The New Face of Dynamic Mutation—The CAA [CAG]n CAA CAG Motif as a Mutable Unit in the TBP Gene Causative for Spino-Cerebellar Ataxia Type 17
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Depienne, C.; Mandel, J.L. 30 years of repeat expansion disorders: What have we learned and what are the remaining challenges? Am. J. Hum. Genet. 2021, 108, 764–785. [Google Scholar] [CrossRef] [PubMed]
- Mitas, M. Trinucleotide repeats associated with human disease. Nucleic Acids Res. 1997, 25, 2245–2253. [Google Scholar] [CrossRef] [PubMed]
- Cummings, C.J.; Zoghbi, H.Y. Fourteen and counting: Unraveling trinucleotide repeat diseases. Hum. Mol. Genet. 2000, 9, 909–916. [Google Scholar] [CrossRef]
- Sinden, R.R.; Potaman, V.N.; Oussatcheva, E.A.; Pearson, C.E.; Lyubchenko, Y.L.; Shlyakhtenko, L.S. Triplet repeat DNA structures and human genetic disease: Dynamic mutations from dynamic DNA. J. Biosci. 2002, 27, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Lenzmeier, B.A.; Freudnreich, C.H. Trinucleotide repeat instability: A hairpin curve at the crossroads of replication, recombination and repair. Cytogenet. Genome Res. 2003, 100, 2–24. [Google Scholar] [CrossRef] [PubMed]
- E Pearson, C.; Sinden, R.R. Trinucleotide repeat DNA structures: Dynamic mutations from dynamic DNA. Curr. Opin. Struct. Biol. 1998, 8, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Gordenin, D.A.; Kunkel, T.A.; Resnik, A.M. Repeat expansion—All in a flap? Nat. Genet. 1997, 16, 116–118. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Kao, H.I.; Bambra, R.A. Flap endonuclease 1: The central component of DNA metabolism. Annu. Rev. Biochem. 2004, 73, 589–615. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zang, H.; Veeraraghavan, J.; Bambra, R.; Fruedenreich, C.H. Saccharomyces cerevisiae Flap endonuclease 1 uses flap equi-libration to maintain triplet repeat stability. Mol. Cell Biol. 2004, 24, 4049–4064. [Google Scholar] [CrossRef]
- E Pearson, C. Slipping while sleeping? Trinucleotide repeat expansions in germ cells. Trends Mol. Med. 2003, 9, 490–495. [Google Scholar] [CrossRef]
- Gao, R.; Matsuura, T.; Coolbaugh, M.; Zühlke, C.; Nakamura, K.; Rasmussen, A.; Siciliano, M.J.; Ashizawa, T.; Lin, X. Instability of ex-panded CAG/CAA repeats in spinocerebellar ataxia type 17. Eur. J. Hum. Genet. 2008, 16, 215–222. [Google Scholar] [CrossRef] [PubMed]
- White, R.J.; Jackson, S.P. The TATA-binding protein: A central role in transcription by RNA polymerases I, II and III. Trends Genet. 1992, 8, 248–288. [Google Scholar] [CrossRef]
- Chung, M.Y.; Ranum, L.P.; Duvick, L.A.; Servadio, A.; Zoghbi, H.Y.; Orr, H.T. Evidence for a mechanism predisposing to intergenera-tional CAG repeat instability in spinocerebellar ataxia type I. Nat. Genet. 1993, 5, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Costanzi-Porrini, S.; Tessarolo, D.; Abbruzzese, C.; Liguori, M.; Ashizawa, T.; Giacanelli, M. An interrupted 34-CAG repeat SCA-2 allele in patients with sporadic spinocerebellar ataxia. Neurology 2000, 54, 491. [Google Scholar] [CrossRef] [PubMed]
- Chong, S.S.; Almqvist, E.; Telenius, H.; LaTray, L.; Nichol, K.; Bourdelat-Parks, B.; Goldberg, Y.P.; Haddad, B.R.; Richards, F.; Sillence, D.; et al. Contribution of DNA Sequence and CAG Size to Mutation Frequencies of Intermediate Alleles for Huntington Disease: Evidence from Single Sperm Analyses. Hum. Mol. Genet. 1997, 6, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Bauer, P.; Laccone, F.; Rolf, A. Trinucleotide repeat expansion in SCA17/TBP on white patients with Huntington’s disease-like phenotype. J. Med. Genet. 2004, 41, 230–232. [Google Scholar] [CrossRef] [PubMed]
- Koide, R.; Kobayashi, S.; Shimohata, T.; Ikeuchi, T.; Maruyama, M.; Saito, M.; Yamada, M.; Takahashi, H.; Tsuji, S. A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: A new polyglutamine disease? Hum. Mol. Genet. 1999, 8, 2047–2053. [Google Scholar] [CrossRef] [PubMed]
- Gostout, B.; Liu, Q.; Sommer, S.S. “Criptic” repeating triplets of purines and pirimidines (cRRY(i)) are frequent and polymorphic: Analysis of coding cRRY(i) in the proopiomelanocortin (POMOC) and TATA-binding protein (TBP) genes. Am. J. Hum. Genet. 1993, 52, 1182–1190. [Google Scholar] [PubMed]
- Magri, S.; Nanetti, L.; Gellera, C.; Sarto, E.; Rizzo, E.; Mongelli, A.; Ricci, B.; Fancellu, R.; Sambati, L.; Cortelli, P.; et al. Digenic inheritance of STUB1 variants and TBP polyglutamine expansions explains the in-complete penetrance of SCA17 and SCA48. Digenic inheritance of STUB1 variants and TBP polyglutamine expansions explains the incomplete penetrance of SCA17 and SCA48. Genet. Med. 2022, 24, 29–40. [Google Scholar] [CrossRef]
- Barbier, M.; Davoine, C.S.; Petit, E.; Porché, M.; Guillot-Noel, L.; Sayah, S.; Fauret, A.L.; Neau, J.P.; Guyant-Maréchal, L.; Deffond, D.; et al. Intermediate repeat expansions of TBP and STUB1: Genetic modifier or pure digenic inher-itance in spinocerebellar ataxias? Genet. Med. 2023, 25, 100327. [Google Scholar] [CrossRef]
- Fujigasaki, H.; Martin, J.-J.; De Deyn, P.P.; Camuzat, A.; Deffond, D.; Stevanin, G.; Dermaut, B.; Van Broeckhoven, C.; Dürr, A.; Brice, A. CAG repeat expansion in the TATA box-binding protein gene causes autosomal dominant cerebellar ataxia. Brain 2001, 124, 1939–1947. [Google Scholar] [CrossRef]
- Nakamura, K.; Jeong, S.-Y.; Uchihara, T.; Anno, M.; Nagashima, K.; Nagashima, T.; Ikeda, S.-I.; Tsuji, S.; Kanazawa, I. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum. Mol. Genet. 2001, 10, 1441–1448. [Google Scholar] [CrossRef]
- Zühlke, C.; Hellenbroich, Y.; Dalski, A.; Hagenah, J.; Vieregge, P.; Riess, O.; Klein, C.; Schwinger, E. Different types of repeat expansion in the TATA-binding protein gene are associated with a new form of inherited ataxia. Eur. J. Hum. Genet. 2001, 9, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Silveira, I.; Miranda, C.; Guimarães, L.; Moreira, M.C.; Alonso, I.; Mendonça, P.; Ferro, A.; Pinto-Basto, J.; Coelho, J.; Ferreirinha, F.; et al. Trinucleotide repeats in 202 families with ataxia: A small expanded (CAG)n allele at the SCA17 locus. Arch. Neurol. 2002, 59, 623–629. [Google Scholar] [CrossRef]
- Zühlke, C.; Gehlken, U.; Hellenbroich, Y.; Schwinger, E.; Bürk, K. Phenotypical variability of expanded alleles in the TATA-binding protein gene. J. Neurol. 2003, 250, 161–163. [Google Scholar] [CrossRef] [PubMed]
- Stevanin, G.; Fujigasaki, H.; Lebre, A.S.; Camuzat, A.; Jeannequin, C.; Dode, C.; Takahashi, J.; San, C.; Bellance, R.; Brice, A.; et al. Huntington’s disease-like phenotype due to trinucleotide repeat expansions in the TBP and JPH3 genes. Brain 2003, 126, 1599–1603. [Google Scholar] [CrossRef]
- Zühlke, C.H.; Spranger, M.; Spranger, S.; Voigt, R.; Lanz, M.; Gehlken, U.; Hinrichs, F.; Schwinger, E. SCA17 caused by homozygous repeat expansion in TBP due to partial isodisomy 6. Eur. J. Hum. Genet. 2003, 11, 629–632. [Google Scholar] [CrossRef]
- Maltecca, F.; Filla, A.; Castaldo, I.; Coppola, G.; Fragassi, N.; Carella, M.; Bruni, A.; Cocozza, S.; Casari, G.; Servadio, A.; et al. Intergenerational instability and marked anticipation in SCA-17. Neurology 2003, 61, 1441–1443. [Google Scholar] [CrossRef] [PubMed]
- Toyoshima, Y.; Yamada, M.; Onodera, O.; Shimohata, M.; Inenaga, C.; Fujita, N.; Morita, M.; Tsuji, S.; Takahashi, H. SCA17 homozygote showing Huntington’s disease-like phenotype. Ann. Neurol. 2004, 55, 281–286. [Google Scholar] [CrossRef]
- Brusco, A.; Gellera, C.; Cagnoli, C.; Saluto, A.; Castucci, A.; Michielotto, C.; Fetoni, V.; Mariotti, C.; Migone, N.; Di Donato, S.; et al. Molecular genetics of hereditary spinocerebellar ataxia: Mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 Italian families. Arch. Neurol. 2004, 61, 727–733. [Google Scholar] [CrossRef]
- Shatunov, A.; Fridman, E.; Pagan, F.; Leib, J.; Singleton, A.; Hallett, M.; Goldfarb, L. Small de novo duplication in the repeat region of the TATA-box-binding protein gene manifest with a phenotype similar to variant Creutzfeldt-Jakob disease. Clin. Genet. 2004, 66, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Bruni, A.C.; Takahashi-Fujigasaki, J.; Maltecca, F.; Foncin, J.F.; Servadio, A.; Casari, G.; D’adamo, P.; Maletta, R.; Curcio, S.A.M.; De Michele, G.; et al. Behavioral Disorder, Dementia, Ataxia, and Rigidity in a Large Family With TATA Box-Binding Protein Mutation. Arch. Neurol. 2004, 61, 1314–1320. [Google Scholar] [CrossRef] [PubMed]
- Zühlke, C.; Bürk, K. Spinocerebellar ataxia type 17 is caused by mutations in the TATA-box binding protein. Cerebellum 2007, 6, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, A.; De Biase, I.; Fragoso-Benítez, M.; Macías-Flores, M.A.; Yescas, P.; Ochoa, A.; Ashizawa, T.; Alonso, M.E.; Bidichandani, S.I. Anticipation and intergenerational repeat instability in spinocerebellar ataxia type 17. Ann. Neurol. 2007, 61, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Monai, N.; Jackson, M.; Yamamoto-Watanabe, Y.; Ikeda, Y.; Suzuki, C.; Tomiyama, M.; Kawarabayashi, T.; Kimura, T.; Seino, Y.; et al. A Small Trinucleotide Expansion in the TBP Gene Gives Rise to a Sporadic Case of SCA17 with Abnormal Putaminal Findings on MRI. Intern. Med. 2008, 47, 2179–2182. [Google Scholar] [CrossRef] [PubMed]
- Bech, S.; Petersen, T.; Nørremølle, A.; Gjedde, A.; Ehlers, L.; Eiberg, H.; Hjermind, L.E.; Hasholt, L.; Lundorf, E.; Nielsen, J.E. Huntington’s disease-like and ataxia syndromes: Identification of a family with a de novo SCA17/TBP mutation. Parkinsonism Relat. Disord. 2010, 16, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, E.; Nuzhnyi, E.; Abramycheva, N.; Klyushnikov, S.; Fedotova, E.; Illarioshkin, S. Mutation analysis of the TATA box-binding protein (TBP) gene in Russian patients with spinocerebellar ataxia and Huntington disease-like phenotype. Clin. Neurol. Neurosurg. 2022, 222, 107473. [Google Scholar] [CrossRef] [PubMed]
- Sulek, A.; Hoffman-Zacharska, D.; Zdzienicka, E.; Empel, J.; Zaremba, J. SCA17—A rare form of spinocerebellar ataxia identified in Poland. Eur. J. Hum. Genet. 2002, 10 (Suppl. S1), 269. [Google Scholar]
- Lee, S.; Park, M.S. Human FEN-1 can process the 5′-flap DNA of CTG/CAG triplet repeat derived from human genetic diseases by length and sequence dependent manner. Exp. Mol. Med. 2002, 34, 313–317. [Google Scholar] [CrossRef]
- Hemricksen, L.A.; Tom, S.; Liu, Y.; Bambara, R.A. Inhibition of Flao Endonuclease 1 by Flap Secondary structure and relevance to repeat sequence expansion. J. Biol. Chem. 2000, 275, 16420–16427. [Google Scholar] [CrossRef]
CAG/CAA Repeat Structure in TBP Gene | Repeats No. | Analyzed Cases | Stability | Possible Mutation Mechanism | Reference |
---|---|---|---|---|---|
normal | |||||
(CAG)3 (CAA)3 (CAG)nI CAA CAG CAA (CAG)nII CAA CAG | 29–40 | 157 unrelated alleles | (CAG)nI/nII polymorphism | [18] | |
expanded | |||||
(CAG)3 (CAA)3 (CAG)9 CAA CAG CAA (CAG)9 (CAA)3 (CAG)9 CAA CAG CAA (CAG)19 CAA CAG | 63 | single case (de novo paternal transmission) | - | partial duplication | [17] |
(CAG)3 (CAA)3 (CAG)9 CAA CAG CAA (CAG)26 CAA CAG | 46 | 3 gen. (6 family members) | ST | (CAG)nII expansion | [21] |
(CAG)3 (CAA)3 (CAG)6 CAA CAG CAA (CAG)28 CAA CAG | 45 | 1 gen. (2 sibling) | ST | (CAG)nII expansion | [22] |
(CAG)3 (CAA)3 (CAG)6 CAA CAG CAA (CAG)31 CAA CAG | 48 | 2 gen. (3 family members) | ST | (CAG)nII expansion | |
(CAG)3 (CAA)3 (CAG)6 CAA CAG CAA (CAG)30 CAA CAG | 47 | 1 gen. (3 siblings) | ST | (CAG)nII expansion | |
(CAG)3 (CAA)3 (CAG)9 CAA CAG CAA (CAG)16 CAA CAG CAA (CAG)16 CAA CAG | 55 | 1 gen. (2 siblings) | ST | partial duplication | |
(CAG)3 (CAA)3 (CAG)n CAA CAG | 53–55 | 2 gen. (mother and 2 siblings) | NST | partial deletion + exp. | [23] |
(CAG)3 (CAA)3 (CAG)9 CAA CAG CAA (CAG)31 CAA CAG | 51 | single case | - | (CAG)nII expansion | |
(CAG)3 (CAA)3 (CAG)9 CAA CAG CAA (CAG)23 CAA CAG | 43 | single case | - | (CAG)nII expansion | |
(CAG)3 (CAA)3 (CAG)9 CAA CAG CAA (CAG)30 CAA CAG | 50 | single case | - | (CAG)nII expansion | [24] |
(CAG)3 (CAA)3 (CAG)9 CAA CAG CAA (CAG)28 CAA CAG | 48 | 2 gen. (mother and 6 siblings) | ST | (CAG)nII expansion | |
(CAG)3 (CAA)3 (CAG)9 CAA CAG CAA (CAG)24 CAA CAG | 44 | single case | - | (CAG)nII expansion | |
(CAG)3 (CAA)3 (CAG)11 CAA CAG CAA (CAG)24 CAA CAG | 46 | 2 gen. (father and daughter) * | ST | (CAG)nII expansion | [25] |
(CAG)3 (CAA)3 (CAG)9 CAA CAG CAA (CAG)27 CAA CAG | 47 # | single case | - | (CAG)nII expansion | [26] |
(CAG)3 (CAA)3 (CAG)6 CAA CAG CAA (CAG)31 CAA CAG | 48 # | single case | - | (CAG)nII expansion | |
(CAG)3 (CAA)3 (CAG)9 CAA CAG CAA (CAG)44 CAA CAG | 53 | 1 gen. (2 siblings) | ST | (CAG)nII expansion | |
(CAG)3 (CAA)3 (CAG)9 CAA CAG CAA (CAG)57 CAA CAG | 53–66 | 2 gen. (father and son) | NST | (CAG)nII expansion | [27] |
(CAG)3 (CAA)3 (CAG)8 CAA CAG CAA (CAG)26 CAA CAG | 45 | 1 gen. (2 siblings) ** | ST | (CAG)nII expansion | [28] |
(CAG)3 (CAA)3 (CAG)n CAA CAG | 53–58 | 2 gen. (father and son) | NST | partial deletion + exp | [29] |
(CAG)3 (CAA)3 (CAG)9 CAA CAG CAA (CAG)25 CAA CAG | 45 | 1 gen. (2 siblings) ** | - | (CAG)nII expansion | [30] |
(CAG)3 (CAA)3 (CAG)8 CAA CAG CAA (CAG)26 CAA CAG | 45 | 1 gen. (2 siblings) ** | - | (CAG)nII expansion | |
(CAG)3(CAA)3 (CAG)9 CAA CAG CAA (CAG)15 CAA CAG CAA (CAG)17 CAA CAG | 55 | single case | - | partial duplication + exp | [31] |
(CAG)3 (CAA)3 (CAG)9 CAA CAG CAA (CAG)32 CAA CAG | 52 | 1 gen. (2 cousins) | ST | partial duplication + exp | [32] |
(CAG)3 (CAA)3 (CAG)n CAA CAG | 49–53 | 2 gen. (father and 2 siblings) | NST | partial deletion + exp | [33] |
(CAG)3 (CAA)4 (CAG)n CAA CAG | 53–66 | 2 gen. (father and daughter) | NST | partial deletion + exp | [34] |
(CAG)3 (CAA)4 (CAG)n CAA CAG | 54–55, 61 | 2 gen. (father and 2 daughters) | NST | partial deletion + exp | |
(CAG)3 (CAA)4 (CAG)n CAA CAG | 51–51, 52 | 2 gen. (father and 2 daughters) | NST | (CAG)nII expansion | |
(CAG)3 (CAA)3 (CAG)9 CAA CAG CAA (CAG)28 CAA CAG | 45 | single case | - | (CAG)nII expansion | [35] |
(CAG)3 (CAA)3 (CAG)n CAA CAG | 50–55 | 2 family members | NTS | partial deletion + exp | [11] |
(CAG)3(CAA)3 (CAG)8 CAA CAG CAA (CAG)35 CAA CAG | 54 | single case (de novo, paternal transmission) | - | (CAG)nII expansion | [36] |
(CAG)3 (CAA)3 (CAG)12 CAA CAA (CAG)13 CAA (CAG)16 CAA CAG | 52 | 2 gen. (father and proband) | ? | probably rearrangement pat. expanded repeats | [37] |
(CAG)3 (CAA)3 (CAG)9 CAA CAG CAA (CAG)23 CAA CAG | 43 | single case | - | (CAG)nII expansion | |
(CAG)3 (CAA)3 (CAG)30 CAA CAG CAA (CAG)16 CAA CAG | 57 | single case | - | (CAG)nI+nII expansion | |
(CAG)3 (CAA)3 (CAG)9 CAA CAG CAA (CAG)35 CAA CAG | 55 | single case | - | (CAG)nII expansion | |
(CAG)3 (CAA)3 (CAG)9 CAA CAG CAA (CAG)31 CAA CAG | 51 | single case | - | (CAG)nII expansion | |
(CAG)3 (CAA)3 (CAG)9 CAA CAG CAA (CAG)25 CAA CAG | 45 | 2 gen. (mother and proband) | - | (CAG)nII expansion | |
(CAG)3 (CAA)3 (CAG)9 CAA CAG CAA (CAG)16 CAA CAG CAA (CAG)16 CAA CAG | 55 | 1 gen. (2 siblings) | ST | partial duplication | [38] |
(CAG)3 (CAA)3 (CAG)11 CAA CAG CAA (CAG)27 CAA CAG | 47 | 2 gen. (mother and son) | ST | (CAG)nII expansion | |
(CAG)3 (CAA)3 (CAG)9 CAA CAA AGG (CAG)3 (CAA)3(CAG)9 CAA CAG CAA (CAG)18 CAA CAG | 56 | single case (de novo paternal transmission) | ST | partial duplication |
CAG/CAA Motif Organization in TBP Gene | |
---|---|
Five-unit organization of the CAG/CAA repeats region according to Gostout et al., 1993 [18]. Two polymorphic (CAG)n tracks are as follows: II—less variable n = 6–11 (n = 9; 91,7%), IV—n = 9–21 (n = 14–17; 83%). | |
Proposed 3-unit organization of CAG/CAA repeat region. Two motifs of identical structure II and III with variable (CAG)n repeat number. Similar to the five-unit model for a possible mechanism of mutation—expansion of the (CAG)n in unit III as a main mechanism or rearrangements within the region as a result of the interaction (secondary structure formation) between the whole motifs. | |
Possible model of mutation in identified CAG/CAA motifs | |
[(CAG)3 (CAA)2] [CAA (CAG)9CAA CAG] [CAA (CAG)>28 CAA CAG] | Expansion of the (CAG)n track in the second CAA(CAG)nCAACAG motif due to its hairpin formation and polymerase slippage—slow, multistep process alleles rather stable in transmission no loss of the basic configuration. |
[(CAG)3 (CAA)2] [CAA (CAG)45 CAA CAG] | Expansion of the (CAG)n track as a consequence of its instability after deletion of one of the CAA(CAG)nCAACAG motifs, probably as a result of the hairpin structure formation on the leading strand. Less stable in transmission (in analyzed data max. increased CAG repeats number +7) |
[(CAG)3 (CAA)2] [CAA (CAG)9 CAA CAG] [CAA (CAG) 16 CAA CAG]2 [(CAG)3 (CAA)2] [CAA (CAG)9 (CAA)3 (CAG)9 CAA CAG]2 [CAA (CAG)19 CAA CAG] [(CAG)3 (CAA)2] CAA (CAG)12 (CAA)2 (CAG)13 [CAA (CAG)16 CAA CAG] | Partial duplication of the CAG/CAA repeats region due to the formation of the FEN1 resistant structures on the 5′ flap end of the Okazaki fragment or by triplex structure forming between the Okazaki fragment and template strand. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoffman-Zacharska, D.; Sulek, A. The New Face of Dynamic Mutation—The CAA [CAG]n CAA CAG Motif as a Mutable Unit in the TBP Gene Causative for Spino-Cerebellar Ataxia Type 17. Int. J. Mol. Sci. 2024, 25, 8190. https://doi.org/10.3390/ijms25158190
Hoffman-Zacharska D, Sulek A. The New Face of Dynamic Mutation—The CAA [CAG]n CAA CAG Motif as a Mutable Unit in the TBP Gene Causative for Spino-Cerebellar Ataxia Type 17. International Journal of Molecular Sciences. 2024; 25(15):8190. https://doi.org/10.3390/ijms25158190
Chicago/Turabian StyleHoffman-Zacharska, Dorota, and Anna Sulek. 2024. "The New Face of Dynamic Mutation—The CAA [CAG]n CAA CAG Motif as a Mutable Unit in the TBP Gene Causative for Spino-Cerebellar Ataxia Type 17" International Journal of Molecular Sciences 25, no. 15: 8190. https://doi.org/10.3390/ijms25158190
APA StyleHoffman-Zacharska, D., & Sulek, A. (2024). The New Face of Dynamic Mutation—The CAA [CAG]n CAA CAG Motif as a Mutable Unit in the TBP Gene Causative for Spino-Cerebellar Ataxia Type 17. International Journal of Molecular Sciences, 25(15), 8190. https://doi.org/10.3390/ijms25158190