Beta-Blockers as an Immunologic and Autonomic Manipulator in Critically Ill Patients: A Review of the Recent Literature
Abstract
:1. Introduction
2. Discussion
2.1. Effect of Beta-Blockers in Patients with Septic Shock
2.1.1. Vasopressors and Adrenergic Stimulation as a Treatment of the Septic Shock
2.1.2. Catecholamine-Induced Immunologic Dysfunction in Septic Shock
2.1.3. Catecholamine-Induced Autonomic Dysfunction in Septic Shock
2.1.4. Short-Acting Beta-Blockers as a Promising Medication in Patients with Septic Shock
2.1.5. Long-Acting Beta-Blockers as a Promising Medication in Patients with Septic Shock
2.1.6. Continuing Chronic Beta-Blockers in Patients with Acute Septic Shock
2.2. Effect of Beta-Blockers in Patients with Electrical Storm
2.2.1. Effect of Short-Acting Beta-Blockers in Patients with Electrical Storm
2.2.2. Effect of Long-Acting Beta-Blockers in Patients with Electrical Storm
2.3. Beta-Blockers in Acute Heart Failure (AHF)
2.3.1. Beta-Blocker Effect on Hemodynamic Status and Cardiac Index
2.3.2. Continuing Chronic Beta-Blockers in Patients with Acute Decompensated Heart Failure (ADHF)
2.3.3. Continuing Chronic Beta-Blockers in ADHF Patients Treated with Inotropes
2.4. Beta-Blockers in Cardiogenic Shock (CS)
2.5. Beta-Blockers in Severe Traumatic Brain Injury (TBI)
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Gibbons, C.H. Basics of Autonomic Nervous System Function. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 160, pp. 407–418. ISBN 978-0-444-64032-1. [Google Scholar]
- Gatica, S.; Aravena, D.; Echeverría, C.; Santibanez, J.F.; Riedel, C.A.; Simon, F. Effects of Adrenergic Receptor Stimulation on Human Hemostasis: A Systematic Review. In Advances in Molecular Pathology; Simon, F., Bernabeu, C., Eds.; Advances in Experimental Medicine and Biology; Springer Nature: Cham, Switzerland, 2023; Volume 1408, pp. 49–63. ISBN 978-3-031-26162-6. [Google Scholar]
- Shields, R.W. Functional Anatomy of the Autonomic Nervous System. J. Clin. Neurophysiol. 1993, 10, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Karemaker, J.M. An Introduction into Autonomic Nervous Function. Physiol. Meas. 2017, 38, R89–R118. [Google Scholar] [CrossRef] [PubMed]
- Wehrwein, E.A.; Orer, H.S.; Barman, S.M. Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System. In Comprehensive Physiology; Terjung, R., Ed.; Wiley: Hoboken, NJ, USA, 2016; pp. 1239–1278. ISBN 978-0-470-65071-4. [Google Scholar]
- Benarroch, E.E. Physiology and Pathophysiology of the Autonomic Nervous System. Contin. Lifelong Learn. Neurol. 2020, 26, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M. The β-Adrenoceptor. Am. J. Respir. Crit. Care Med. 1998, 158, S146–S153. [Google Scholar] [CrossRef] [PubMed]
- Cotecchia, S. The α1-Adrenergic Receptors: Diversity of Signaling Networks and Regulation. J. Recept. Signal Transduct. 2010, 30, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Bencivenga, L.; Liccardo, D.; Napolitano, C.; Visaggi, L.; Rengo, G.; Leosco, D. β-Adrenergic Receptor Signaling and Heart Failure. Heart Fail. Clin. 2019, 15, 409–419. [Google Scholar] [CrossRef] [PubMed]
- McGraw, D.W. Molecular Mechanisms of 2-Adrenergic Receptor Function and Regulation. Proc. Am. Thorac. Soc. 2005, 2, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Reid, J.L. Alpha-Adrenergic Receptors and Blood Pressure Control. Am. J. Cardiol. 1986, 57, E6–E12. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Luo, D.; Zhang, J.; Du, L. Distribution and Relative Expression of Vasoactive Receptors on Arteries. Sci. Rep. 2020, 10, 15383. [Google Scholar] [CrossRef]
- Walch, L.; Brink, C.; Norel, X. The Muscarinic Receptor Subtypes in Human Blood Vessels. Therapie 2001, 56, 223–226. [Google Scholar]
- Kanagy, N.L. A2-Adrenergic Receptor Signalling in Hypertension. Clin. Sci. 2005, 109, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Carrara, M.; Ferrario, M.; Bollen Pinto, B.; Herpain, A. The Autonomic Nervous System in Septic Shock and Its Role as a Future Therapeutic Target: A Narrative Review. Ann. Intensive Care 2021, 11, 80. [Google Scholar] [CrossRef] [PubMed]
- Stolk, R.F.; Van Der Pasch, E.; Naumann, F.; Schouwstra, J.; Bressers, S.; Van Herwaarden, A.E.; Gerretsen, J.; Schambergen, R.; Ruth, M.M.; Van Der Hoeven, J.G.; et al. Norepinephrine Dysregulates the Immune Response and Compromises Host Defense during Sepsis. Am. J. Respir. Crit. Care Med. 2020, 202, 830–842. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.A.; Bissell, B.D. Misdirected Sympathy: The Role of Sympatholysis in Sepsis and Septic Shock. J. Intensive Care Med. 2018, 33, 74–86. [Google Scholar] [CrossRef] [PubMed]
- Dellinger, R.P.; Carlet, J.M.; Masur, H.; Gerlach, H.; Calandra, T.; Cohen, J.; Gea-Banacloche, J.; Keh, D.; Marshall, J.C.; Parker, M.M.; et al. Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock. Crit. Care Med. 2004, 32, 858–873. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Crit. Care Med. 2017, 45, 486–552. [Google Scholar] [CrossRef] [PubMed]
- Dellinger, R.P.; Levy, M.M.; Carlet, J.M.; Bion, J.; Parker, M.M.; Jaeschke, R.; Reinhart, K.; Angus, D.C.; Brun-Buisson, C.; Beale, R.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock: 2008. Crit. Care Med. 2008, 36, 296–327. [Google Scholar] [CrossRef] [PubMed]
- Srzić, I.; Adam, V.N.; Pejak, D.T. Sepsis Definition: What’s New in the Treatment Guidelines. Acta Clin. Croat. 2022, 61, 67–72. [Google Scholar] [CrossRef]
- Somers, V.K.; Mark, A.L.; Abboud, F.M. Interaction of Baroreceptor and Chemoreceptor Reflex Control of Sympathetic Nerve Activity in Normal Humans. J. Clin. Investig. 1991, 87, 1953–1957. [Google Scholar] [CrossRef]
- Chapleau, M.W.; Li, Z.; Meyrelles, S.S.; Ma, X.; Abboud, F.M. Mechanisms Determining Sensitivity of Baroreceptor Afferents in Health and Disease. Ann. N. Y. Acad. Sci. 2001, 940, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Desai, T.H.; Collins, J.C.; Snell, M.; Mosqueda-Garcia, R. Modeling of Arterial and Cardiopulmonary Baroreflex Control of Heart Rate. Am. J. Physiol.-Heart Circ. Physiol. 1997, 272, H2343–H2352. [Google Scholar] [CrossRef] [PubMed]
- Halliwill, J.R.; Morgan, B.J.; Charkoudian, N. Peripheral Chemoreflex and Baroreflex Interactions in Cardiovascular Regulation in Humans. J. Physiol. 2003, 552, 295–302. [Google Scholar] [CrossRef] [PubMed]
- O’regan, R.G.; Majcherczyk, S. Role of Peripheral Chemoreceptors and Central Chemosensitivity in the Regulation of Respiration and Circulation. J. Exp. Biol. 1982, 100, 23–40. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Hamzaoui, O.; De Vita, N.; Monnet, X.; Teboul, J.-L. Vasopressors in Septic Shock: Which, When, and How Much? Ann. Transl. Med. 2020, 8, 794. [Google Scholar] [CrossRef] [PubMed]
- Senatore, F.; Jagadeesh, G.; Rose, M.; Pillai, V.C.; Hariharan, S.; Liu, Q.; Tzu-Yun, M.; Sapru, M.K.; Southworth, M.R.; Stockbridge, N. FDA Approval of Angiotensin II for the Treatment of Hypotension in Adults with Distributive Shock. Am. J. Cardiovasc. Drugs 2019, 19, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Ruslan, M.; Baharuddin, K.; Noor, N.; Yazid, M.; Md Noh, A.Y.; Rahman, A. Norepinephrine in Septic Shock: A Systematic Review and Meta-Analysis. West. J. Emerg. Med. 2021, 22, 196–203. [Google Scholar] [CrossRef]
- Russell, J.A.; Walley, K.R.; Singer, J.; Gordon, A.C.; Hébert, P.C.; Cooper, D.J.; Holmes, C.L.; Mehta, S.; Granton, J.T.; Storms, M.M.; et al. Vasopressin versus Norepinephrine Infusion in Patients with Septic Shock. N. Engl. J. Med. 2008, 358, 877–887. [Google Scholar] [CrossRef] [PubMed]
- Sedhai, Y.R.; Shrestha, D.B.; Budhathoki, P.; Memon, W.; Acharya, R.; Gaire, S.; Pokharel, N.; Maharjan, S.; Jasaraj, R.; Sodhi, A.; et al. Vasopressin versus Norepinephrine as the First-Line Vasopressor in Septic Shock: A Systematic Review and Meta-Analysis. J. Clin. Transl. Res. 2022, 8, 185–199. [Google Scholar]
- Study Group of Investigators; Liu, Z.-M.; Chen, J.; Kou, Q.; Lin, Q.; Huang, X.; Tang, Z.; Kang, Y.; Li, K.; Zhou, L.; et al. Terlipressin versus Norepinephrine as Infusion in Patients with Septic Shock: A Multicentre, Randomised, Double-Blinded Trial. Intensive Care Med. 2018, 44, 1816–1825. [Google Scholar] [CrossRef]
- Laterre, P.-F.; Berry, S.M.; Blemings, A.; Carlsen, J.E.; François, B.; Graves, T.; Jacobsen, K.; Lewis, R.J.; Opal, S.M.; Perner, A.; et al. Effect of Selepressin vs Placebo on Ventilator- and Vasopressor-Free Days in Patients With Septic Shock: The SEPSIS-ACT Randomized Clinical Trial. JAMA 2019, 322, 1476. [Google Scholar] [CrossRef] [PubMed]
- Bougouin, W.; Slimani, K.; Renaudier, M.; Binois, Y.; Paul, M.; Dumas, F.; Lamhaut, L.; Loeb, T.; Ortuno, S.; Deye, N.; et al. Epinephrine versus Norepinephrine in Cardiac Arrest Patients with Post-Resuscitation Shock. Intensive Care Med. 2022, 48, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Dribin, T.E.; Waserman, S.; Turner, P.J. Who Needs Epinephrine? Anaphylaxis, Autoinjectors, and Parachutes. J. Allergy Clin. Immunol. Pract. 2023, 11, 1036–1046. [Google Scholar] [CrossRef] [PubMed]
- Belletti, A.; Nagy, A.; Sartorelli, M.; Mucchetti, M.; Putzu, A.; Sartini, C.; Morselli, F.; De Domenico, P.; Zangrillo, A.; Landoni, G.; et al. Effect of Continuous Epinephrine Infusion on Survival in Critically Ill Patients: A Meta-Analysis of Randomized Trials. Crit. Care Med. 2020, 48, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Motiejunaite, J.; Deniau, B.; Blet, A.; Gayat, E.; Mebazaa, A. Inotropes and Vasopressors Are Associated with Increased Short-Term Mortality but Not Long-Term Survival in Critically Ill Patients. Anaesth. Crit. Care Pain Med. 2022, 41, 101012. [Google Scholar] [CrossRef] [PubMed]
- Belletti, A.; Castro, M.L.; Silvetti, S.; Greco, T.; Biondi-Zoccai, G.; Pasin, L.; Zangrillo, A.; Landoni, G. The Effect of Inotropes and Vasopressors on Mortality: A Meta-Analysis of Randomized Clinical Trials. Br. J. Anaesth. 2015, 115, 656–675. [Google Scholar] [CrossRef]
- Ostrowski, S.R.; Gaïni, S.; Pedersen, C.; Johansson, P.I. Sympathoadrenal Activation and Endothelial Damage in Patients with Varying Degrees of Acute Infectious Disease: An Observational Study. J. Crit. Care 2015, 30, 90–96. [Google Scholar] [CrossRef]
- Takenaka, M.C.; Guereschi, M.G.; Basso, A.S. Neuroimmune Interactions: Dendritic Cell Modulation by the Sympathetic Nervous System. Semin. Immunopathol. 2017, 39, 165–176. [Google Scholar] [CrossRef]
- Steinman, L. Elaborate Interactions between the Immune and Nervous Systems. Nat. Immunol. 2004, 5, 575–581. [Google Scholar] [CrossRef]
- Kenney, M.J.; Ganta, C.K. Autonomic Nervous System and Immune System Interactions. In Comprehensive Physiology; Terjung, R., Ed.; Wiley: Hoboken, NJ, USA, 2014; pp. 1177–1200. ISBN 978-0-470-65071-4. [Google Scholar]
- Kizaki, T.; Shirato, K.; Sakurai, T.; Ogasawara, J.; Oh-ishi, S.; Matsuoka, T.; Izawa, T.; Imaizumi, K.; Haga, S.; Ohno, H. Β2-Adrenergic Receptor Regulate Toll-like Receptor 4-Induced Late-Phase NF-κB Activation. Mol. Immunol. 2009, 46, 1195–1203. [Google Scholar] [CrossRef]
- Spengler, R.N.; Chensue, S.W.; Giacherio, D.A.; Blenk, N.; Kunkel, S.L. Endogenous Norepinephrine Regulates Tumor Necrosis Factor-Alpha Production from Macrophages in Vitro. J. Immunol. 1994, 152, 3024–3031. [Google Scholar] [CrossRef] [PubMed]
- Van Der Poll, T.; Jansen, J.; Endert, E.; Sauerwein, H.P.; Van Deventer, S.J. Noradrenaline Inhibits Lipopolysaccharide-Induced Tumor Necrosis Factor and Interleukin 6 Production in Human Whole Blood. Infect. Immun. 1994, 62, 2046–2050. [Google Scholar] [CrossRef] [PubMed]
- Van Der Poll, T.; Coyle, S.M.; Barbosa, K.; Braxton, C.C.; Lowry, S.F. Epinephrine Inhibits Tumor Necrosis Factor-Alpha and Potentiates Interleukin 10 Production during Human Endotoxemia. J. Clin. Investig. 1996, 97, 713–719. [Google Scholar] [CrossRef]
- Ağaç, D.; Estrada, L.D.; Maples, R.; Hooper, L.V.; Farrar, J.D. The Β2-Adrenergic Receptor Controls Inflammation by Driving Rapid IL-10 Secretion. Brain Behav. Immun. 2018, 74, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Verhoeckx, K.C.M.; Doornbos, R.P.; Van Der Greef, J.; Witkamp, R.F.; Rodenburg, R.J.T. Inhibitory Effects of the β2-adrenergic Receptor Agonist Zilpaterol on the LPS-induced Production of TNF-α in Vitro and in Vivo. J. Vet. Pharmacol. Ther. 2005, 28, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Izeboud, C.A.; Monshouwer, M.; Van Miert, A.S.J.P.A.M.; Witkamp, R.F. The β-Adrenoceptor Agonist Clenbuterol Is a Potent Inhibitor of the LPS-Induced Production of TNF-α and IL-6 in Vitro and in Vivo. Inflamm. Res. 1999, 48, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Lemaire, L.C.; De Kruif, M.D.; Giebelen, I.A.; Levi, M.; Van Der Poll, T.; Heesen, M. Dobutamine Does Not Influence Inflammatory Pathways during Human Endotoxemia. Crit. Care Med. 2006, 34, 1365–1371. [Google Scholar] [CrossRef]
- Kohm, A.P.; Sanders, V.M. Norepinephrine and Beta 2-Adrenergic Receptor Stimulation Regulate CD4+ T and B Lymphocyte Function in Vitro and in Vivo. Pharmacol. Rev. 2001, 53, 487–525. [Google Scholar] [PubMed]
- Dessauer, C.W. Adenylyl Cyclase–A-Kinase Anchoring Protein Complexes: The Next Dimension in cAMP Signaling. Mol. Pharmacol. 2009, 76, 935–941. [Google Scholar] [CrossRef]
- Vandamme, J.; Castermans, D.; Thevelein, J.M. Molecular Mechanisms of Feedback Inhibition of Protein Kinase A on Intracellular cAMP Accumulation. Cell. Signal. 2012, 24, 1610–1618. [Google Scholar] [CrossRef]
- Dünser, M.W.; Hasibeder, W.R. Sympathetic Overstimulation During Critical Illness: Adverse Effects of Adrenergic Stress. J. Intensive Care Med. 2009, 24, 293–316. [Google Scholar] [CrossRef] [PubMed]
- Bucher, M.; Kees, F.; Taeger, K.; Kurtz, A. Cytokines Down-Regulate A1-Adrenergic Receptor Expression during Endotoxemia. Crit. Care Med. 2003, 31, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Bernardin, G.; Strosberg, A.D.; Bernard, A.; Mattei, M.; Marullo, S. β-Adrenergic Receptor-Dependent and -Independent Stimulation of Adenylate Cyclase Is Impaired during Severe Sepsis in Humans. Intensive Care Med. 1998, 24, 1315–1322. [Google Scholar] [CrossRef] [PubMed]
- Cariou, A.; Pinsky, M.R.; Monchi, M.; Laurent, I.; Vinsonneau, C.; Chiche, J.-D.; Charpentier, J.; Dhainaut, J.-F. Is Myocardial Adrenergic Responsiveness Depressed in Human Septic Shock? Intensive Care Med. 2008, 34, 917–922. [Google Scholar] [CrossRef] [PubMed]
- Rudiger, A.; Singer, M. Decatecholaminisation during Sepsis. Crit. Care 2016, 20, 309. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.-L.; Yang, S.-L.; Yang, R.-C.; Hsu, H.-K.; Hsu, C.; Dong, L.-W.; Liu, M.-S. G Protein and Adenylate Cyclase Complex-Mediated Signal Transduction in the Rat Heart During Sepsis. Shock 2003, 19, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Galtes, D.; Wang, J.; Rockman, H.A. G Protein-Coupled Receptor Signaling: Transducers and Effectors. Am. J. Physiol.-Cell Physiol. 2022, 323, C731–C748. [Google Scholar] [CrossRef] [PubMed]
- Marzano, F.; Rapacciuolo, A.; Ferrara, N.; Rengo, G.; Koch, W.J.; Cannavo, A. Targeting GRK5 for Treating Chronic Degenerative Diseases. Int. J. Mol. Sci. 2021, 22, 1920. [Google Scholar] [CrossRef] [PubMed]
- Claing, A. Endocytosis of G Protein-Coupled Receptors: Roles of G Protein-Coupled Receptor Kinases and ß-Arrestin Proteins. Prog. Neurobiol. 2002, 66, 61–79. [Google Scholar] [CrossRef]
- Port, J.D. Dissecting Beta-Adrenergic Receptors. JACC Basic Transl. Sci. 2023, 8, 989–991. [Google Scholar] [CrossRef]
- Fan, X.; Gu, X.; Zhao, R.; Zheng, Q.; Li, L.; Yang, W.; Ding, L.; Xue, F.; Fan, J.; Gong, Y.; et al. Cardiac Β2-Adrenergic Receptor Phosphorylation at Ser355/356 Regulates Receptor Internalization and Functional Resensitization. PLoS ONE 2016, 11, e0161373. [Google Scholar] [CrossRef] [PubMed]
- Skalhegg, B.S. Specificity in the cAMP/PKA Signaling Pathway. Differential Expression, Regulation, and Subcellular Localization of Subunits of PKA. Front. Biosci. 2000, 5, d678. [Google Scholar] [CrossRef]
- Jenei-Lanzl, Z.; Zwingenberg, J.; Lowin, T.; Anders, S.; Straub, R.H. Proinflammatory Receptor Switch from Gαs to Gαi Signaling by β-Arrestin-Mediated PDE4 Recruitment in Mixed RA Synovial Cells. Brain Behav. Immun. 2015, 50, 266–274. [Google Scholar] [CrossRef]
- Shenoy, S.K.; Drake, M.T.; Nelson, C.D.; Houtz, D.A.; Xiao, K.; Madabushi, S.; Reiter, E.; Premont, R.T.; Lichtarge, O.; Lefkowitz, R.J. β-Arrestin-Dependent, G Protein-Independent ERK1/2 Activation by the Β2 Adrenergic Receptor. J. Biol. Chem. 2006, 281, 1261–1273. [Google Scholar] [CrossRef] [PubMed]
- Giembycz, M.A. Phosphodiesterase 4 and Tolerance to Beta 2-Adrenoceptor Agonists in Asthma. Trends Pharmacol. Sci. 1996, 17, 331–336. [Google Scholar] [CrossRef]
- Essayan, D.M. Cyclic Nucleotide Phosphodiesterases. J. Allergy Clin. Immunol. 2001, 108, 671–680. [Google Scholar] [CrossRef]
- Lorton, D.; Bellinger, D. Molecular Mechanisms Underlying β-Adrenergic Receptor-Mediated Cross-Talk between Sympathetic Neurons and Immune Cells. Int. J. Mol. Sci. 2015, 16, 5635–5665. [Google Scholar] [CrossRef]
- Tian, X.; Kang, D.S.; Benovic, J.L. β-Arrestins and G Protein-Coupled Receptor Trafficking. In Arrestins—Pharmacology and Therapeutic Potential; Gurevich, V.V., Ed.; Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2014; Volume 219, pp. 173–186. ISBN 978-3-642-41198-4. [Google Scholar]
- Laporte, S.A.; Oakley, R.H.; Zhang, J.; Holt, J.A.; Ferguson, S.S.; Caron, M.G.; Barak, L.S. The Beta2-Adrenergic Receptor/Betaarrestin Complex Recruits the Clathrin Adaptor AP-2 during Endocytosis. Proc. Natl. Acad. Sci. USA 1999, 96, 3712–3717. [Google Scholar] [CrossRef] [PubMed]
- Reiter, E.; Lefkowitz, R.J. GRKs and β-Arrestins: Roles in Receptor Silencing, Trafficking and Signaling. Trends Endocrinol. Metab. 2006, 17, 159–165. [Google Scholar] [CrossRef]
- Ménard, L.; Ferguson, S.S.G.; Barak, L.S.; Bertrand, L.; Premont, R.T.; Colapietro, A.-M.; Lefkowitz, R.J.; Caron, M.G. Members of the G Protein-Coupled Receptor Kinase Family That Phosphorylate the β2-Adrenergic Receptor Facilitate Sequestration. Biochemistry 1996, 35, 4155–4160. [Google Scholar] [CrossRef]
- Pancoto, J.A.T.; Corrêa, P.B.F.; Oliveira-Pelegrin, G.R.; Rocha, M.J.A. Autonomic Dysfunction in Experimental Sepsis Induced by Cecal Ligation and Puncture. Auton. Neurosci. 2008, 138, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Pontet, J.; Contreras, P.; Curbelo, A.; Medina, J.; Noveri, S.; Bentancourt, S.; Migliaro, E.R. Heart Rate Variability as Early Marker of Multiple Organ Dysfunction Syndrome in Septic Patients. J. Crit. Care 2003, 18, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Morisaki, H.; Serita, R.; Yamamoto, M.; Kotake, Y.; Ishizaka, A.; Takeda, J. Infusion of the β-Adrenergic Blocker Esmolol Attenuates Myocardial Dysfunction in Septic Rats. Crit. Care Med. 2005, 33, 2294–2301. [Google Scholar] [CrossRef] [PubMed]
- Loon, L.M.; Rongen, G.A.; Hoeven, J.G.; Veltink, P.H.; Lemson, J. β-Blockade Attenuates Renal Blood Flow in Experimental Endotoxic Shock by Reducing Perfusion Pressure. Physiol. Rep. 2019, 7, e14301. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, C.; Liu, Y.; Yang, Y.; Yang, X.; Yang, J. Benefits of Esmolol in Adults with Sepsis and Septic Shock: An Updated Meta-Analysis of Randomized Controlled Trials. Medicine 2022, 101, e29820. [Google Scholar] [CrossRef] [PubMed]
- Guarracino, F.; Cortegiani, A.; Antonelli, M.; Behr, A.; Biancofiore, G.; Del Gaudio, A.; Forfori, F.; Galdieri, N.; Grasselli, G.; Paternoster, G.; et al. The Role of Beta-Blocker Drugs in Critically Ill Patients: A SIAARTI Expert Consensus Statement. J. Anesth. Analg. Crit. Care 2023, 3, 41. [Google Scholar] [CrossRef] [PubMed]
- Kakihana, Y.; Nishida, O.; Taniguchi, T.; Okajima, M.; Morimatsu, H.; Ogura, H.; Yamada, Y.; Nagano, T.; Morishima, E.; Matsuda, N. Efficacy and Safety of Landiolol, an Ultra-Short-Acting Β1-Selective Antagonist, for Treatment of Sepsis-Related Tachyarrhythmia (J-Land 3S): A Multicentre, Open-Label, Randomised Controlled Trial. Lancet Respir. Med. 2020, 8, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Whitehouse, T.; Hossain, A.; Perkins, G.D.; Gordon, A.C.; Bion, J.; Young, D.; McAuley, D.; Singer, M.; Lord, J.; Gates, S.; et al. Landiolol and Organ Failure in Patients With Septic Shock: The STRESS-L Randomized Clinical Trial. JAMA 2023, 330, 1641. [Google Scholar] [CrossRef]
- Ge, C.-L.; Zhang, L.-N.; Ai, Y.-H.; Chen, W.; Ye, Z.-W.; Zou, Y.; Peng, Q.-Y. Effect of β-Blockers on Mortality in Patients with Sepsis: A Propensity-Score Matched Analysis. Front. Cell. Infect. Microbiol. 2023, 13, 1121444. [Google Scholar] [CrossRef]
- Christensen, S.; Johansen, M.; Tønnesen, E.; Larsson, A.; Pedersen, L.; Lemeshow, S.; Sørensen, H. Preadmission Beta-Blocker Use and 30-Day Mortality among Patients in Intensive Care: A Cohort Study. Crit. Care 2011, 15, R87. [Google Scholar] [CrossRef]
- Tan, K.; Harazim, M.; Tang, B.; Mclean, A.; Nalos, M. The Association between Premorbid Beta Blocker Exposure and Mortality in Sepsis—A Systematic Review. Crit. Care 2019, 23, 298. [Google Scholar] [CrossRef] [PubMed]
- Kuo, M.-J.; Chou, R.-H.; Lu, Y.-W.; Guo, J.-Y.; Tsai, Y.-L.; Wu, C.-H.; Huang, P.-H.; Lin, S.-J. Premorbid Β1-Selective (but Not Non-Selective) β-Blocker Exposure Reduces Intensive Care Unit Mortality among Septic Patients. J. Intensive Care 2021, 9, 40. [Google Scholar] [CrossRef]
- Fuchs, C.; Wauschkuhn, S.; Scheer, C.; Vollmer, M.; Meissner, K.; Kuhn, S.-O.; Hahnenkamp, K.; Morelli, A.; Gründling, M.; Rehberg, S. Continuing Chronic Beta-Blockade in the Acute Phase of Severe Sepsis and Septic Shock Is Associated with Decreased Mortality Rates up to 90 Days. Br. J. Anaesth. 2017, 119, 616–625. [Google Scholar] [CrossRef]
- Al-Khatib, S.M.; Stevenson, W.G.; Ackerman, M.J.; Bryant, W.J.; Callans, D.J.; Curtis, A.B.; Deal, B.J.; Dickfeld, T.; Field, M.E.; Fonarow, G.C.; et al. 2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death. J. Am. Coll. Cardiol. 2018, 72, e91–e220. [Google Scholar] [CrossRef] [PubMed]
- Dyer, S.; Mogni, B.; Gottlieb, M. Electrical Storm: A Focused Review for the Emergency Physician. Am. J. Emerg. Med. 2020, 38, 1481–1487. [Google Scholar] [CrossRef] [PubMed]
- Credner, S.C.; Klingenheben, T.; Mauss, O.; Sticherling, C.; Hohnloser, S.H. Electrical Storm in Patients with Transvenous Implantable Cardioverter-Defibrillators. J. Am. Coll. Cardiol. 1998, 32, 1909–1915. [Google Scholar] [CrossRef]
- Arya, A.; Haghjoo, M.; Dehghani, M.R.; Fazelifar, A.F.; Nikoo, M.-H.; Bagherzadeh, A.; Sadr-Ameli, M.A. Prevalence and Predictors of Electrical Storm in Patients With Implantable Cardioverter-Defibrillator. Am. J. Cardiol. 2006, 97, 389–392. [Google Scholar] [CrossRef]
- Huang, D.T.; Traub, D. Recurrent Ventricular Arrhythmia Storms in the Age of Implantable Cardioverter Defibrillator Therapy: A Comprehensive Review. Prog. Cardiovasc. Dis. 2008, 51, 229–236. [Google Scholar] [CrossRef]
- Driver, B.E.; Debaty, G.; Plummer, D.W.; Smith, S.W. Use of Esmolol after Failure of Standard Cardiopulmonary Resuscitation to Treat Patients with Refractory Ventricular Fibrillation. Resuscitation 2014, 85, 1337–1341. [Google Scholar] [CrossRef]
- Bänsch, D.; Böcker, D.; Brunn, J.; Weber, M.; Breithardt, G.; Block, M. Clusters of Ventricular Tachycardias Signify Impaired Survival in Patients with Idiopathic Dilated Cardiomyopathy and Implantable Cardioverter Defibrillators. J. Am. Coll. Cardiol. 2000, 36, 566–573. [Google Scholar] [CrossRef]
- Jentzer, J.C.; Noseworthy, P.A.; Kashou, A.H.; May, A.M.; Chrispin, J.; Kabra, R.; Arps, K.; Blumer, V.; Tisdale, J.E.; Solomon, M.A.; et al. Multidisciplinary Critical Care Management of Electrical Storm: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2023, 81, 2189–2206. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, M.; Dyer, S.; Peksa, G.D. Beta-Blockade for the Treatment of Cardiac Arrest Due to Ventricular Fibrillation or Pulseless Ventricular Tachycardia: A Systematic Review and Meta-Analysis. Resuscitation 2020, 146, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Nademanee, K.; Taylor, R.; Bailey, W.E.; Rieders, D.E.; Kosar, E.M. Treating Electrical Storm: Sympathetic Blockade Versus Advanced Cardiac Life Support–Guided Therapy. Circulation 2000, 102, 742–747. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Lee, K.J.; Min, Y.H.; Ahn, H.C.; Sohn, Y.D.; Lee, W.W.; Oh, Y.T.; Cho, G.C.; Seo, J.Y.; Shin, D.H.; et al. Refractory Ventricular Fibrillation Treated with Esmolol. Resuscitation 2016, 107, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Cheskes, S.; Verbeek, P.R.; Drennan, I.R.; McLeod, S.L.; Turner, L.; Pinto, R.; Feldman, M.; Davis, M.; Vaillancourt, C.; Morrison, L.J.; et al. Defibrillation Strategies for Refractory Ventricular Fibrillation. N. Engl. J. Med. 2022, 387, 1947–1956. [Google Scholar] [CrossRef] [PubMed]
- Deakin, C.D.; Morley, P.; Soar, J.; Drennan, I.R. Double (Dual) Sequential Defibrillation for Refractory Ventricular Fibrillation Cardiac Arrest: A Systematic Review. Resuscitation 2020, 155, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Martins, R.P.; Urien, J.-M.; Barbarot, N.; Rieul, G.; Sellal, J.-M.; Borella, L.; Clementy, N.; Bisson, A.; Guenancia, C.; Sagnard, A.; et al. Effectiveness of Deep Sedation for Patients With Intractable Electrical Storm Refractory to Antiarrhythmic Drugs. Circulation 2020, 142, 1599–1601. [Google Scholar] [CrossRef]
- Ubben, J.F.H.; Heuts, S.; Delnoij, T.S.R.; Suverein, M.M.; Hermanides, R.C.; Otterspoor, L.C.; Kraemer, C.V.E.; Vlaar, A.P.J.; Van Der Heijden, J.J.; Scholten, E.; et al. Favorable Resuscitation Characteristics in Patients Undergoing Extracorporeal Cardiopulmonary Resuscitation: A Secondary Analysis of the INCEPTION-Trial. Resusc. Plus 2024, 18, 100657. [Google Scholar] [CrossRef]
- Yukawa, T.; Kashiura, M.; Sugiyama, K.; Tanabe, T.; Hamabe, Y. Neurological Outcomes and Duration from Cardiac Arrest to the Initiation of Extracorporeal Membrane Oxygenation in Patients with Out-of-Hospital Cardiac Arrest: A Retrospective Study. Scand. J. Trauma Resusc. Emerg. Med. 2017, 25, 95. [Google Scholar] [CrossRef]
- Tian, Y.; Wittwer, E.D.; Kapa, S.; McLeod, C.J.; Xiao, P.; Noseworthy, P.A.; Mulpuru, S.K.; Deshmukh, A.J.; Lee, H.-C.; Ackerman, M.J.; et al. Effective Use of Percutaneous Stellate Ganglion Blockade in Patients With Electrical Storm. Circ. Arrhythm. Electrophysiol. 2019, 12, e007118. [Google Scholar] [CrossRef]
- Zeppenfeld, K.; Tfelt-Hansen, J.; De Riva, M.; Winkel, B.G.; Behr, E.R.; Blom, N.A.; Charron, P.; Corrado, D.; Dagres, N.; De Chillou, C.; et al. 2022 ESC Guidelines for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death. Eur. Heart J. 2022, 43, 3997–4126. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.; Shivkumar, K. Stellate Ganglion Blockade for the Management of Ventricular Arrhythmia Storm. Eur. Heart J. 2024, 45, 834–836. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Egami, Y.; Nishino, M.; Tanouchi, J. Clinical Impact of Stellate Ganglion Phototherapy on Ventricular Tachycardia Storm Requiring Mechanical Circulatory Support Devices: A Case Report. Eur. Heart J.—Case Rep. 2024, 8, ytae177. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, F.C.; Feitosa-Filho, G.S.; Ritt, L.E.F. Use of Beta-Blockers for the Treatment of Cardiac Arrest Due to Ventricular Fibrillation/Pulseless Ventricular Tachycardia: A Systematic Review. Resuscitation 2012, 83, 674–683. [Google Scholar] [CrossRef] [PubMed]
- Long, D.A.; Long, B.; April, M.D. Does β-Blockade for Treatment of Refractory Ventricular Fibrillation or Pulseless Ventricular Tachycardia Improve Outcomes? Ann. Emerg. Med. 2020, 76, 42–45. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, L.; Nespoli, F.; Ristagno, G.; Fumagalli, F.; Boccardo, A.; Olivari, D.; Affatato, R.; Novelli, D.; De Giorgio, D.; Romanelli, P.; et al. Esmolol during Cardiopulmonary Resuscitation Reduces Neurological Injury in a Porcine Model of Cardiac Arrest. Sci. Rep. 2021, 11, 10635. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Xie, B.; Chen, X.; Zhu, K.; Wang, C.-M.; Guo, S.-H. A Successful Case of Electrical Storm Rescue after Acute Myocardial Infarction. BMC Cardiovasc. Disord. 2022, 22, 537. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Cardinale, M.; Frenia, D.; Dalia, T.; Shah, C. Esmolol Use in Dual Axis Defibrillation Resistant Ventricular Fibrillation. Case Rep. Cardiol. 2020, 2020, 7297303. [Google Scholar] [CrossRef] [PubMed]
- Lian, R.; Zhang, G.; Yan, S.; Sun, L.; Gao, W.; Yang, J.; Li, G.; Huang, R.; Wang, X.; Liu, R.; et al. The First Case Series Analysis on Efficacy of Esmolol Injection for In-Hospital Cardiac Arrest Patients with Refractory Shockable Rhythms in China. Front. Pharmacol. 2022, 13, 930245. [Google Scholar] [CrossRef]
- Miwa, Y.; Ikeda, T.; Mera, H.; Miyakoshi, M.; Hoshida, K.; Yanagisawa, R.; Ishiguro, H.; Tsukada, T.; Abe, A.; Yusu, S.; et al. Effects of Landiolol, an Ultra-Short-Acting .BETA.1-Selective Blocker, on Electrical Storm Refractory to Class III Antiarrhythmic Drugs. Circ. J. 2010, 74, 856–863. [Google Scholar] [CrossRef]
- Chatzidou, S.; Kontogiannis, C.; Tsilimigras, D.I.; Georgiopoulos, G.; Kosmopoulos, M.; Papadopoulou, E.; Vasilopoulos, G.; Rokas, S. Propranolol Versus Metoprolol for Treatment of Electrical Storm in Patients With Implantable Cardioverter-Defibrillator. J. Am. Coll. Cardiol. 2018, 71, 1897–1906. [Google Scholar] [CrossRef] [PubMed]
- Johri, N.; Matreja, P.S.; Maurya, A.; Varshney, S. Smritigandha Role of β-Blockers in Preventing Heart Failure and Major AdverseCardiac Events Post Myocardial Infarction. Curr. Cardiol. Rev. 2023, 19, e110123212591. [Google Scholar] [CrossRef]
- Authors/Task Force Members; McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure: Developed by the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure of the European Society of Cardiology (ESC). With the Special Contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2022, 24, 4–131. [Google Scholar] [CrossRef] [PubMed]
- Maddox, T.M.; Januzzi, J.L.; Allen, L.A.; Breathett, K.; Butler, J.; Davis, L.L.; Fonarow, G.C.; Ibrahim, N.E.; Lindenfeld, J.; Masoudi, F.A.; et al. 2021 Update to the 2017 ACC Expert Consensus Decision Pathway for Optimization of Heart Failure Treatment: Answers to 10 Pivotal Issues About Heart Failure With Reduced Ejection Fraction. J. Am. Coll. Cardiol. 2021, 77, 772–810. [Google Scholar] [CrossRef]
- Mann, D.L.; Bristow, M.R. Mechanisms and Models in Heart Failure: The Biomechanical Model and Beyond. Circulation 2005, 111, 2837–2849. [Google Scholar] [CrossRef]
- Mudd, J.O.; Kass, D.A. Tackling Heart Failure in the Twenty-First Century. Nature 2008, 451, 919–928. [Google Scholar] [CrossRef]
- Triposkiadis, F.; Karayannis, G.; Giamouzis, G.; Skoularigis, J.; Louridas, G.; Butler, J. The Sympathetic Nervous System in Heart Failure. J. Am. Coll. Cardiol. 2009, 54, 1747–1762. [Google Scholar] [CrossRef] [PubMed]
- Armour, J.A. Cardiac Neuronal Hierarchy in Health and Disease. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2004, 287, R262–R271. [Google Scholar] [CrossRef]
- Liaudet, L.; Calderari, B.; Pacher, P. Pathophysiological Mechanisms of Catecholamine and Cocaine-Mediated Cardiotoxicity. Heart Fail. Rev. 2014, 19, 815–824. [Google Scholar] [CrossRef]
- Brouri, F.; Findji, L.; Mediani, O.; Mougenot, N.; Hanoun, N.; Le Naour, G.; Hamon, M.; Lechat, P. Toxic Cardiac Effects of Catecholamines: Role of β-Adrenoceptor Downregulation. Eur. J. Pharmacol. 2002, 456, 69–75. [Google Scholar] [CrossRef]
- Bangalore, S.; Makani, H.; Radford, M.; Thakur, K.; Toklu, B.; Katz, S.D.; DiNicolantonio, J.J.; Devereaux, P.J.; Alexander, K.P.; Wetterslev, J.; et al. Clinical Outcomes with β-Blockers for Myocardial Infarction: A Meta-Analysis of Randomized Trials. Am. J. Med. 2014, 127, 939–953. [Google Scholar] [CrossRef] [PubMed]
- Cardelli, L.S.; Cherbi, M.; Huet, F.; Schurtz, G.; Bonnefoy-Cudraz, E.; Gerbaud, E.; Bonello, L.; Leurent, G.; Puymirat, E.; Casella, G.; et al. Beta Blockers Improve Prognosis When Used Early in Patients with Cardiogenic Shock: An Analysis of the FRENSHOCK Multicenter Prospective Registry. Pharmaceuticals 2023, 16, 1740. [Google Scholar] [CrossRef] [PubMed]
- Masarone, D.; Martucci, M.L.; Errigo, V.; Pacileo, G. The Use of β-Blockers in Heart Failure with Reduced Ejection Fraction. J. Cardiovasc. Dev. Dis. 2021, 8, 101. [Google Scholar] [CrossRef] [PubMed]
- Jondeau, G.; Milleron, O. Beta-Blockers in Acute Heart Failure. JACC Heart Fail. 2015, 3, 654–656. [Google Scholar] [CrossRef] [PubMed]
- Schurtz, G.; Mewton, N.; Lemesle, G.; Delmas, C.; Levy, B.; Puymirat, E.; Aissaoui, N.; Bauer, F.; Gerbaud, E.; Henry, P.; et al. Beta-Blocker Management in Patients Admitted for Acute Heart Failure and Reduced Ejection Fraction: A Review and Expert Consensus Opinion. Front. Cardiovasc. Med. 2023, 10, 1263482. [Google Scholar] [CrossRef] [PubMed]
- Prins, K.W.; Neill, J.M.; Tyler, J.O.; Eckman, P.M.; Duval, S. Effects of Beta-Blocker Withdrawal in Acute Decompensated Heart Failure. JACC Heart Fail. 2015, 3, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.; Young, J.B.; Abraham, W.T.; Bourge, R.C.; Adams, K.F.; Clare, R.; O’Connor, C. Beta-Blocker Use and Outcomes Among Hospitalized Heart Failure Patients. J. Am. Coll. Cardiol. 2006, 47, 2462–2469. [Google Scholar] [CrossRef] [PubMed]
- Fonarow, G.C.; Abraham, W.T.; Albert, N.M.; Stough, W.G.; Gheorghiade, M.; Greenberg, B.H.; O’Connor, C.M.; Sun, J.L.; Yancy, C.W.; Young, J.B. Influence of Beta-Blocker Continuation or Withdrawal on Outcomes in Patients Hospitalized With Heart Failure. J. Am. Coll. Cardiol. 2008, 52, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Gattis, W.A.; O’Connor, C.M.; Leimberger, J.D.; Felker, G.M.; Adams, K.F.; Gheorghiade, M. Clinical Outcomes in Patients on Beta-Blocker Therapy Admitted with Worsening Chronic Heart Failure. Am. J. Cardiol. 2003, 91, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Orso, F.; Baldasseroni, S.; Fabbri, G.; Gonzini, L.; Lucci, D.; D’Ambrosi, C.; Gobbi, M.; Lecchi, G.; Randazzo, S.; Masotti, G.; et al. Role of Beta-blockers in Patients Admitted for Worsening Heart Failure in a Real World Setting: Data from the Italian Survey on Acute Heart Failure. Eur. J. Heart Fail. 2009, 11, 77–84. [Google Scholar] [CrossRef]
- Böhm, M.; Link, A.; Cai, D.; Nieminen, M.S.; Filippatos, G.S.; Salem, R.; Solal, A.C.; Huang, B.; Padley, R.J.; Kivikko, M.; et al. Beneficial Association of β-Blocker Therapy on Recovery from Severe Acute Heart Failure Treatment: Data from the Survival of Patients With Acute Heart Failure in Need of Intravenous Inotropic Support Trial. Crit. Care Med. 2011, 39, 940–944. [Google Scholar] [CrossRef] [PubMed]
- Saunders, S.L.; Clifford, L.M.; Meere, W. Cardiogenic Shock without Hypotension in Acute Severe Primary Mitral Regurgitation: A Case Report. Oxf. Med. Case Rep. 2024, 2024, omae018. [Google Scholar] [CrossRef] [PubMed]
- Chien, S.-C.; Wang, C.-A.; Liu, H.-Y.; Lin, C.-F.; Huang, C.-Y.; Chien, L.-N. Comparison of the Prognosis among In-Hospital Survivors of Cardiogenic Shock Based on Etiology: AMI and Non-AMI. Ann. Intensive Care 2024, 14, 74. [Google Scholar] [CrossRef] [PubMed]
- Chien, S.-C.; Hsu, C.-Y.; Liu, H.-Y.; Lin, C.-F.; Hung, C.-L.; Huang, C.-Y.; Chien, L.-N. Cardiogenic Shock in Taiwan from 2003 to 2017 (CSiT-15 Study). Crit. Care 2021, 25, 402. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Patnaik, S.; Patel, B.; Ram, P.; Garg, L.; Agarwal, M.; Agrawal, S.; Arora, S.; Patel, N.; Wald, J.; et al. Trends in Mechanical Circulatory Support Use and Hospital Mortality among Patients with Acute Myocardial Infarction and Non-Infarction Related Cardiogenic Shock in the United States. Clin. Res. Cardiol. 2018, 107, 287–303. [Google Scholar] [CrossRef] [PubMed]
- Polyzogopoulou, E.; Arfaras-Melainis, A.; Bistola, V.; Parissis, J. Inotropic Agents in Cardiogenic Shock. Curr. Opin. Crit. Care 2020, 26, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Bistola, V.; Arfaras-Melainis, A.; Polyzogopoulou, E.; Ikonomidis, I.; Parissis, J. Inotropes in Acute Heart Failure: From Guidelines to Practical Use: Therapeutic Options and Clinical Practice. Card. Fail. Rev. 2019, 5, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Shankar, A.; Gurumurthy, G.; Sridharan, L.; Gupta, D.; Nicholson, W.J.; Jaber, W.A.; Vallabhajosyula, S. A Clinical Update on Vasoactive Medication in the Management of Cardiogenic Shock. Clin. Med. Insights Cardiol. 2022, 16, 117954682210750. [Google Scholar] [CrossRef]
- The CardShock Study Investigators; Tarvasmäki, T.; Lassus, J.; Varpula, M.; Sionis, A.; Sund, R.; Køber, L.; Spinar, J.; Parissis, J.; Banaszewski, M.; et al. Current Real-Life Use of Vasopressors and Inotropes in Cardiogenic Shock—Adrenaline Use Is Associated with Excess Organ Injury and Mortality. Crit. Care 2016, 20, 208. [Google Scholar] [CrossRef]
- Ibánez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the Management of Acute Myocardial Infarction in Patients Presenting with ST-Segment Elevation. Rev. Esp. Cardiol. Engl. Ed. 2017, 70, 1082. [Google Scholar] [CrossRef]
- Di Santo, P.; Mathew, R.; Jung, R.G.; Simard, T.; Skanes, S.; Mao, B.; Ramirez, F.D.; Marbach, J.A.; Abdel-Razek, O.; Motazedian, P.; et al. Impact of Baseline Beta-Blocker Use on Inotrope Response and Clinical Outcomes in Cardiogenic Shock: A Subgroup Analysis of the DOREMI Trial. Crit. Care 2021, 25, 289. [Google Scholar] [CrossRef] [PubMed]
- Ryu, R.; Hauschild, C.; Bahjri, K.; Tran, H. The Usage of Concomitant Beta-Blockers with Vasopressors and Inotropes in Cardiogenic Shock. Med. Sci. 2022, 10, 64. [Google Scholar] [CrossRef]
- Eraky, A.M.; Treffy, R.; Hedayat, H.S. Cisternostomy as a Surgical Treatment for Traumatic Brain Injury-Related Prolonged and Delayed Intracranial Pressure Elevation: A Case Report. Cureus 2023, 15, e37508. [Google Scholar] [CrossRef]
- Eraky, A.M.; Treffy, R.; Hedayat, H.S. Cisternotomy and Liliequist’s Membrane Fenestration as a Surgical Treatment for Idiopathic Intracranial Hypertension (Pseudotumor Cerebri): A Case Report. Cureus 2022, 14, e31363. [Google Scholar] [CrossRef] [PubMed]
- Naredi, S.; Lambert, G.; Edén, E.; Zäll, S.; Runnerstam, M.; Rydenhag, B.; Friberg, P. Increased Sympathetic Nervous Activity in Patients With Nontraumatic Subarachnoid Hemorrhage. Stroke 2000, 31, 901–906. [Google Scholar] [CrossRef]
- Borlongan, C.; Acosta, S.; De La Pena, I.; Tajiri, N.; Kaneko, Y.; Lozano, D.; Gonzales-Portillo, G. Neuroinflammatory Responses to Traumatic Brain Injury: Etiology, Clinical Consequences, And Therapeutic Opportunities. Neuropsychiatr. Dis. Treat. 2015, 11, 97–106. [Google Scholar] [CrossRef]
- Cotton, B.A.; Snodgrass, K.B.; Fleming, S.B.; Carpenter, R.O.; Kemp, C.D.; Arbogast, P.G.; Morris, J.A. Beta-Blocker Exposure Is Associated With Improved Survival After Severe Traumatic Brain Injury. J. Trauma Inj. Infect. Crit. Care 2007, 62, 26–35. [Google Scholar] [CrossRef]
- Inaba, K.; Teixeira, P.G.R.; David, J.-S.; Chan, L.S.; Salim, A.; Brown, C.; Browder, T.; Beale, E.; Rhee, P.; Demetriades, D. Beta-Blockers in Isolated Blunt Head Injury. J. Am. Coll. Surg. 2008, 206, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Edavettal, M.; Gross, B.W.; Rittenhouse, K.; Alzate, J.; Rogers, A.; Estrella, L.; Miller, J.A.; Rogers, F.B. An Analysis of Beta-Blocker Administration Pre-and Post-Traumatic Brain Injury with Subanalyses for Head Injury Severity and Myocardial Injury. Am. Surg. 2016, 82, 1203–1208. [Google Scholar] [CrossRef]
- Ahl, R.; Thelin, E.P.; Sjölin, G.; Bellander, B.-M.; Riddez, L.; Talving, P.; Mohseni, S. β-Blocker after Severe Traumatic Brain Injury Is Associated with Better Long-Term Functional Outcome: A Matched Case Control Study. Eur. J. Trauma Emerg. Surg. 2017, 43, 783–789. [Google Scholar] [CrossRef]
- Mohseni, S.; Talving, P.; Thelin, E.P.; Wallin, G.; Ljungqvist, O.; Riddez, L. The Effect of Β-blockade on Survival After Isolated Severe Traumatic Brain Injury. World J. Surg. 2015, 39, 2076–2083. [Google Scholar] [CrossRef] [PubMed]
- Schroeppel, T.J.; Sharpe, J.P.; Shahan, C.P.; Clement, L.P.; Magnotti, L.J.; Lee, M.; Muhlbauer, M.; Weinberg, J.A.; Tolley, E.A.; Croce, M.A.; et al. Beta-Adrenergic Blockade for Attenuation of Catecholamine Surge after Traumatic Brain Injury: A Randomized Pilot Trial. Trauma Surg. Acute Care Open 2019, 4, e000307. [Google Scholar] [CrossRef] [PubMed]
- Zangbar, B.; Khalil, M.; Rhee, P.; Joseph, B.; Kulvatunyou, N.; Tang, A.; Friese, R.S.; O’Keeffe, T. Metoprolol Improves Survival in Severe Traumatic Brain Injury Independent of Heart Rate Control. J. Surg. Res. 2016, 200, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Ko, A.; Harada, M.Y.; Barmparas, G.; Thomsen, G.M.; Alban, R.F.; Bloom, M.B.; Chung, R.; Melo, N.; Margulies, D.R.; Ley, E.J. Early Propranolol after Traumatic Brain Injury Is Associated with Lower Mortality. J. Trauma Acute Care Surg. 2016, 80, 637–642. [Google Scholar] [CrossRef] [PubMed]
- Khalili, H.; Ahl, R.; Paydar, S.; Sjolin, G.; Cao, Y.; Abdolrahimzadeh Fard, H.; Niakan, A.; Hanna, K.; Joseph, B.; Mohseni, S. Beta-Blocker Therapy in Severe Traumatic Brain Injury: A Prospective Randomized Controlled Trial. World J. Surg. 2020, 44, 1844–1853. [Google Scholar] [CrossRef] [PubMed]
- Ley, E.J.; Leonard, S.D.; Barmparas, G.; Dhillon, N.K.; Inaba, K.; Salim, A.; O’Bosky, K.R.; Tatum, D.; Azmi, H.; Ball, C.G.; et al. Beta Blockers in Critically Ill Patients with Traumatic Brain Injury: Results from a Multicenter, Prospective, Observational American Association for the Surgery of Trauma Study. J. Trauma Acute Care Surg. 2018, 84, 234–244. [Google Scholar] [CrossRef]
- Asmar, S.; Bible, L.; Chehab, M.; Tang, A.; Khurrum, M.; Castanon, L.; Ditillo, M.; Douglas, M.; Joseph, B. Traumatic Brain Injury Induced Temperature Dysregulation: What Is the Role of β Blockers? J. Trauma Acute Care Surg. 2021, 90, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Schroeppel, T.J.; Sharpe, J.P.; Magnotti, L.J.; Weinberg, J.A.; Clement, L.P.; Croce, M.A.; Fabian, T.C. Traumatic Brain Injury and β-Blockers: Not All Drugs Are Created Equal. J. Trauma Acute Care Surg. 2014, 76, 504–509. [Google Scholar] [CrossRef]
- Hart, S.; Lannon, M.; Chen, A.; Martyniuk, A.; Sharma, S.; Engels, P.T. Beta Blockers in Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Trauma Surg. Acute Care Open 2023, 8, e001051. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eraky, A.M.; Yerramalla, Y.; Khan, A.; Mokhtar, Y.; Alamrosy, M.; Farag, A.; Wright, A.; Grounds, M.; Gregorich, N.M. Beta-Blockers as an Immunologic and Autonomic Manipulator in Critically Ill Patients: A Review of the Recent Literature. Int. J. Mol. Sci. 2024, 25, 8058. https://doi.org/10.3390/ijms25158058
Eraky AM, Yerramalla Y, Khan A, Mokhtar Y, Alamrosy M, Farag A, Wright A, Grounds M, Gregorich NM. Beta-Blockers as an Immunologic and Autonomic Manipulator in Critically Ill Patients: A Review of the Recent Literature. International Journal of Molecular Sciences. 2024; 25(15):8058. https://doi.org/10.3390/ijms25158058
Chicago/Turabian StyleEraky, Akram M., Yashwanth Yerramalla, Adnan Khan, Yasser Mokhtar, Mostafa Alamrosy, Amr Farag, Alisha Wright, Matthew Grounds, and Nicole M. Gregorich. 2024. "Beta-Blockers as an Immunologic and Autonomic Manipulator in Critically Ill Patients: A Review of the Recent Literature" International Journal of Molecular Sciences 25, no. 15: 8058. https://doi.org/10.3390/ijms25158058
APA StyleEraky, A. M., Yerramalla, Y., Khan, A., Mokhtar, Y., Alamrosy, M., Farag, A., Wright, A., Grounds, M., & Gregorich, N. M. (2024). Beta-Blockers as an Immunologic and Autonomic Manipulator in Critically Ill Patients: A Review of the Recent Literature. International Journal of Molecular Sciences, 25(15), 8058. https://doi.org/10.3390/ijms25158058