDF | ||
PKA Cα | 40 | Mouse monoclonal | sc-28315 | 1/1000 | milk | PVDF | PKAs | |
PKA Cβ | 40 | Rabbit polyclonal | sc-904 | 1/1000 | milk | PVDF | ||
PKA RIα | 48 | Mouse monoclonal | sc-136231 | 1/1000 | milk | PVDF | ||
PKA RIβ | 51 | Rabbit polyclonal | sc-907 | 1/800 | milk | Nitrocellulose | ||
PKA RIIα | 50 | Rabbit polyclonal | sc-909 | 1/1000 | milk | PVDF | ||
PKA RIIβ | 53 | Rabbit polyclonal | ABS-14 | 1/800 | milk | Nitrocellulose | ||
Adenylate Cyclase | 160 | Rabbit polyclonal | PA5-35382 | 1/1000 | BSA | Nitrocellulose | AC | |
pMunc18-1 (Ser241) | 68 | Rabbit polyclonal | Ab183484 | 1/1000-1/700 | BSA | Nitrocellulose/PVDF | Target of MAPK pathway | Munc18-1 (SM) |
pMunc18-1 (Ser313) | 68 | Rabbit polyclonal | ab138687 | 1/1000 | p-Block | PVDF | Target of PKA | |
Munc18-1 | 68 | Rabbit polyclonal | CST (D406V) | 1/1000 | milk | PVDF | ||
pSNAP-25 (Ser187) | 28 | Rabbit polyclonal | ab169871 | 1/1000 | BSA | PVDF | Target of PKC | SNAP-25 (SNARE) |
pSNAP-25 (Thr138) | 28 | Rabbit polyclonal | orb163730 | 1/1000 | BSA | PVDF | Target of PKA | |
SNAP-25 | 28 | Rabbit polyclonal | CST (5309) | 1/1000 | BSA | PVDF, Nitrocellulose | ||
pCREB (Ser133) | 43 | Rabbit polyclonal | CST (9191S) | 1/1000 | BSA | PVDF | Target of PKA, p90RSK, MSK, CaMKIV, and MAPKAPK-2 | CREB (bZIP transcription factor that activates target genes) |
CREB | 43 | Rabbit polyclonal | CST (9192) | 1/1000 | milk | PVDF | ||
GAPDH | 37 | Mouse monoclonal | sc-32233 | 1/2000 | milk | PVDF | Marker of cyt | Markers of mb and cyt |
ATPase | 112 | Mouse monoclonal | DSHB (a6f) | 1/1000 | milk | PVDF | Marker of mb | |
CHAT | 48 | Rabbit polyclonal | 207471AP | 1/1200 | milk | Nitrocellulose | Synaptic vesicle cycle | |
AChE | 68 | Goat poly | ab31276 | 1/1000 | BSA | Nitrocellulose | ||
VAChT | 68 | Rabbit polyclonal | SAB4200559 | 1/300 | BSA | Nitrocellulose | ||
Secondary antibody | Donkey polyclonal | 711-035-152 | 1/10,000 | - | - | |||
Secondary antibody | Rabbit polyclonal | A9044 | 1/10,000 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balanyà-Segura, M.; Polishchuk, A.; Just-Borràs, L.; Cilleros-Mañé, V.; Silvera, C.; Ardévol, A.; Tomàs, M.; Lanuza, M.A.; Hurtado, E.; Tomàs, J. Molecular Adaptations of BDNF/NT-4 Neurotrophic and Muscarinic Pathways in Ageing Neuromuscular Synapses. Int. J. Mol. Sci. 2024, 25, 8018. https://doi.org/10.3390/ijms25158018
Balanyà-Segura M, Polishchuk A, Just-Borràs L, Cilleros-Mañé V, Silvera C, Ardévol A, Tomàs M, Lanuza MA, Hurtado E, Tomàs J. Molecular Adaptations of BDNF/NT-4 Neurotrophic and Muscarinic Pathways in Ageing Neuromuscular Synapses. International Journal of Molecular Sciences. 2024; 25(15):8018. https://doi.org/10.3390/ijms25158018
Chicago/Turabian StyleBalanyà-Segura, Marta, Aleksandra Polishchuk, Laia Just-Borràs, Víctor Cilleros-Mañé, Carolina Silvera, Anna Ardévol, Marta Tomàs, Maria A. Lanuza, Erica Hurtado, and Josep Tomàs. 2024. "Molecular Adaptations of BDNF/NT-4 Neurotrophic and Muscarinic Pathways in Ageing Neuromuscular Synapses" International Journal of Molecular Sciences 25, no. 15: 8018. https://doi.org/10.3390/ijms25158018
APA StyleBalanyà-Segura, M., Polishchuk, A., Just-Borràs, L., Cilleros-Mañé, V., Silvera, C., Ardévol, A., Tomàs, M., Lanuza, M. A., Hurtado, E., & Tomàs, J. (2024). Molecular Adaptations of BDNF/NT-4 Neurotrophic and Muscarinic Pathways in Ageing Neuromuscular Synapses. International Journal of Molecular Sciences, 25(15), 8018. https://doi.org/10.3390/ijms25158018