Comparative Analysis of Codon Usage Bias in Six Eimeria Genomes
Abstract
:1. Introduction
2. Results
2.1. Analysis of Nucleotide Composition and Codon Usage in Eimeria
2.2. Assessing the Correlation between Codon Usage Metrics
2.3. ENC-Plot Analysis
2.4. PR2-Plot Analysis
2.5. Neutrality Plot Analysis
2.6. Correspondence Analysis
2.7. Optimal Codon Analysis of Eimeria Genomes
2.8. Comparative Analysis of Codon Usage between Eimeria and Other Organisms
3. Discussion
4. Materials and Methods
4.1. Genomic Data
4.2. Calculation of Codon Related Parameters
4.3. ENC-Plot Analysis
4.4. PR2-Plot Analysis
4.5. Neutrality Plot Analysis
4.6. Analysis of Optimal Codons in Eimeria Genomes
4.7. Comparative Analysis of Codon Usage between Eimeria and Other Organisms
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharp, P.M.; Li, W.-H. The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987, 15, 1281–1295. [Google Scholar] [CrossRef]
- Plotkin, J.B.; Kudla, G. Synonymous but not the same: The causes and consequences of codon bias. Nat. Rev. Genet. 2011, 12, 32–42. [Google Scholar] [CrossRef]
- Yannai, A.; Katz, S.; Hershberg, R. The codon usage of lowly expressed genes is subject to natural selection. Genome Biol. Evol. 2018, 10, 1237–1246. [Google Scholar] [CrossRef]
- Machado, H.E.; Lawrie, D.S.; Petrov, D.A. Pervasive strong selection at the level of codon usage bias in Drosophila melanogaster. Genetics 2020, 214, 511–528. [Google Scholar] [CrossRef]
- Zalucki, Y.M.; Power, P.M.; Jennings, M.P. Selection for efficient translation initiation biases codon usage at second amino acid position in secretory proteins. Nucleic Acids Res. 2007, 35, 5748–5754. [Google Scholar] [CrossRef]
- Zalucki, Y.M.; Beacham, I.R.; Jennings, M.P. Biased codon usage in signal peptides: A role in protein export. Trends Microbiol. 2009, 17, 146–150. [Google Scholar] [CrossRef]
- Guan, D.-L.; Ma, L.-B.; Khan, M.S.; Zhang, X.-X.; Xu, S.-Q.; Xie, J.-Y. Analysis of codon usage patterns in Hirudinaria manillensis reveals a preference for GC-ending codons caused by dominant selection constraints. BMC Genom. 2018, 19, 542. [Google Scholar] [CrossRef]
- Iriarte, A.; Lamolle, G.; Musto, H. Codon usage bias: An endless tale. J. Mol. Evol. 2021, 89, 589–593. [Google Scholar] [CrossRef]
- Chen, S.L.; Lee, W.; Hottes, A.K.; Shapiro, L.; McAdams, H.H. Codon usage between genomes is constrained by genome-wide mutational processes. Proc. Natl. Acad. Sci. USA 2004, 101, 3480–3485. [Google Scholar] [CrossRef]
- Hanson, G.; Coller, J. Codon optimality, bias and usage in translation and mRNA decay. Nat. Rev. Mol. Cell Biol. 2018, 19, 20–30. [Google Scholar] [CrossRef]
- Frumkin, I.; Lajoie, M.J.; Gregg, C.J.; Hornung, G.; Church, G.M.; Pilpel, Y. Codon usage of highly expressed genes affects proteome-wide translation efficiency. Proc. Natl. Acad. Sci. USA 2018, 115, E4940–E4949. [Google Scholar] [CrossRef] [PubMed]
- Parvathy, S.T.; Udayasuriyan, V.; Bhadana, V. Codon usage bias. Mol. Biol. Rep. 2022, 49, 539–565. [Google Scholar] [CrossRef]
- Shen, X.; Song, S.; Li, C.; Zhang, J. Synonymous mutations in representative yeast genes are mostly strongly non-neutral. Nature 2022, 606, 725–731. [Google Scholar] [CrossRef]
- Weissman, J.L.; Hou, S.; Fuhrman, J.A. Estimating maximal microbial growth rates from cultures, metagenomes, and single cells via codon usage patterns. Proc. Natl. Acad. Sci. USA 2021, 118, e2016810118. [Google Scholar] [CrossRef] [PubMed]
- Presnyak, V.; Alhusaini, N.; Chen, Y.-H.; Martin, S.; Morris, N.; Kline, N.; Olson, S.; Weinberg, D.; Baker, K.E.; Graveley, B.R. Codon optimality is a major determinant of mRNA stability. Cell 2015, 160, 1111–1124. [Google Scholar] [CrossRef]
- Torrent, M.; Chalancon, G.; De Groot, N.S.; Wuster, A.; Madan Babu, M. Cells alter their tRNA abundance to selectively regulate protein synthesis during stress conditions. Sci. Signal. 2018, 11, eaat6409. [Google Scholar] [CrossRef]
- Mittal, P.; Brindle, J.; Stephen, J.; Plotkin, J.B.; Kudla, G. Codon usage influences fitness through RNA toxicity. Proc. Natl. Acad. Sci. USA 2018, 115, 8639–8644. [Google Scholar] [CrossRef]
- Fatoba, A.J.; Adeleke, M.A. Diagnosis and control of chicken coccidiosis: A recent update. J. Parasit. Dis. 2018, 42, 483–493. [Google Scholar] [CrossRef]
- Mesa-Pineda, C.; Navarro-Ruíz, J.L.; López-Osorio, S.; Chaparro-Gutiérrez, J.J.; Gómez-Osorio, L.M. Chicken coccidiosis: From the parasite lifecycle to control of the disease. Front. Vet. Sci. 2021, 8, 787653. [Google Scholar] [CrossRef]
- Williams, R. Tracing the emergence of drug-resistance in coccidia (Eimeria spp.) of commercial broiler flocks medicated with decoquinate for the first time in the United Kingdom. Vet. Parasitol. 2006, 135, 1–14. [Google Scholar] [CrossRef]
- Attree, E.; Sanchez-Arsuaga, G.; Jones, M.; Xia, D.; Marugan-Hernandez, V.; Blake, D.; Tomley, F. Controlling the causative agents of coccidiosis in domestic chickens; an eye on the past and considerations for the future. CABI Agric. Biosci. 2021, 2, 37. [Google Scholar] [CrossRef]
- Dalloul, R.A.; Lillehoj, H.S. Poultry coccidiosis: Recent advancements in control measures and vaccine development. Expert Rev. Vaccines 2006, 5, 143–163. [Google Scholar] [CrossRef]
- Ahmad, R.; Yu, Y.-H.; Hua, K.-F.; Chen, W.-J.; Zaborski, D.; Dybus, A.; Hsiao, F.S.-H.; Cheng, Y.-H. Management and control of coccidiosis in poultry—A review. Anim. Biosci. 2024, 37, 1. [Google Scholar] [CrossRef]
- Fornace, K.M.; Clark, E.L.; Macdonald, S.E.; Namangala, B.; Karimuribo, E.; Awuni, J.A.; Thieme, O.; Blake, D.P.; Rushton, J. Occurrence of Eimeria species parasites on small-scale commercial chicken farms in Africa and indication of economic profitability. PLoS ONE 2013, 8, e84254. [Google Scholar] [CrossRef]
- Shirley, M.W.; Smith, A.L.; Tomley, F.M. The biology of avian Eimeria with an emphasis on their control by vaccination. Adv. Parasitol. 2005, 60, 285–330. [Google Scholar]
- Fayer, R. Epidemiology of protozoan infections: The coccidia. Vet. Parasitol. 1980, 6, 75–103. [Google Scholar] [CrossRef]
- Lillehoj, E.P.; Yun, C.H.; Lillehoj, H.S. Vaccines against the avian enteropathogens Eimeria, Cryptosporidium and Salmonella. Anim. Health Res. Rev. 2000, 1, 47–65. [Google Scholar] [CrossRef]
- McDonald, V.; Shirley, M. The endogenous development of virulent strains and attenuated precocious lines of Eimeria tenella and E. necatrix. J. Parasitol. 1987, 73, 993–997. [Google Scholar] [CrossRef]
- Sueoka, N. Translation-coupled violation of Parity Rule 2 in human genes is not the cause of heterogeneity of the DNA G+ C content of third codon position. Gene 1999, 238, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Sueoka, N. Intrastrand parity rules of DNA base composition and usage biases of synonymous codons. J. Mol. Evol. 1995, 40, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Khandia, R.; Singhal, S.; Kumar, U.; Ansari, A.; Tiwari, R.; Dhama, K.; Das, J.; Munjal, A.; Singh, R.K. Analysis of Nipah virus codon usage and adaptation to hosts. Front. Microbiol. 2019, 10, 886. [Google Scholar] [CrossRef]
- Duret, L. Evolution of synonymous codon usage in metazoans. Curr. Opin. Genet. Dev. 2002, 12, 640–649. [Google Scholar] [CrossRef]
- Bazzini, A.A.; Del Viso, F.; Moreno-Mateos, M.A.; Johnstone, T.G.; Vejnar, C.E.; Qin, Y.; Yao, J.; Khokha, M.K.; Giraldez, A.J. Codon identity regulates mRNA stability and translation efficiency during the maternal-to-zygotic transition. EMBO J. 2016, 35, 2087–2103. [Google Scholar] [CrossRef]
- Zhou, Z.; Dang, Y.; Zhou, M.; Li, L.; Yu, C.-h.; Fu, J.; Chen, S.; Liu, Y. Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc. Natl. Acad. Sci. USA 2016, 113, E6117–E6125. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Huang, G.; Zhang, W. Mutations in NlInR1 affect normal growth and lifespan in the brown planthopper Nilaparvata lugens. Insect Biochem. Mol. Biol. 2019, 115, 103246. [Google Scholar] [CrossRef]
- De la Fuente, R.; Díaz-Villanueva, W.; Arnau, V.; Moya, A. Genomic signature in evolutionary biology: A review. Biology 2023, 12, 322. [Google Scholar] [CrossRef] [PubMed]
- Khandia, R.; Gurjar, P.; Kamal, M.A.; Greig, N.H. Relative synonymous codon usage and codon pair analysis of depression associated genes. Sci. Rep. 2024, 14, 3502. [Google Scholar] [CrossRef]
- Dhindsa, R.S.; Copeland, B.R.; Mustoe, A.M.; Goldstein, D.B. Natural selection shapes codon usage in the human genome. Am. J. Hum. Genet. 2020, 107, 83–95. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Q.; Zhao, F. Synonymous but not silent: The codon usage code for gene expression and protein folding. Annu. Rev. Biochem. 2021, 90, 375–401. [Google Scholar] [CrossRef]
- Muto, A.; Yamao, F.; Osawa, S. The genome of Mycoplasma capricolum. Prog. Nucleic Acid Res. Mol. Biol. 1987, 34, 29–58. [Google Scholar] [PubMed]
- Saul, A.; Battistutta, D. Codon usage in Plasmodium falciparum. Mol. Biochem. Parasitol. 1988, 27, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Milhon, J.L.; Tracy, J.W. Updated codon usage in Schistosoma. Exp. Parasitol. 1995, 80, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Radrizzani, S.; Kudla, G.; Izsvák, Z.; Hurst, L.D. Selection on synonymous sites: The unwanted transcript hypothesis. Nat. Rev. Genet. 2024, 25, 431–448. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Dong, H.; Jiang, C.; Cao, F.; Tao, S.; Xu, L.-a. Analysis of codon usage patterns in Ginkgo biloba reveals codon usage tendency from A/U-ending to G/C-ending. Sci. Rep. 2016, 6, 35927. [Google Scholar] [CrossRef] [PubMed]
- Williford, A.; Demuth, J.P. Gene expression levels are correlated with synonymous codon usage, amino acid composition, and gene architecture in the red flour beetle, Tribolium castaneum. Mol. Biol. Evol. 2012, 29, 3755–3766. [Google Scholar] [CrossRef] [PubMed]
- Whittle, C.A.; Extavour, C.G. Expression-linked patterns of codon usage, amino acid frequency, and protein length in the basally branching arthropod Parasteatoda tepidariorum. Genome Biol. Evol. 2016, 8, 2722–2736. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, C.; Govindarajan, S.; Minshull, J. Codon bias and heterologous protein expression. Trends Biotechnol. 2004, 22, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Elena, C.; Ravasi, P.; Castelli, M.E.; Peirú, S.; Menzella, H.G. Expression of codon optimized genes in microbial systems: Current industrial applications and perspectives. Front. Microbiol. 2014, 5, 21. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Li, X. Conserved proteins of Eimeria and their applications to develop universal subunit vaccine against chicken coccidiosis. Vet. Vaccine 2024, 3, 100068. [Google Scholar] [CrossRef]
- Xia, X.; Xie, Z. DAMBE: Software package for data analysis in molecular biology and evolution. J. Hered. 2001, 92, 371–373. [Google Scholar] [CrossRef]
- Peden, J.F. Analysis of Codon Usage. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2000. [Google Scholar]
- Wright, F. The ‘effective number of codons’ used in a gene. Gene 1990, 87, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Nasrullah, I.; Butt, A.M.; Tahir, S.; Idrees, M.; Tong, Y. Genomic analysis of codon usage shows influence of mutation pressure, natural selection, and host features on Marburg virus evolution. BMC Evol. Biol. 2015, 15, 174. [Google Scholar] [CrossRef]
- Nakamura, Y.; Gojobori, T.; Ikemura, T. Codon usage tabulated from international DNA sequence databases: Status for the year 2000. Nucleic Acids Res. 2000, 28, 292. [Google Scholar] [CrossRef] [PubMed]
Species | GC | GC1 | GC2 | GC3 | GC3s | ENC |
---|---|---|---|---|---|---|
E. acervuline | 54.77 | 62.71 | 48.83 | 52.78 | 51.64 | 51.92 |
E. necatrix | 58.24 | 64.61 | 50.40 | 59.72 | 58.80 | 49.30 |
E. brunetti | 57.12 | 66.09 | 48.45 | 56.83 | 55.93 | 47.67 |
E. tenella | 57.59 | 63.64 | 49.38 | 59.75 | 58.78 | 50.25 |
E. praecox | 54.59 | 65.60 | 45.84 | 52.33 | 51.37 | 47.37 |
E. maxima | 52.67 | 61.99 | 47.30 | 48.71 | 47.43 | 51.17 |
Amino Acid | Codon | Codon Frequency | Ratio | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ET | GG | TG | PV | CP | EH | MM | HS | ET/GG | ET/TG | ET/PV | ET/CP | ET/EH | ET/MM | ET/HS | ||
Phe | UUU | 16.3 | 16.8 | 13.3 | 22.6 | 34.6 | 31.3 | 17.2 | 17.6 | 0.97 | 1.23 | 0.72 | 0.47 | 0.52 | 0.95 | 0.93 |
UUC | 17.3 | 20.2 | 25 | 17 | 12.1 | 11.3 | 21.8 | 20.3 | 0.86 | 0.69 | 1.02 | 1.43 | 1.53 | 0.79 | 0.85 | |
Leu | UUA | 6.2 | 7 | 2.6 | 13.7 | 33.7 | 43.6 | 6.7 | 7.7 | 0.89 | 2.38 | 0.45 | 0.18 | 0.14 | 0.93 | 0.81 |
UUG | 18.7 | 12.6 | 14.5 | 18.9 | 17.3 | 6.3 | 13.4 | 12.9 | 1.48 | 1.29 | 0.99 | 1.08 | 2.97 | 1.4 | 1.45 | |
CUU | 16.4 | 12.4 | 15 | 9 | 20.3 | 26.9 | 13.4 | 13.2 | 1.32 | 1.09 | 1.82 | 0.81 | 0.61 | 1.22 | 1.24 | |
CUC | 17.8 | 16.8 | 27.1 | 14 | 5.2 | 2.1 | 20.2 | 19.6 | 1.06 | 0.66 | 1.27 | 3.42 | 8.48 | 0.88 | 0.91 | |
CUA | 8.2 | 6 | 3.8 | 10 | 10.4 | 2.7 | 8.1 | 7.2 | 1.37 | 2.16 | 0.82 | 0.79 | 3.04 | 1.01 | 1.14 | |
CUG | 41.4 | 38.5 | 24 | 17.4 | 3.7 | 0.6 | 39.5 | 39.6 | 1.08 | 1.73 | 2.38 | 11.19 | 69 | 1.05 | 1.05 | |
Ile | AUU | 14.7 | 16.8 | 12.2 | 22.7 | 49.3 | 59.4 | 15.4 | 16 | 0.88 | 1.2 | 0.65 | 0.30 | 0.25 | 0.95 | 0.92 |
AUC | 11.4 | 22 | 17.4 | 16.9 | 10.6 | 5.9 | 22.5 | 20.8 | 0.52 | 0.66 | 0.67 | 1.08 | 1.93 | 0.51 | 0.55 | |
AUA | 7.9 | 8.8 | 2.9 | 16.5 | 24.4 | 14.6 | 7.4 | 7.5 | 0.90 | 2.72 | 0.48 | 0.32 | 0.54 | 1.07 | 1.05 | |
Val | GUU | 15.3 | 13.1 | 14.7 | 12.8 | 24.4 | 42 | 10.7 | 11 | 1.17 | 1.04 | 1.2 | 0.63 | 0.36 | 1.43 | 1.39 |
GUC | 14.1 | 13.6 | 25.4 | 10 | 4.8 | 4.3 | 15.4 | 14.5 | 1.04 | 0.56 | 1.41 | 2.94 | 3.28 | 0.92 | 0.97 | |
GUA | 7.5 | 7.8 | 5.7 | 15 | 15.8 | 16.9 | 7.4 | 7.1 | 0.96 | 1.32 | 0.5 | 0.47 | 0.44 | 1.01 | 1.06 | |
GUG | 19.9 | 28.2 | 21.4 | 19.7 | 4.9 | 2.6 | 28.4 | 28.1 | 0.71 | 0.93 | 1.01 | 4.06 | 7.65 | 0.7 | 0.71 | |
Ser | UCU | 14.8 | 14.1 | 20.3 | 9.1 | 28.3 | 17.1 | 16.2 | 15.2 | 1.05 | 0.73 | 1.63 | 0.52 | 0.87 | 0.91 | 0.97 |
UCC | 12 | 15.7 | 15.2 | 13.7 | 7.9 | 1.5 | 18.1 | 17.7 | 0.76 | 0.79 | 0.88 | 1.52 | 8 | 0.66 | 0.68 | |
UCA | 11 | 11.6 | 8.1 | 9.2 | 31.4 | 27.8 | 11.8 | 12.2 | 0.95 | 1.36 | 1.2 | 0.35 | 0.4 | 0.93 | 0.9 | |
UCG | 9.8 | 5.2 | 19 | 8.2 | 4.3 | 0.7 | 4.2 | 4.4 | 1.88 | 0.52 | 1.2 | 2.28 | 14 | 2.33 | 2.23 | |
AGU | 8.7 | 11.2 | 9.3 | 12.7 | 18.4 | 17 | 12.7 | 12.1 | 0.78 | 0.94 | 0.69 | 0.47 | 0.51 | 0.69 | 0.72 | |
AGC | 28.6 | 20.2 | 16.1 | 17.8 | 8.6 | 1.6 | 19.7 | 19.5 | 1.42 | 1.78 | 1.61 | 3.33 | 17.88 | 1.45 | 1.47 | |
Pro | CCU | 14.2 | 15.3 | 15.4 | 5.7 | 12.9 | 8.8 | 18.4 | 17.5 | 0.93 | 0.92 | 2.49 | 1.10 | 1.61 | 0.77 | 0.81 |
CCC | 14.4 | 17 | 13.6 | 9.4 | 2.8 | 0.7 | 18.2 | 19.8 | 0.85 | 1.06 | 1.53 | 5.14 | 20.57 | 0.79 | 0.73 | |
CCA | 13.1 | 15.7 | 10.4 | 13.4 | 20.8 | 27.4 | 17.3 | 16.9 | 0.83 | 1.26 | 0.98 | 0.63 | 0.48 | 0.76 | 0.78 | |
CCG | 11.1 | 7.8 | 17.3 | 4.1 | 1.9 | 0.2 | 6.2 | 6.9 | 1.42 | 0.64 | 2.71 | 5.84 | 55.5 | 1.79 | 1.61 | |
Thr | ACU | 13.6 | 13.3 | 12.3 | 11.8 | 21.6 | 25.5 | 13.7 | 13.1 | 1.02 | 1.11 | 1.15 | 0.63 | 0.53 | 0.99 | 1.04 |
ACC | 10.2 | 16.5 | 13 | 15.4 | 5.5 | 2.9 | 19 | 18.9 | 0.62 | 0.78 | 0.66 | 1.85 | 3.52 | 0.54 | 0.54 | |
ACA | 15.6 | 16.1 | 13.2 | 14.3 | 20.4 | 27.5 | 16 | 15.1 | 0.97 | 1.18 | 1.09 | 0.76 | 0.57 | 0.98 | 1.03 | |
ACG | 11.5 | 7.7 | 16.4 | 11.1 | 2.6 | 1.1 | 5.6 | 6.1 | 1.49 | 0.7 | 1.04 | 4.42 | 10.45 | 2.05 | 1.89 | |
Ala | GCU | 34.6 | 20.8 | 20.5 | 11.7 | 17 | 26.9 | 20 | 18.4 | 1.66 | 1.69 | 2.96 | 2.04 | 1.29 | 1.73 | 1.88 |
GCC | 20.5 | 22.9 | 22.6 | 16.3 | 3.9 | 2.7 | 26 | 27.7 | 0.90 | 0.91 | 1.26 | 5.26 | 7.59 | 0.79 | 0.74 | |
GCA | 42.5 | 19 | 20.8 | 26.6 | 17.5 | 27.5 | 15.8 | 15.8 | 2.24 | 2.04 | 1.6 | 2.43 | 1.55 | 2.69 | 2.69 | |
GCG | 19.9 | 9.1 | 31.5 | 13.3 | 1.9 | 0.5 | 6.4 | 7.4 | 2.19 | 0.63 | 1.5 | 10.47 | 39.8 | 3.11 | 2.69 | |
Tyr | UAU | 7.5 | 11.8 | 5.1 | 15.1 | 25.9 | 32.1 | 12.2 | 12.2 | 0.64 | 1.47 | 0.5 | 0.29 | 0.23 | 0.61 | 0.61 |
UAC | 12.3 | 17.8 | 14.5 | 26.8 | 8.9 | 3.8 | 16.1 | 15.3 | 0.69 | 0.85 | 0.46 | 1.38 | 3.24 | 0.76 | 0.8 | |
His | CAU | 8.6 | 9.5 | 7.9 | 6.9 | 14.1 | 15.8 | 10.6 | 10.9 | 0.91 | 1.09 | 1.25 | 0.61 | 0.54 | 0.81 | 0.79 |
CAC | 13.1 | 14.4 | 13.4 | 10.2 | 4.6 | 2.1 | 15.3 | 15.1 | 0.91 | 0.98 | 1.28 | 2.85 | 6.24 | 0.86 | 0.87 | |
Gln | CAA | 18.5 | 12.1 | 13.7 | 20.6 | 27.5 | 37 | 12 | 12.3 | 1.53 | 1.35 | 0.9 | 0.67 | 0.5 | 1.54 | 1.5 |
CAG | 44.7 | 32.6 | 24.5 | 14.8 | 9.1 | 1.7 | 34.1 | 34.2 | 1.37 | 1.82 | 3.02 | 4.91 | 26.29 | 1.31 | 1.31 | |
Asn | AAU | 10.2 | 16.9 | 10.1 | 34.8 | 58 | 48.1 | 15.6 | 17 | 0.60 | 1.01 | 0.29 | 0.18 | 0.21 | 0.65 | 0.6 |
AAC | 17.6 | 22.5 | 18.9 | 32.7 | 16.8 | 8 | 20.3 | 19.1 | 0.78 | 0.93 | 0.54 | 1.05 | 2.2 | 0.87 | 0.92 | |
Lys | AAA | 21.7 | 27.3 | 18.4 | 53.7 | 48.5 | 64.1 | 21.9 | 24.4 | 0.79 | 1.18 | 0.4 | 0.45 | 0.34 | 0.99 | 0.89 |
AAG | 24 | 34.3 | 29.8 | 51.3 | 25.9 | 16.9 | 33.6 | 31.9 | 0.70 | 0.81 | 0.47 | 0.93 | 1.42 | 0.71 | 0.75 | |
Asp | GAU | 14.2 | 25.3 | 16.3 | 28.6 | 40.8 | 45 | 21 | 21.8 | 0.56 | 0.87 | 0.5 | 0.35 | 0.32 | 0.68 | 0.65 |
GAC | 24.2 | 24.9 | 34.3 | 26.2 | 10.7 | 8.4 | 26 | 25.1 | 0.97 | 0.71 | 0.92 | 2.26 | 2.88 | 0.93 | 0.96 | |
Glu | GAA | 28.4 | 31 | 32.7 | 54.1 | 50.4 | 65.5 | 27 | 29 | 0.92 | 0.87 | 0.52 | 0.56 | 0.43 | 1.05 | 0.98 |
GAG | 31.4 | 40.9 | 40.6 | 34.4 | 19.3 | 6.4 | 39.4 | 39.6 | 0.77 | 0.77 | 0.91 | 1.63 | 4.91 | 0.8 | 0.79 | |
Cys | UGU | 7.8 | 8.8 | 7.2 | 9.9 | 13.1 | 19.1 | 11.4 | 10.6 | 0.89 | 1.08 | 0.79 | 0.60 | 0.41 | 0.68 | 0.74 |
UGC | 19.2 | 13.3 | 12.4 | 10.5 | 6.5 | 2 | 12.3 | 12.6 | 1.44 | 1.55 | 1.83 | 2.95 | 9.6 | 1.56 | 1.52 | |
Arg | CGU | 8 | 5.4 | 8.2 | 1.5 | 3.6 | 4.4 | 4.7 | 4.5 | 1.48 | 0.98 | 5.33 | 2.22 | 1.82 | 1.7 | 1.78 |
CGC | 14.7 | 10.4 | 17.5 | 2.7 | 0.9 | 0.1 | 9.4 | 10.4 | 1.41 | 0.84 | 5.44 | 16.33 | 147 | 1.56 | 1.41 | |
CGA | 6.3 | 5.3 | 12.7 | 2.3 | 2.1 | 3 | 6.6 | 6.2 | 1.19 | 0.5 | 2.74 | 3.00 | 2.1 | 0.95 | 1.02 | |
CGG | 9.9 | 9.7 | 10.1 | 1.4 | 0.4 | 0.2 | 10.2 | 11.4 | 1.02 | 0.98 | 7.07 | 24.75 | 49.5 | 0.97 | 0.87 | |
AGA | 10.4 | 12.2 | 12.8 | 10.9 | 25.7 | 26.3 | 12.1 | 12.2 | 0.85 | 0.81 | 0.95 | 0.40 | 0.4 | 0.86 | 0.85 | |
AGG | 10.4 | 11.7 | 8.7 | 8.6 | 6.9 | 1.6 | 12.2 | 12 | 0.89 | 1.2 | 1.21 | 1.51 | 6.5 | 0.85 | 0.87 | |
Gly | GGU | 10.5 | 11.4 | 14.6 | 10.9 | 15.9 | 17.2 | 11.4 | 10.8 | 0.92 | 0.72 | 0.96 | 0.66 | 0.61 | 0.92 | 0.97 |
GGC | 24.1 | 19.7 | 28.5 | 12.4 | 5.4 | 0.6 | 21.2 | 22.2 | 1.22 | 0.85 | 1.94 | 4.46 | 40.17 | 1.14 | 1.09 | |
GGA | 16.8 | 17.6 | 21.4 | 22.4 | 24.8 | 41.7 | 16.8 | 16.5 | 0.95 | 0.79 | 0.75 | 0.68 | 0.4 | 1 | 1.02 | |
GGG | 15.6 | 16 | 14.6 | 10.6 | 5.7 | 2.6 | 15.2 | 16.5 | 0.98 | 1.07 | 1.47 | 2.74 | 6 | 1.03 | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Zhang, S. Comparative Analysis of Codon Usage Bias in Six Eimeria Genomes. Int. J. Mol. Sci. 2024, 25, 8398. https://doi.org/10.3390/ijms25158398
Zhao Y, Zhang S. Comparative Analysis of Codon Usage Bias in Six Eimeria Genomes. International Journal of Molecular Sciences. 2024; 25(15):8398. https://doi.org/10.3390/ijms25158398
Chicago/Turabian StyleZhao, Yu, and Shicheng Zhang. 2024. "Comparative Analysis of Codon Usage Bias in Six Eimeria Genomes" International Journal of Molecular Sciences 25, no. 15: 8398. https://doi.org/10.3390/ijms25158398
APA StyleZhao, Y., & Zhang, S. (2024). Comparative Analysis of Codon Usage Bias in Six Eimeria Genomes. International Journal of Molecular Sciences, 25(15), 8398. https://doi.org/10.3390/ijms25158398