Investigation of 2,4-Dihydroxylaryl-Substituted Heterocycles as Inhibitors of the Growth and Development of Biotrophic Fungal Pathogens Associated with the Most Common Cereal Diseases
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barón, M.; Flexas, J.; Delucia, E.H. Photosynthetic Responses to Biotic Stress. In Terrestrial Photosynthesis in a Changing Environment a Molecular, Physiological and Ecological Approach; Cambridge University Press: Cambridge, UK, 2011; pp. 331–350. ISBN 978-0-521-89941-3. [Google Scholar]
- González-Fernández, R.; Prats, E.; Jorrín-Novo, J.V. Proteomics of Plant Pathogenic Fungi. J. Biomed. Biotechnol. 2010, 2010, 932527. [Google Scholar] [CrossRef] [PubMed]
- Knogge, W. Fungal Infection of Plants. Plant Cell 1996, 8, 1711–1722. [Google Scholar] [CrossRef] [PubMed]
- Saddique, M.; Kamran, M.; Shahbaz, M. Chapter 4—Differential Responses of Plants to Biotic Stress and the Role of Metabolites. In Plant Metabolites and Regulation under Environmental Stress; Ahmad, P., Ahanger, M.A., Singh, V.P., Tripathi, D.K., Alam, P., Alyemeni, M.N., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 69–87. ISBN 978-0-12-812689-9. [Google Scholar]
- Garrett, K.A.; Bebber, D.P.; Etherton, B.A.; Gold, K.M.; Sulá, A.I.P.; Selvaraj, M.G. Climate Change Effects on Pathogen Emergence: Artificial Intelligence to Translate Big Data for Mitigation. Annu. Rev. Phytopathol. 2022, 60, 357–378. [Google Scholar] [CrossRef] [PubMed]
- Grulke, N.E. The Nexus of Host and Pathogen Phenology: Understanding the Disease Triangle with Climate Change. New Phytol. 2011, 189, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.K.; Delgado-Baquerizo, M.; Egidi, E.; Guirado, E.; Leach, J.E.; Liu, H.; Trivedi, P. Climate Change Impacts on Plant Pathogens, Food Security and Paths Forward. Nat. Rev. Microbiol. 2023, 21, 640–656. [Google Scholar] [CrossRef] [PubMed]
- Elad, Y.; Pertot, I. Climate Change Impacts on Plant Pathogens and Plant Diseases. J. Crop Improv. 2014, 28, 99–139. [Google Scholar] [CrossRef]
- Velásquez, A.C.; Castroverde, C.D.M.; He, S.Y. Plant–Pathogen Warfare under Changing Climate Conditions. Curr. Biol. 2018, 28, R619–R634. [Google Scholar] [CrossRef] [PubMed]
- Boddy, L. Chapter 8—Pathogens of Autotrophs. In The Fungi, 3rd ed.; Watkinson, S.C., Boddy, L., Money, N.P., Eds.; Academic Press: Boston, MA, USA, 2016; pp. 245–292. ISBN 978-0-12-382034-1. [Google Scholar]
- Menardo, F.; Praz, C.R.; Wicker, T.; Keller, B. Rapid Turnover of Effectors in Grass Powdery Mildew (Blumeria graminis). BMC Evol. Biol. 2017, 17, 223. [Google Scholar] [CrossRef]
- Aime, M.C.; Bell, C.D.; Wilson, A.W. Deconstructing the Evolutionary Complexity between Rust Fungi (Pucciniales) and Their Plant Hosts. Stud. Mycol. 2018, 89, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Aime, M.C.; McTaggart, A.R. A Higher-Rank Classification for Rust Fungi, with Notes on Genera. Fungal Syst. Evol. 2021, 7, 21–47. [Google Scholar] [CrossRef] [PubMed]
- Moscou, M.J.; van Esse, H.P. The Quest for Durable Resistance. Science 2017, 358, 1541–1542. [Google Scholar] [CrossRef] [PubMed]
- Aqueveque, P.; Céspedes, C.L.; Becerra, J.; Aranda, M.; Sterner, O. Antifungal Activities of Secondary Metabolites Isolated from Liquid Fermentations of Stereum Hirsutum (Sh134-11) against Botrytis Cinerea (Grey Mould Agent). Food Chem. Toxicol. 2017, 109, 1048–1054. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.-W.; Huang, L.; Pu, H.; Ma, J. Introducing Reticular Chemistry into Agrochemistry. Chem. Soc. Rev. 2021, 50, 1070–1110. [Google Scholar] [CrossRef] [PubMed]
- Zajac, A.; Kukawka, R.; Pawlowska-Zygarowicz, A.; Stolarska, O.; Smiglak, M. Ionic Liquids as Bioactive Chemical Tools for Use in Agriculture and the Preservation of Agricultural Products. Green Chem. 2018, 20, 4764–4789. [Google Scholar] [CrossRef]
- Szosland-Faltyn, A.; Krolasik, J.; Bartodziejska, B. Przeciwdrobnoustrojowa aktywność roślinnych substancji bioaktywnych wobec bakterii z rodzaju Campylobacter spp. Postępy Nauki Technol. Przem. Rolno-Spoż. 2016, 3, 77–85. [Google Scholar]
- Al-Mulla, A. A Review: Biological Importance of Heterocyclic Compounds. Pharma Chem. 2017, 9, 141–147. [Google Scholar]
- Yadav, S.; Singh, S.; Gupta, C. A Concise Overview on Heterocyclic Compounds Exhibiting Pesticidal Activities. Int. J. Adv. Res. 2021, 9, 989–1004. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Tang, Z.; Ma, C.; Jiao, Y. Synthesis and Fungicidal Activity of Novel 6H-Benzimidazo[1,2-c][1,3]Benzoxazin-6-Ones. Chem. Heterocycl. Compd. 2021, 57, 581–587. [Google Scholar] [CrossRef]
- Kalinina, T.A.; Balandina, V.I.; Obydennov, K.L.; Slepukhin, P.A.; Fan, Z.; Bakulev, V.A.; Glukhareva, T.V. Synthesis, Fungicidal Activity and Plant Protective Properties of 1,2,3-Thiadiazole and Isothiazole-Based N-Acyl-N-Arylalaninates. Molecules 2023, 28, 419. [Google Scholar] [CrossRef] [PubMed]
- Legocki, J.; Matysiak, J.; Niewiadomy, A.; Kostecka, M. Synthesis and Fungistatic Activity of New Groups of 2,4-Dihydroxythiobenzoyl Derivatives against Phytopathogenic Fungi. J. Agric. Food Chem. 2003, 51, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Niewiadomy, A.; Matysiak, J.; Macik-Niewiadomy, G. In Vitro Evaluation of 2,4-Dihydroxythiobenzanilides against Various Moulds. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2001, 13, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Matysiak, J.; Krajewska-Kułak, E.; Karczewski, J.; Niewiadomy, A. N-Heterocyclic Derivatives of 2,4-Dihydroxybenzcarbothioamide as Antimycotic Agents. J. Agric. Food Chem. 2001, 49, 5251–5257. [Google Scholar] [CrossRef] [PubMed]
- Jeschke, P. Progress of Modern Agricultural Chemistry and Future Prospects. Pest Manag. Sci. 2016, 72, 433–455. [Google Scholar] [CrossRef] [PubMed]
- Poole, N.F.; Arnaudin, M.E. The Role of Fungicides for Effective Disease Management in Cereal Crops. Can. J. Plant Pathol. 2014, 36, 1–11. [Google Scholar] [CrossRef]
- The European Parliament; The Council of the European Union. European Parliament Directive 2009/128/EC of the European Parliament and the Council of 21 October 2009 Establishing a Framework for Community Action to Achieve the Sustainable Use of Pesticides. Off. J. Eur. Union 2009, 309, 71–86. [Google Scholar]
- Mundt, C.C.; Cowger, C.; Garrett, K.A. Relevance of Integrated Disease Management to Resistance Durability. Euphytica 2002, 124, 245–252. [Google Scholar] [CrossRef]
- Baker, R.H.A.; Sansford, C.E.; Jarvis, C.H.; Cannon, R.J.C.; MacLeod, A.; Walters, K.F.A. The Role of Climatic Mapping in Predicting the Potential Geographical Distribution of Non-Indigenous Pests under Current and Future Climates. Agric. Ecosyst. Environ. 2000, 82, 57–71. [Google Scholar] [CrossRef]
- McDonald, B.A.; Linde, C. Pathogen Population Genetics, Evolutionary Potential, and Durable Resistance. Annu. Rev. Phytopathol. 2002, 40, 349–379. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Cao, X.; Xu, X.; Jiang, Y.; Luo, Y.; Ma, Z.; Fan, J.; Zhou, Y. Effects of Climate Change on Epidemics of Powdery Mildew in Winter Wheat in China. Plant Dis. 2017, 101, 1753–1760. [Google Scholar] [CrossRef] [PubMed]
- Brent, K.J.; Hollomon, D.W. Fungicide Resistance: The Assessment of Risk; Global Crop Protection Federation: Brussels, Belgium, 1998; Volume 2. [Google Scholar]
- Grimmer, M.K.; van den Bosch, F.; Powers, S.J.; Paveley, N.D. Fungicide Resistance Risk Assessment Based on Traits Associated with the Rate of Pathogen Evolution. Pest Manag. Sci. 2015, 71, 207–215. [Google Scholar] [CrossRef]
- Dhillon, N.K.; Gosal, S.S.; Kang, M.S. Improving Crop Productivity under Changing Environment. In Improving Crop Productivity in Sustainable Agriculture; Tuteja, N., Gill, S.S., Tuteja, R., Eds.; Wiley: Hoboken, NJ, USA, 2012; pp. 23–48. ISBN 978-3-527-33242-7. [Google Scholar]
- Lamberth, C. Heterocyclic Chemistry in Crop Protection. Pest Manag. Sci. 2013, 69, 1106–1114. [Google Scholar] [CrossRef] [PubMed]
- Lamberth, C.; Jeanmart, S.; Luksch, T.; Plant, A. Current Challenges and Trends in the Discovery of Agrochemicals. Science 2013, 341, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Arora, P.; Arora, V.; Lamba, H.S.; Wadhwa, D. Importance of Heterocyclic Chemistry: A Review. Int. J. Pharm. Sci. Res. 2012, 3, 2947. [Google Scholar]
- Meanwell, N.A.; Lolli, M.L. Applications of Heterocycles in the Design of Drugs and Agricultural Products; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- El-Baky, N.A.; Amara, A.A.A.F. Recent Approaches towards Control of Fungal Diseases in Plants: An Updated Review. J. Fungi 2021, 7, 900. [Google Scholar] [CrossRef]
- Niewiadomy, A.; Matysiak, J. Fungicidal Evaluation of Substituted 4-(1,3,4-Thiadiazol-2-Yl) Benzene-1,3-Diols. Pestycydy 2010, 1–4, 5–14. [Google Scholar]
- El-Azab, A.S.; Al-Omar, M.A.; Abdel-Aziz, A.A.-M.; Abdel-Aziz, N.I.; el-Sayed, M.A.-A.; Aleisa, A.M.; Sayed-Ahmed, M.M.; Abdel-Hamide, S.G. Design, Synthesis and Biological Evaluation of Novel Quinazoline Derivatives as Potential Antitumor Agents: Molecular Docking Study. Eur. J. Med. Chem. 2010, 45, 4188–4198. [Google Scholar] [CrossRef] [PubMed]
- Nagrale, S.; Pondkule, A.; Babar, V. Recent Advances in the Biological Activity of Quinazoline. Int. J. Pharm. Chem. Anal. 2023, 9, 169–173. [Google Scholar] [CrossRef]
- Serya, R.A.T.; Abbas, A.H.; Ismail, N.S.M.; Esmat, A.; Abou El Ella, D.A. Design, Synthesis and Biological Evaluation of Novel Quinazoline-Based Anti-Inflammatory Agents Acting as PDE4B Inhibitors. Chem. Pharm. Bull. 2015, 63, 102–116. [Google Scholar] [CrossRef] [PubMed]
- Bansal, R.; Thota, S. Pyridazin-3(2H)-Ones: The Versatile Pharmacophore of Medicinal Significance. Med. Chem. Res. 2013, 22, 2539–2552. [Google Scholar] [CrossRef]
- Loksha, Y.M.; Abd-Alhaseeb, M.M. Synthesis and Biological Screening of Some Novel 6-Substituted 2-Alkylpyridazin-3(2H)-Ones as Anti-Inflammatory and Analgesic Agents. Arch. Pharm. 2020, 353, 1900295. [Google Scholar] [CrossRef]
- Andreeva, O.V.; Garifullin, B.F.; Sharipova, R.R.; Strobykina, I.Y.; Sapunova, A.S.; Voloshina, A.D.; Belenok, M.G.; Dobrynin, A.B.; Khabibulina, L.R.; Kataev, V.E. Glycosides and Glycoconjugates of the Diterpenoid Isosteviol with a 1,2,3-Triazolyl Moiety: Synthesis and Cytotoxicity Evaluation. J. Nat. Prod. 2020, 83, 2367–2380. [Google Scholar] [CrossRef] [PubMed]
- Bonandi, E.; Christodoulou, M.S.; Fumagalli, G.; Perdicchia, D.; Rastelli, G.; Passarella, D. The 1,2,3-Triazole Ring as a Bioisostere in Medicinal Chemistry. Drug Discov. Today 2017, 22, 1572–1581. [Google Scholar] [CrossRef] [PubMed]
- Moghimi, S.; Salarinejad, S.; Toolabi, M.; Firoozpour, L.; Esmaeil Sadat Ebrahimi, S.; Safari, F.; Madani-Qamsari, F.; Mojtabavi, S.; Faramarzi, M.A.; Karima, S.; et al. Synthesis, in-Vitro Evaluation, Molecular Docking, and Kinetic Studies of Pyridazine-Triazole Hybrid System as Novel α-Glucosidase Inhibitors. Bioorganic Chem. 2021, 109, 104670. [Google Scholar] [CrossRef] [PubMed]
- Los, R.; Wesołowska-Trojanowska, M.; Malm, A.; Karpińska, M.M.; Matysiak, J.; Niewiadomy, A.; Głaszcz, U. A New Approach to the Synthesis of 2-Aryl-Substituted Benzimidazoles, Quinazolines, and Other Related Compounds and Their Antibacterial Activity. Heteroat. Chem. 2012, 23, 265–275. [Google Scholar] [CrossRef]
- Matysiak, J.; Juszczak, M.; Karpińska, M.M.; Langner, E.; Walczak, K.; Lemieszek, M.; Skrzypek, A.; Rzeski, W.; Niewiadomy, A. Synthesis, Characterization, and Pharmacological Evaluation of Novel Azolo- and Azinothiazinones Containing 2,4-Dihydroxyphenyl Substituent as Anticancer Agents. Monatshefte Chem. 2015, 146, 1315–1327. [Google Scholar] [CrossRef] [PubMed]
- Matysiak, J.; Juszczak, M.; Karpińska, M.M.; Langner, E.; Walczak, K.; Lemieszek, M.K.; Skrzypek, A.; Niewiadomy, A.; Rzeski, W. Synthesis of 2-(2,4-Dihydroxyphenyl)Thieno-1,3-Thiazin-4-Ones, Their Lipophilicity and Anticancer Activity in Vitro. Mol. Divers. 2015, 19, 725–736. [Google Scholar] [CrossRef] [PubMed]
- Matysiak, J.; Los, R.; Malm, A.; Karpińska, M.M.; Głaszcz, U.; Rajtar, B.; Polz-Dacewicz, M.; Trojanowska-Wesołowska, M.; Niewiadomy, A. Synthesis and Antibacterial Activity of Novel Fused 1,3-Thiazoles and 1,3-Thiazines Incorporating a 2,4-Dihydroxyphenyl Residue. Arch. Pharm. 2012, 345, 302–313. [Google Scholar] [CrossRef] [PubMed]
- Skrzypek, A.; Matysiak, J.; Karpińska, M.; Czarnecka, K.; Kręcisz, P.; Stary, D.; Kukułowicz, J.; Paw, B.; Bajda, M.; Szymański, P.; et al. Biological Evaluation and Molecular Docking of Novel 1,3,4-Thiadiazole-Resorcinol Conjugates as Multifunctional Cholinesterases Inhibitors. Bioorganic Chem. 2021, 107, 104617. [Google Scholar] [CrossRef]
- Hsam, S.L.K.; Peters, N.; Paderina, E.V.; Felsenstein, F.; Oppitz, K.; Zeller, F.J. Genetic Studies of Powdery Mildew Resistance in Common Oat (Avena sativa L.) I. Cultivars and Breeding Lines Grown in Western Europe and North America. Euphytica 1997, 96, 421–427. [Google Scholar] [CrossRef]
- Mains, E.B. Inheritance of Resistance to Powdery Mildew, Erysiphe Graminis Tritici, in Wheat. Phytopathology 1934, 24, 1257–1261. [Google Scholar]
- Chen, L.; Zhao, B.; Fan, Z.; Hu, M.; Li, Q.; Hu, W.; Li, J.; Zhang, J. Discovery of Novel Isothiazole, 1,2,3-Thiadiazole, and Thiazole-Based Cinnamamides as Fungicidal Candidates. J. Agric. Food Chem. 2019, 67, 12357–12365. [Google Scholar] [CrossRef]
Compound Groups | Compound | Fungal Pathogens | |||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Blumeria graminis f.sp. avenae, | Blumeria graminis f.sp. tritici | B. graminis f. sp. triticale | Puccinia coronata f.sp. avenae | Puccinia recondita f.sp. tritici. | Puccinia hordei | ||||||||||||||||||||||||||||||||
Compound Concentration μg/mL | |||||||||||||||||||||||||||||||||||||
10 | 9 | 8 | 7 | 6 | 5 | 10 | 9 | 8 | 7 | 6 | 5 | 10 | 9 | 8 | 7 | 6 | 5 | 10 | 9 | 8 | 7 | 6 | 5 | 10 | 9 | 8 | 7 | 6 | 5 | 10 | 9 | 8 | 7 | 6 | 5 | ||
Control | DMSO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1,3,4-thiadiazole derivatives | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 50 | 0 | 0 | 0 | 0 | 0 |
2 | 90 | 0 | 0 | 0 | 0 | 0 | 80 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 90 | 0 | 0 | 0 | 0 | 80 | 0 | 0 | 0 | 0 | 0 | 80 | 0 | 0 | 0 | 0 | 0 | |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
4 | 90 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 80 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
5 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | |
6 | 80 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
7 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | |
8 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | |
9 | 100 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 80 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
11 | 80 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 80 | 0 | 0 | 0 | 0 | 0 | 100 | 90 | 0 | 0 | 0 | 0 | |
1,3-tiazole fused derivatives | 12 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 |
13 | 100 | 80 | 50 | 0 | 0 | 0 | 50 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 90 | 0 | 0 | 0 | 0 | 100 | 90 | 0 | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | |
14 | 90 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 50 | 0 | 0 | 0 | 0 | 0 | 80 | 0 | 0 | 0 | 0 | 0 | 80 | 0 | 0 | 0 | 0 | 0 | 80 | 0 | 0 | 0 | 0 | 0 | |
15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
1,2,4-triazole fused derivatives | 16 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 80 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 |
17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
18 | 90 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 80 | 0 | 0 | 0 | 0 | 0 | 80 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | |
19 | 100 | 90 | 80 | 50 | 50 | 0 | 100 | 90 | 80 | 50 | 50 | 0 | 100 | 90 | 80 | 50 | 50 | 0 | 100 | 100 | 100 | 100 | 80 | 80 | 100 | 100 | 100 | 90 | 80 | 80 | 100 | 90 | 80 | 70 | 50 | 50 | |
20 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 90 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | |
Benzothiazine derivatives | 21 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 50 | 0 | 0 | 0 | 0 | 80 | 50 | 0 | 0 | 0 | 0 | 100 | 80 | 50 | 0 | 0 | 0 |
22 | 90 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 90 | 80 | 0 | 0 | 0 | 0 | |
23 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Benzothiadiazine derivatives | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
25 | 80 | 0 | 0 | 0 | 0 | 0 | 80 | 0 | 0 | 0 | 0 | 0 | 80 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
26 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
27 | 100 | 90 | 80 | 50 | 50 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 100 | 100 | 90 | 90 | 80 | 0 | 100 | 100 | 0 | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | |
Quinazoline derivatives | 28 | 100 | 90 | 80 | 80 | 50 | 50 | 100 | 90 | 90 | 80 | 50 | 50 | 100 | 90 | 80 | 80 | 50 | 50 | 100 | 100 | 100 | 90 | 90 | 90 | 100 | 100 | 100 | 90 | 90 | 80 | 100 | 90 | 80 | 70 | 50 | 50 |
29 | 100 | 100 | 80 | 80 | 50 | 50 | 100 | 80 | 80 | 80 | 50 | 50 | 100 | 80 | 80 | 50 | 50 | 50 | 100 | 100 | 100 | 90 | 90 | 90 | 100 | 100 | 100 | 90 | 90 | 80 | 100 | 80 | 70 | 50 | 50 | 50 | |
30 | 80 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
31 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
32 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 80 | 0 | 0 | 0 | 0 | 100 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | |
33 | 90 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 100 | 80 | 80 | 0 | 0 | 0 | 100 | 80 | 0 | 0 | 0 | 0 | 100 | 80 | 0 | 0 | 0 | 0 |
Cereal | Pathogen | Disease |
---|---|---|
Oat | Blumeria graminis (DC.) Speer f.sp. avenae Marchal | Powdery mildew |
Puccinia coronata Corda f.sp. avenae | Crown rust | |
Wheat | Blumeria graminis (DC.) Speer f.sp. tritici Marchal | Powdery mildew |
Puccinia recondita Rob. ex Desm f.sp. tritici (Eriks.) | Brown rust | |
Barley | Puccinia hordei Otth. | Leaf rust |
Triticale | B. graminis (DC.) Speerf. sp. triticale | Powdery mildew |
Degree of Infection | Description of the Degree | Effectiveness of Disease Control in % |
---|---|---|
0 | No symptoms | 100% |
1 | Limited development of the pathogen in small, singular colonies | 90% |
2 | Mycelium visible with a small quantity of spores—less than 20% of the leaf surface | 80% |
3 | Extensive mycelium occupying 20–50% of the leaf surface | 50% |
4 | Abundant mycelium occupying more than 50% of the leaf surface | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rząd, K.; Nucia, A.; Grzelak, W.; Matysiak, J.; Kowalczyk, K.; Okoń, S.; Matwijczuk, A. Investigation of 2,4-Dihydroxylaryl-Substituted Heterocycles as Inhibitors of the Growth and Development of Biotrophic Fungal Pathogens Associated with the Most Common Cereal Diseases. Int. J. Mol. Sci. 2024, 25, 8262. https://doi.org/10.3390/ijms25158262
Rząd K, Nucia A, Grzelak W, Matysiak J, Kowalczyk K, Okoń S, Matwijczuk A. Investigation of 2,4-Dihydroxylaryl-Substituted Heterocycles as Inhibitors of the Growth and Development of Biotrophic Fungal Pathogens Associated with the Most Common Cereal Diseases. International Journal of Molecular Sciences. 2024; 25(15):8262. https://doi.org/10.3390/ijms25158262
Chicago/Turabian StyleRząd, Klaudia, Aleksandra Nucia, Weronika Grzelak, Joanna Matysiak, Krzysztof Kowalczyk, Sylwia Okoń, and Arkadiusz Matwijczuk. 2024. "Investigation of 2,4-Dihydroxylaryl-Substituted Heterocycles as Inhibitors of the Growth and Development of Biotrophic Fungal Pathogens Associated with the Most Common Cereal Diseases" International Journal of Molecular Sciences 25, no. 15: 8262. https://doi.org/10.3390/ijms25158262
APA StyleRząd, K., Nucia, A., Grzelak, W., Matysiak, J., Kowalczyk, K., Okoń, S., & Matwijczuk, A. (2024). Investigation of 2,4-Dihydroxylaryl-Substituted Heterocycles as Inhibitors of the Growth and Development of Biotrophic Fungal Pathogens Associated with the Most Common Cereal Diseases. International Journal of Molecular Sciences, 25(15), 8262. https://doi.org/10.3390/ijms25158262