Telomere Length, Telomerase Activity, and Vaginal Microbiome in Patients with HPV-Related Precancerous Lesions
Abstract
:1. Introduction
2. Results
2.1. Relative Telomere Length (RTL) and Relative hTERT Expression in Different Histopathology Groups
2.2. The Biocenosis of Different Histopathology Groups
3. Discussion
4. Materials and Methods
4.1. Patient Samples
4.2. Ethics Approval and Consent to Participate
4.3. Biocenosis Examination
4.4. Nucleic Acid Extraction and cDNA Synthesis
4.5. Telomere Length Measurement by Monochrome Multiplex Quantitative PCR Method (MMQPCR)
4.6. Quantitative RT-PCR of hTERT
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Srinivas, N.; Rachakonda, S.; Kumar, R. Telomeres and telomere length: A general overview. Cancers 2020, 12, 558. [Google Scholar] [CrossRef]
- Pańczyszyn, A.; Boniewska-Bernacka, E.; Goc, A. The role of telomeres and telomerase in the senescence of postmitotic cells. DNA Repair 2020, 95, 102956. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Y.; Jian, Y.; Gu, L.; Zhang, D.; Zhou, H.; Wang, Y.; Xu, Z.-X. The regulations of telomerase reverse transcriptase (TERT) in cancer. Cell Death Dis. 2024, 15, 90. [Google Scholar] [CrossRef]
- Boniewska-Bernacka, E.; Pańczyszyn, A.; Klinger, M. Telomeres and telomerase in risk assessment of cardiovascular diseases. Exp. Cell Res. 2020, 397, 112361. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wang, R.L.; Liu, J.J.; Zhou, J.; Li, X.; Hu, W.W.; Jiang, W.J.; Hao, N.B. The prognostic significance of hTERT overexpression in cancers: A systematic review and meta-analysis. Medicine 2018, 97, 11794. [Google Scholar] [CrossRef] [PubMed]
- Katzenellenbogen, R. Activation of telomerase by HPVs. Virus Res. 2017, 231, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Katzenellenbogen, R. Telomerase Induction in HPV Infection and Oncogenesis. Viruses 2017, 9, 180. [Google Scholar] [CrossRef] [PubMed]
- Pańczyszyn, A.; Boniewska-Bernacka, E.; Głąb, G. Telomere length in leukocytes and cervical smears of women with high-risk human papillomavirus (HR HPV) infection. Taiwan J. Obstet. Gynecol. 2020, 59, 51–55. [Google Scholar] [CrossRef]
- Bonde, J.; Schroll, J.; Kristensen, B.; Lynge, E.; Waldstrøm, M.; Andersen, B. Phased implementation of HPV-based cervical cancer screening in Denmark. Ugeskr. Laeger 2022, 184, V04210327. (In Danish) [Google Scholar] [PubMed]
- Arbyn, M.; Bonde, J.; Cushieri, K.; Poljak, M. Can HPV Selfy be considered as a clinically validated HPV test for use in cervical cancer screening? J. Transl. Med. 2022, 20, 422. [Google Scholar] [CrossRef]
- Katki, H.; Schiffman, M.; Castle, P.; Fetterman, B.; Poitras, N.; Lorey, T.; Cheung, L.; Raine-Bennett, T.; Gage, J.; Kinney, W. Five-year risks of CIN3+ and cervical cancer among women with HPV-positive and HPV-negative high-grade Pap results. J. Low. Genit. Tract. Dis. 2013, 17, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, D.; Mittal, S.; Mandal, R.; Basu, P. Screening technologies for cervical cancer: Overview. Cytojournal 2022, 29, 19–23. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Williams, J.; Kostiuk, M.; Biron, V. Molecular Detection Methods in HPV-Related Cancers. Front. Oncol. 2022, 27, 864820. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vink, M.; Bogaards, J.; van Kemenade, F.; de Melker, H.; Meijer, C.; Berkhof, J. Clinical progression of high-grade cervical intraepithelial neoplasia: Estimating the time to preclinical cervical cancer from doubly censored national registry data. Am. J. Epidemiol. 2013, 178, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
- Bonde, J.; Sandri, M.; Gary, D.; Andrews, J. Clinical Utility of Human Papillomavirus Genotyping in Cervical Cancer Screening: A Systematic Review. J. Low. Genit. Tract. Dis. 2020, 24, 1–13. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bonde, J.; Bottari, F.; Iacobone, A.; Cocuzza, C.; Sandri, M.; Bogliatto, F.; Khan, K.; Ejegod, D.; Gary, D.; Andrews, J. Human Papillomavirus Same Genotype Persistence and Risk: A Systematic Review. J. Low. Genit. Tract. Dis. 2021, 25, 27–37. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mitra, A.; MacIntyre, D.; Lee, Y.; Smith, A.; Marchesi, J.; Lehne, B.; Bhatia, R.; Lyons, D.; Paraskevaidis, E.; Li, J.; et al. Cervical intraepithelial neoplasia disease progression is associated with increased vaginal microbiome diversity. Sci. Rep. 2015, 17, 16865. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sharifian, K.; Shoja, Z.; Jalilvand, S. The interplay between human papillomavirus and vaginal microbiota in cervical cancer development. Virol. J. 2023, 20, 73. [Google Scholar] [CrossRef]
- Verstraelen, H.; Vieira-Baptista, P.; De Seta, F.; Ventolini, G.; Lonnee-Hoffmann, R.; Lev-Sagie, A. The Vaginal Microbiome: I. Research Development, Lexicon, Defining “Normal” and the Dynamics Throughout Women’s Lives. J. Low. Genit. Tract. Dis. 2022, 26, 73–78. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mendes-Soares, H.; Suzuki, H.; Hickey, R.; Forney, L. Comparative functional genomics of Lactobacillus spp. reveals possible mechanisms for specialization of vaginal lactobacilli to their environment. J. Bacteriol. 2014, 196, 1458–1470. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mitra, A.; MacIntyre, D.; Marchesi, J.; Lee, Y.; Bennett, P.; Kyrgiou, M. The vaginal microbiota, human papillomavirus infection and cervical intraepithelial neoplasia: What do we know and where are we going next? Microbiome 2016, 4, 58. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zheng, N.; Guo, R.; Wang, J.; Zhou, W.; Ling, Z. Contribution of Lactobacillus iners to Vaginal Health and Diseases: A Systematic Review. Front. Cell Infect. Microbiol. 2021, 22, 792787. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ventolini, G.; Vieira-Baptista, P.; De Seta, F.; Verstraelen, H.; Lonnee-Hoffmann, R.; Lev-Sagie, A. The Vaginal Microbiome: IV. The Role of Vaginal Microbiome in Reproduction and in Gynecologic Cancers. J. Low. Genit. Tract. Dis. 2022, 26, 93–98. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Okamoto, K.; Seimiya, H. Revisiting Telomere Shortening in Cancer. Cells 2019, 8, 107. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moreno-Acosta, P.; Molano, M.; Morales, N.; Acosta, J.; GonzÁlez-Prieto, C.; Mayorga, D.; Buitrago, L.; Gamboa, O.; MejÍa, J.; Castro, J.; et al. hTERT Protein Expression in Cytoplasm and Nucleus and its Association with HPV Infection in Patients with Cervical Cancer. Cancer Genom. Proteom. 2020, 17, 615–625. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gertler, R.; Rosenberg, R.; Stricker, D.; Friederichs, J.; Hoos, A.; Werner, M.; Ulm, K.; Holzmann, B.; Nekarda, H.; Siewert, J. Telomere length and human telomerase reverse transcriptase expression as markers for progression and prognosis of colorectal carcinoma. J. Clin. Oncol. 2004, 22, 1807–1814. [Google Scholar] [CrossRef]
- Zhang, A.; Wang, J.; Zheng, B.; Fang, X.; Angström, T.; Liu, C.; Li, X.; Erlandsson, F.; Björkholm, M.; Nordenskjörd, M.; et al. Telomere attrition predominantly occurs in precursor lesions during in vivo carcinogenic process of the uterine cervix. Oncogene 2004, 23, 7441–7447. [Google Scholar] [CrossRef]
- Molano, M.; Martín, D.; Moreno-Acosta, P.; Hernández, G.; Cornall, A.; Buitrago, O.; Muñoz, N. Telomerase activity in cervical scrapes of women with high-grade cervical disease: A nested case-control study. Oncol. Lett. 2018, 15, 354–360. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, P.; Yang, Y.; Xu, C.; Huang, Y.; Li, D.; Qing, Q.; Sun, C.; Zhou, H. Human papillomavirus and human telomerase RNA component gene in cervical cancer progression. Sci. Rep. 2019, 9, 15926. [Google Scholar] [CrossRef]
- Wang, X.; Huang, X.; Zhang, Y. Involvement of Human Papillomaviruses in Cervical Cancer. Front. Microbiol. 2018, 28, 2896. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, X.; Wei, S.; Ma, H.; Jin, G.; Hu, Z.; Suping, H.; Li, D.; Hang, D.; Wu, X.; Li, N. Telomere length in cervical exfoliated cells, interaction with HPV genotype, and cervical cancer occurrence among high-risk HPV-positive women. Cancer Med. 2019, 8, 4845–4851. [Google Scholar] [CrossRef]
- Mortaki, D.; Gkegkes, I.; Psomiadou, V.; Blontzos, N.; Prodromidou, A.; Lefkopoulos, F.; Nicolaidou, E. Vaginal microbiota and human papillomavirus: A systematic review. J. Turk. Ger. Gynecol. Assoc. 2020, 21, 193–200. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Curty, G.; de Carvalho, P.; Soares, M. The Role of the Cervicovaginal Microbiome on the Genesis and as a Biomarker of Premalignant Cervical Intraepithelial Neoplasia and Invasive Cervical Cancer. Int. J. Mol. Sci. 2019, 21, 222. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Santella, B.; Schettino, M.; Franci, G.; De Franciscis, P.; Colacurci, N.; Schiattarella, A.; Galdiero, M. Microbiota and HPV: The role of viral infection on vaginal microbiota. J. Med. Virol. 2022, 94, 4478–4484. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Amabebe, E.; Anumba, D. The Vaginal Microenvironment: The Physiologic Role of Lactobacilli. Front. Med. 2018, 5, 181. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arroyo Mühr, L.S.; Eklund, C.; Lagheden, C.; Forslund, O.; Robertsson, K.D.; Dillner, J. Improving human papillomavirus (HPV) testing in the cervical cancer elimination era: The 2021 HPV LabNet international proficiency study. J. Clin. Virol. 2022, 154, 105237. [Google Scholar] [CrossRef]
- Oh, H.Y.; Kim, B.S.; Seo, S.S.; Kong, J.S.; Lee, J.K.; Park, S.Y.; Hong, K.M.; Kim, H.K.; Kim, M.K. The association of uterine cervical microbiota with an increased risk for cervical intraepithelial neoplasia in Korea. Clin. Microbiol. Infect. 2015, 21, 674.e1–674.e9. [Google Scholar] [CrossRef]
- Kyrgiou, M.; Mitra, A.; Moscicki, A.B. Does the vaginal microbiota play a role in the development of cervical cancer? Transl. Res. J. Lab. Clin. Med. 2017, 179, 168–182. [Google Scholar] [CrossRef]
- Borgdorff, H.; Armstrong, S.; Tytgat, H.L.; Xia, D.; Ndayisaba, G.F.; Wastling, J.M.; van de Wijgert, J.H. Unique Insights in the Cervicovaginal Lactobacillus iners and L. crispatus Proteomes and Their Associations with Microbiota Dysbiosis. PLoS ONE 2016, 11, 0150767. [Google Scholar] [CrossRef] [PubMed]
- van de Wijgert, J.H.; Borgdorff, H.; Verhelst, R.; Crucitti, T.; Francis, S.C.; Verstraelen, H.; Jespers, V. The Vaginal Microbiota: What Have We Learned after a Decade of Molecular Characterization? PLoS ONE 2014, 9, 105998. [Google Scholar] [CrossRef] [PubMed]
- Lev-Sagie, A.; De Seta, F.; Verstraelen, H.; Ventolini, G.; Lonnee-Hoffmann, R.; Vieira-Baptista, P. The Vaginal Microbiome: II. Vaginal Dysbiotic Conditions. J. Low. Genit. Tract. Dis. 2022, 26, 79–84. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vieira-Baptista, P.; De Seta, F.; Verstraelen, H.; Ventolini, G.; Lonnee-Hoffmann, R.; Lev-Sagie, A. The Vaginal Microbiome: V. Therapeutic Modalities of Vaginal Microbiome Engineering and Research Challenges. J. Low. Genit. Tract. Dis. 2022, 26, 99–104. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cawthon, R.M. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res. 2009, 37, e21. [Google Scholar] [CrossRef]
- Oetting, W.S.; Guan, W.; Schadt, D.P.; Wildebush, W.A.; Becker, J.; Thyagarajan, B.; Jacobson, P.A.; Matas, A.J.; Israni, A.K. Telomere length of recipients and living kidney donors and chronic graft dysfunction in kidney transplants. Transplantation 2014, 97, 325–329. [Google Scholar] [CrossRef]
Variable | Control | Carriers | L SIL | H SIL | Cancers | p |
---|---|---|---|---|---|---|
Relative telomere length RTL, mean ± SD | 1.03 ± 0.15 | 0.90 ± 0.21 ab | 1.12 ± 0.25 b | 1.25 ± 0.28 a | 1.17 ± 0.19 | <0.001 |
Relative hTERT expression, median (IQR) | 1.59 (1.34; 2.23) | 0.87 (0.67; 1.41) c | 0.99 (0.88; 1.70) | 2.39 (1.08; 14.02) c | 1.91 (1.89; 4.48) | 0.001 1 |
Biocenosis | Control (n = 12) | Carriers (n = 30) | L SILs (n = 14) | H SILs (n = 46) | Cancers (n = 7) | p |
---|---|---|---|---|---|---|
Optimal | 10 (83.3) | 13 (43.3) | 3 (21.4) | 7 (15.2) | 0 (0.0) | <0.001 |
L. iners | 2 (16.7) | 12 (40.0) | 9 (64.3) | 27 (58.7) | 2 (28.6) | |
Dysbiosis | 0 (0.0) | 5 (16.7) | 2 (14.3) | 12 (26.1) | 5 (71.4) |
Biocenosis and HPV Genotype | Histopathology Groups [%] | |||||
---|---|---|---|---|---|---|
Control | Carriers | L SILs | H SILs | Cancers | ||
Biocenosis | Optimal | 83.3 | 43.3 | 21.4 | 15.2 | 0 |
L. iners and dysbiosis | 16.7 | 56.7 | 78.6 | 84.8 | 100 | |
HPV genotype | Genotype 16+A | 0 | 69 | 92.9 | 94.5 | 100 |
Genotype B | 0 | 44.8 | 28.6 | 17.4 | 14.3 |
Variable | Incidence of HPV Genotype | MD (95% CI) | p | ||
---|---|---|---|---|---|
Yes | No | ||||
HPV genotype 16+A vs: | |||||
Biocenosis | Optimal | 15 (17.9) | 18 (72.0) | - | <0.001 3 |
L. iners | 45 (53.6) | 7 (28.0) | |||
Dysbiosis | 24 (28.6) | 0 (0.0) | |||
Relative telomere length (RTL), mean ± SD | 1.14 ± 0.30 | 1.01 ± 0.17 | 0.13 (0.03; 0.22) | 0.008 2 | |
Relative hTERT expression, median (IQR) | 1.49 (0.89; 4.47) | 1.32 (1.03; 2.21) | 0.17 (−0.36; 1.02) | 0.637 | |
HPV genotype B vs: | |||||
Biocenosis | Optimal | 12 (42.9) | 21 (25.9) | - | 0.055 3 |
L. iners | 14 (50.0) | 38 (46.9) | |||
Dysbiosis | 2 (7.1) | 22 (27.2) | |||
Relative telomere length (RTL), mean ± SD | 1.05 ± 0.31 | 1.13 ± 0.27 | −0.08 (−0.20; 0.05) | 0.227 1 | |
Relative hTERT expression, median (IQR) | 1.03 (0.67; 1.70) | 1.61 (0.99; 4.42) | −0.58 (−1.23; −0.03) | 0.033 |
Variable | n | Statistics |
---|---|---|
Age, years, mean ± SD | 109 | 37.31 ± 10.36 |
Histopathology group | 109 | |
Control | 12 | 11.0 |
Carriers | 30 | 27.5 |
L SILs | 14 | 12.8 |
H SILs | 46 | 42.2 |
Cancers | 7 | 6.4 |
Biocenosis | 109 | |
Optimal | 33 | 30.3 |
L. iners | 52 | 47.7 |
Dysbiosis | 24 | 22.0 |
HPV genotype | 109 | |
Genotype 16+A | 84 | 77.1 |
Genotype B | 28 | 25.7 |
Relative telomere length (RTL), mean ± SD | 107 | 1.11 ± 0.28 |
Relative hTERT expression, median (IQR) | 66 | 1.39 (0.93; 2.68) |
Primer | Sequence 5′–3′ |
---|---|
telg | ACACTAAGGTTTGGGTTTGGGTTTGGGTTTGGGTTAGTGT |
telc | TGTTAGGTATCCCTATCCCTATCCCTATCCCTATCCCTAACA |
albugcr1 | CGGCGGCGGGCGGCGCGGGCTGGGCGGCCATGCTTTTCAGCTCTGCAAGTC |
albdgcr2 | GCCCGGCCCGCCGCGCCCGTCCCGCCGAGCATTAAGCTCTTTGGCAACGTAGGTTTC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boniewska-Bernacka, E.; Pańczyszyn, A.; Głąb, G.; Goc, A. Telomere Length, Telomerase Activity, and Vaginal Microbiome in Patients with HPV-Related Precancerous Lesions. Int. J. Mol. Sci. 2024, 25, 8158. https://doi.org/10.3390/ijms25158158
Boniewska-Bernacka E, Pańczyszyn A, Głąb G, Goc A. Telomere Length, Telomerase Activity, and Vaginal Microbiome in Patients with HPV-Related Precancerous Lesions. International Journal of Molecular Sciences. 2024; 25(15):8158. https://doi.org/10.3390/ijms25158158
Chicago/Turabian StyleBoniewska-Bernacka, Ewa, Anna Pańczyszyn, Grzegorz Głąb, and Anna Goc. 2024. "Telomere Length, Telomerase Activity, and Vaginal Microbiome in Patients with HPV-Related Precancerous Lesions" International Journal of Molecular Sciences 25, no. 15: 8158. https://doi.org/10.3390/ijms25158158
APA StyleBoniewska-Bernacka, E., Pańczyszyn, A., Głąb, G., & Goc, A. (2024). Telomere Length, Telomerase Activity, and Vaginal Microbiome in Patients with HPV-Related Precancerous Lesions. International Journal of Molecular Sciences, 25(15), 8158. https://doi.org/10.3390/ijms25158158