Inflammation and Colorectal Cancer: A Meta-Analysis of the Prognostic Significance of the Systemic Immune–Inflammation Index (SII) and the Systemic Inflammation Response Index (SIRI)
Abstract
:1. Introduction
2. Methods
2.1. Literature Retrieval
2.2. Inclusion Criteria
2.3. Data Extraction
2.4. Statistical Analysis
3. Results
3.1. Studies Investigating the Prognostic Significance of SII in CRC
3.2. Studies Investigating the Prognostic Significance of SIRI in CRC
3.3. Prognostic Impact of SII on OS in CRC Patients
3.4. Prognostic Role of SII for PFS/DFS/RFS
3.5. Prognostic Impact of SIRI on OS in CRC Patients
3.6. Prognostic Impact of SIRI on DFS/RFS in CRC Patients
3.7. Sensitivity Analysis for the Association between SII or SIRI and the Outcome Measures
3.8. Publication Bias
3.8.1. The Association between SII and Disease Outcome
3.8.2. The Association between SIRI and Disease Outcome
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Ervik, M.; Lam, F.; Laversanne, M.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today, version 1.1; International Agency for Research on Cancer: Lyon, France, 2024; Available online: https://gco.iarc.who.int/today (accessed on 2 July 2024).
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA A Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.G.; Karlitz, J.J.; Yen, T.; Lieu, C.H.; Boland, C.R. The rising tide of early-onset colorectal cancer: A comprehensive review of epidemiology, clinical features, biology, risk factors, prevention, and early detection. Lancet. Gastroenterol. Hepatol. 2022, 7, 262–274. [Google Scholar] [CrossRef]
- Morgan, E.; Arnold, M.; Gini, A.; Lorenzoni, V.; Cabasag, C.J.; Laversanne, M.; Vignat, J.; Ferlay, J.; Murphy, N.; Bray, F. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut 2023, 72, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Gude, S.S.; Veeravalli, R.S.; Vejandla, B.; Gude, S.S.; Venigalla, T.; Chintagumpala, V. Colorectal Cancer Diagnostic Methods: The Present and Future. Cureus 2023, 15, e37622. [Google Scholar] [CrossRef]
- Araghi, M.; Arnold, M.; Rutherford, M.J.; Guren, M.G.; Cabasag, C.J.; Bardot, A.; Ferlay, J.; Tervonen, H.; Shack, L.; Woods, R.R.; et al. Colon and rectal cancer survival in seven high-income countries 2010–2014: Variation by age and stage at diagnosis (the ICBP SURVMARK-2 project). Gut 2021, 70, 114. [Google Scholar] [CrossRef]
- Chen, K.; Collins, G.; Wang, H.; Toh, J.W.T. Pathological Features and Prognostication in Colorectal Cancer. Curr. Oncol. 2021, 28, 5356–5383. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Peterson, C.Y.; Sriram, D.; Mahipal, A. Early stage colon cancer: Current treatment standards, evolving paradigms, and future directions. World J. Gastrointest. Oncol. 2020, 12, 808–832. [Google Scholar] [CrossRef]
- Kumar, A.; Gautam, V.; Sandhu, A.; Rawat, K.; Sharma, A.; Saha, L. Current and emerging therapeutic approaches for colorectal cancer: A comprehensive review. World J. Gastrointest. Surg. 2023, 15, 495–519. [Google Scholar] [CrossRef]
- Roth, M.T.; Eng, C. Neoadjuvant Chemotherapy for Colon Cancer. Cancers 2020, 12, 2368. [Google Scholar] [CrossRef]
- Xie, Y.-H.; Chen, Y.-X.; Fang, J.-Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther. 2020, 5, 22. [Google Scholar] [CrossRef]
- Zhou, J.; Ji, Q.; Li, Q. Resistance to anti-EGFR therapies in metastatic colorectal cancer: Underlying mechanisms and reversal strategies. J. Exp. Clin. Cancer Res. CR 2021, 40, 328. [Google Scholar] [CrossRef]
- McAllister, S.S.; Weinberg, R.A. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat. Cell Biol. 2014, 16, 717–727. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 2021, 6, 263. [Google Scholar] [CrossRef]
- Lasry, A.; Zinger, A.; Ben-Neriah, Y. Inflammatory networks underlying colorectal cancer. Nat. Immunol. 2016, 17, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Misiewicz, A.; Dymicka-Piekarska, V. Fashionable, but What is Their Real Clinical Usefulness? NLR, LMR, and PLR as a Promising Indicator in Colorectal Cancer Prognosis: A Systematic Review. J. Inflamm. Res. 2023, 16, 69–81. [Google Scholar] [CrossRef]
- Li, X.; Guo, D.; Chu, L.; Huang, Y.; Zhang, F.; Li, W.; Chen, J. Potential Diagnostic Value Of Combining Inflammatory Cell Ratios With Carcinoembryonic Antigen For Colorectal Cancer. Cancer Manag. Res. 2019, 11, 9631–9640. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Yang, X.-R.; Xu, Y.; Sun, Y.-F.; Sun, C.; Guo, W.; Zhang, X.; Wang, W.-M.; Qiu, S.-J.; Zhou, J.; et al. Systemic Immune-Inflammation Index Predicts Prognosis of Patients after Curative Resection for Hepatocellular Carcinoma. Clin. Cancer Res. 2014, 20, 6212–6222. [Google Scholar] [CrossRef]
- Dong, M.; Shi, Y.; Yang, J.; Zhou, Q.; Lian, Y.; Wang, D.; Ma, T.; Zhang, Y.; Mi, Y.; Gu, X.; et al. Prognostic and clinicopathological significance of systemic immune-inflammation index in colorectal cancer: A meta-analysis. Ther. Adv. Med. Oncol. 2020, 12, 1758835920937425. [Google Scholar] [CrossRef]
- Qi, Q.; Zhuang, L.; Shen, Y.; Geng, Y.; Yu, S.; Chen, H.; Liu, L.; Meng, Z.; Wang, P.; Chen, Z. A novel systemic inflammation response index (SIRI) for predicting the survival of patients with pancreatic cancer after chemotherapy. Cancer 2016, 122, 2158–2167. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, F.; Wang, Y. Evidence of the Prognostic Value of Pretreatment Systemic Inflammation Response Index in Cancer Patients: A Pooled Analysis of 19 Cohort Studies. Dis. Markers 2020, 2020, 8854267. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef] [PubMed]
- Polk, N.; Budai, B.; Hitre, E.; Patócs, A.; Mersich, T. High Neutrophil-To-Lymphocyte Ratio (NLR) and Systemic Immune-Inflammation Index (SII) Are Markers of Longer Survival After Metastasectomy of Patients With Liver-Only Metastasis of Rectal Cancer. Pathol. Oncol. Res. POR 2022, 28, 1610315. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H.; Zhai, E.T.; Yuan, Y.J.; Wu, K.M.; Xu, J.B.; Peng, J.J.; Chen, C.Q.; He, Y.L.; Cai, S.R. Systemic immune-inflammation index for predicting prognosis of colorectal cancer. World J. Gastroenterol. 2017, 23, 6261–6272. [Google Scholar] [CrossRef] [PubMed]
- Chiloiro, G.; Romano, A.; Mariani, S.; Macchia, G.; Giannarelli, D.; Caravatta, L.; Franco, P.; Boldrini, L.; Arcelli, A.; Bacigalupo, A.; et al. Predictive and prognostic value of inflammatory markers in locally advanced rectal cancer (PILLAR)—A multicentric analysis by the Italian Association of Radiotherapy and Clinical Oncology (AIRO) Gastrointestinal Study Group. Clin. Transl. Radiat. Oncol. 2023, 39, 100579. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhao, Y.; Qin, J.; Huang, X.; Wu, R.; Zhou, C.; Pan, Z. Prognostic Value of the C-Reactive Protein/Albumin Ratio and Systemic Immune-Inflammation Index for Patients With Colorectal Liver Metastasis Undergoing Curative Resection. Pathol. Oncol. Res. POR 2021, 27, 633480. [Google Scholar] [CrossRef] [PubMed]
- Guan, B.; Huang, X.; Xia, H.; Guan, G.; Xu, B. Prognostic value of mesorectal package area in patients with locally advanced rectal cancer following neoadjuvant chemoradiotherapy: A retrospective cohort study. Front. Oncol. 2022, 12, 941786. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Lu, Y.; Zhang, S.; Huang, Y. Systemic Immune-Inflammation Index Is Superior to Neutrophil to Lymphocyte Ratio in Prognostic Assessment of Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy. BioMed Res. Int. 2020, 2020, 7961568. [Google Scholar] [CrossRef]
- Jin, Z.; Wu, Q.; Deng, X.; Wang, Z. The clinic factors in evaluating long-term outcomes of patients with stage I colorectal cancer. Asian J. Surg. 2022, 45, 2231–2238. [Google Scholar] [CrossRef]
- Passardi, A.; Scarpi, E.; Cavanna, L.; Dall’Agata, M.; Tassinari, D.; Leo, S.; Bernardini, I.; Gelsomino, F.; Tamberi, S.; Brandes, A.A.; et al. Inflammatory indexes as predictors of prognosis and bevacizumab efficacy in patients with metastatic colorectal cancer. Oncotarget 2016, 7, 33210–33219. [Google Scholar] [CrossRef] [PubMed]
- Passardi, A.; Azzali, I.; Bittoni, A.; Marisi, G.; Rebuzzi, F.; Molinari, C.; Bartolini, G.; Matteucci, L.; Sullo, F.G.; Debonis, S.A.; et al. Inflammatory indices as prognostic markers in metastatic colorectal cancer patients treated with chemotherapy plus Bevacizumab. Ther. Adv. Med. Oncol. 2023, 15, 17588359231212184. [Google Scholar] [CrossRef] [PubMed]
- Sato, R.; Oikawa, M.; Kakita, T.; Okada, T.; Abe, T.; Tsuchiya, H.; Akazawa, N.; Ohira, T.; Harada, Y.; Okano, H.; et al. A decreased preoperative platelet-to-lymphocyte ratio, systemic immune-inflammation index, and pan-immune-inflammation value are associated with the poorer survival of patients with a stent inserted as a bridge to curative surgery for obstructive colorectal cancer. Surg. Today 2023, 53, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Yang, R.; Wu, H.; Li, L.; Gu, Y. Prognostic value of preoperative combined with postoperative systemic immune-inflammation index for disease-free survival after radical rectal cancer surgery: A retrospective cohort study. Transl. Cancer Res. 2024, 13, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Tao, M.Y.; Wang, Z.H.; Zhang, M.H.; Ma, T.H.; Yang, X.Z.; Wu, S.N.; Chen, X.F.; Wang, H.G. Prognostic value of the systematic immune-inflammation index among patients with operable colon cancer: A retrospective study. Medicine 2018, 97, e13156. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Liu, Z.Z.; Xu, D.; Liu, M.; Wang, K.; Xing, B.C. Fibrinogen-Albumin Ratio Index (FARI): A More Promising Inflammation-Based Prognostic Marker for Patients Undergoing Hepatectomy for Colorectal Liver Metastases. Ann. Surg. Oncol. 2019, 26, 3682–3692. [Google Scholar] [CrossRef] [PubMed]
- Xiang, S.; Yang, Y.X.; Pan, W.J.; Li, Y.; Zhang, J.H.; Gao, Y.; Liu, S. Prognostic value of systemic immune inflammation index and geriatric nutrition risk index in early-onset colorectal cancer. Front. Nutr. 2023, 10, 1134300. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.K.; Chen, P.; Hu, W.M.; Sun, P.; He, W.Z.; Jiang, C.; Kong, P.F.; Liu, S.S.; Chen, H.T.; Yang, Y.Z.; et al. The systemic immune-inflammation index is an independent predictor of survival for metastatic colorectal cancer and its association with the lymphocytic response to the tumor. J. Transl. Med. 2018, 16, 273. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Ertao, Z.; Zhimei, Z.; Weigang, D.; Jianjun, P.; Jianhui, C.; Chuangqi, C. Systemic immune-inflammation index (SII): A More Promising Inflammation-Based Prognostic Marker for Patients with synchronic colorectal peritoneal carcinomatosis. J. Cancer 2020, 11, 5264–5272. [Google Scholar] [CrossRef]
- Yang, J.; Guo, X.; Wang, M.; Ma, X.; Ye, X.; Lin, P. Pre-treatment inflammatory indexes as predictors of survival and cetuximab efficacy in metastatic colorectal cancer patients with wild-type RAS. Sci. Rep. 2017, 7, 17166. [Google Scholar] [CrossRef]
- Yang, J.; Xu, H.; Guo, X.; Zhang, J.; Ye, X.; Yang, Y.; Ma, X. Pretreatment Inflammatory Indexes as Prognostic Predictors for Survival in Colorectal Cancer Patients Receiving Neoadjuvant Chemoradiotherapy. Sci. Rep. 2018, 8, 3044. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Guo, X.; Wu, T.; Niu, K.; Ma, X. Prognostic significance of inflammation-based indexes in patients with stage III/IV colorectal cancer after adjuvant chemoradiotherapy. Medicine 2019, 98, e14420. [Google Scholar] [CrossRef] [PubMed]
- Yatabe, S.; Eto, K.; Haruki, K.; Shiba, H.; Kosuge, M.; Ohkuma, M.; Ito, D.; Takeda, Y.; Sugano, H.; Sasaki, S.; et al. Signification of Systemic Immune-Inflammation Index for prediction of prognosis after resecting in patients with colorectal cancer. Int. J. Color. Dis. 2020, 35, 1549–1555. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Xue, J.; Yang, L.; Xia, L.; He, W. Predictive value of prognostic nutritional and systemic immune-inflammation indices for patients with microsatellite instability-high metastatic colorectal cancer receiving immunotherapy. Front. Nutr. 2023, 10, 1094189. [Google Scholar] [CrossRef] [PubMed]
- Ying, H.Q.; Liao, Y.C.; Sun, F.; Peng, H.X.; Cheng, X.X. The Role of Cancer-Elicited Inflammatory Biomarkers in Predicting Early Recurrence Within Stage II-III Colorectal Cancer Patients After Curable Resection. J. Inflamm. Res. 2021, 14, 115–129. [Google Scholar] [CrossRef] [PubMed]
- Young, S.; Ragulojan, R.; Todatry, S.; D’Souza, D.; Golzarian, J.; Flanagan, S.; Sanghvi, T. Evaluation of Inflammatory Scores in Metastatic Colorectal Cancer Patients Undergoing Transarterial Radioembolization. Cardiovasc. Interv. Radiol. 2023, 46, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Jiang, W.; Dong, X.; Yan, B.; Xu, S.; Lin, Z.; Zhuo, S.; Yan, J. Nomograms integrating the collagen signature and systemic immune-inflammation index for predicting prognosis in rectal cancer patients. BJS Open 2024, 8, zrae014. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Miao, Y.C. Prognostic evaluation of preoperative systemic immune inflammatory index in patients with colorectal cancer. Front. Oncol. 2023, 13, 1260796. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, Z.; Guo, H.; Huang, B.; Zhang, H. Systemic immune-inflammation index: A new indicator of predicting 1-, 2-and 3-year disease-free survival of patients with colon cancer. Adv. Clin. Exp. Med. Off. Organ Wroc. Med. Univ. 2023, 32, 13–22. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Xu, M.; Chen, K.; Li, S.; Guan, G. Prognostic value of pretreatment systemic inflammatory markers in patients with locally advanced rectal cancer following neoadjuvant chemoradiotherapy. Sci Rep 2020, 10, 8017. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Li, W.Q.; Li, Z.F.; Guo, X.H.; Zhou, S.K.; Lin, A.; Yan, W.H. Higher Levels of Pre-operative Peripheral Lymphocyte Count Is a Favorable Prognostic Factor for Patients With Stage I and II Rectal Cancer. Front. Oncol. 2019, 9, 960. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.Q.; Pang, S.; Yu, X.C.; Xue, Q.; Jiang, H.Y.; Liang, X.J.; Liu, L. Predictive Values of Postoperative and Dynamic Changes of Inflammation Indexes in Survival of Patients with Resected Colorectal Cancer. Curr. Med. Sci. 2018, 38, 798–808. [Google Scholar] [CrossRef] [PubMed]
- Yazici, H.; Eren Kayaci, A.; Sevindi, H.I.; Attaallah, W. Should we consider Systemic Inflammatory Response Index (SIRI) as a new diagnostic marker for rectal cancer? Discov. Oncol. 2024, 15, 44. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Li, J.; Chen, Y.; Zhang, Q.; Liu, Y.; Jia, H. Preoperative inflammation and nutrition-based comprehensive biomarker for predicting prognosis in resectable colorectal cancer. Front. Oncol. 2023, 13, 1279487. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Chen, Y.; Zhang, Q.; Liu, Y.; Jia, H. High preoperative CEA and systemic inflammation response index (C-SIRI) predict unfavorable survival of resectable colorectal cancer. World J. Surg. Oncol. 2023, 21, 178. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zheng, X.; Hu, Y.; Li, J.; Huang, B.; Zhao, N.; Liu, T.; Cai, K.; Tian, S. Levels of systemic inflammation response index are correlated with tumor-associated bacteria in colorectal cancer. Cell Death Dis. 2023, 14, 69. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Su, S.; You, W.; Wang, T.; Ren, T.; Zhu, L. Systemic Inflammation Response Index as a Prognostic Marker in Cancer Patients: A Systematic Review and Meta-Analysis of 38 Cohorts. Dose-Response 2021, 19, 15593258211064744. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.-N.; Goyal, H.; Yu, S.; Luo, H. Prognostic value of systemic immune-inflammation index (SII) in cancers: A systematic review and meta-analysis. J. Lab. Precis. Med. 2018, 3, 29. [Google Scholar] [CrossRef]
- Wu, L.; Saxena, S.; Singh, R.K. Neutrophils in the Tumor Microenvironment. Adv. Exp. Med. Biol. 2020, 1224, 1–20. [Google Scholar] [CrossRef]
- Tsioumpekou, M.; Krijgsman, D.; Leusen, J.H.W.; Olofsen, P.A. The Role of Cytokines in Neutrophil Development, Tissue Homing, Function and Plasticity in Health and Disease. Cells 2023, 12, 1981. [Google Scholar] [CrossRef]
- Li, S.; Lu, Z.; Wu, S.; Chu, T.; Li, B.; Qi, F.; Zhao, Y.; Nie, G. The dynamic role of platelets in cancer progression and their therapeutic implications. Nat. Rev. Cancer 2024, 24, 72–87. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, J.S.; Talmage, K.E.; Massari, J.V.; La Jeunesse, C.M.; Flick, M.J.; Kombrinck, K.W.; Jirousková, M.; Degen, J.L. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 2005, 105, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Schlesinger, M. Role of platelets and platelet receptors in cancer metastasis. J. Hematol. Oncol. 2018, 11, 125. [Google Scholar] [CrossRef] [PubMed]
- Iseki, Y.; Shibutani, M.; Maeda, K.; Nagahara, H.; Tamura, T.; Ohira, G.; Yamazoe, S.; Kimura, K.; Toyokawa, T.; Amano, R.; et al. The impact of the preoperative peripheral lymphocyte count and lymphocyte percentage in patients with colorectal cancer. Surg. Today 2017, 47, 743–754. [Google Scholar] [CrossRef]
- Jeong, M.H.; Kim, H.; Kim, T.H.; Kim, M.H.; Kim, B.J.; Ryu, S.Y. Prognostic significance of pretreatment lymphocyte percentage and age at diagnosis in patients with locally advanced cervical cancer treated with definite radiotherapy. Obstet. Gynecol. Sci. 2019, 62, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Zhou, Y.; Ye, Z.; Xiong, J.; Lan, H.; Wang, F. Tumor-Infiltrating Lymphocytes in Colorectal Cancer: The Fundamental Indication and Application on Immunotherapy. Front. Immunol. 2021, 12, 808964. [Google Scholar] [CrossRef] [PubMed]
- Idos, G.E.; Kwok, J.; Bonthala, N.; Kysh, L.; Gruber, S.B.; Qu, C. The Prognostic Implications of Tumor Infiltrating Lymphocytes in Colorectal Cancer: A Systematic Review and Meta-Analysis. Sci. Rep. 2020, 10, 3360. [Google Scholar] [CrossRef]
- Shibutani, M.; Maeda, K.; Nagahara, H.; Fukuoka, T.; Nakao, S.; Matsutani, S.; Hirakawa, K.; Ohira, M. The peripheral monocyte count is associated with the density of tumor-associated macrophages in the tumor microenvironment of colorectal cancer: A retrospective study. BMC Cancer 2017, 17, 404. [Google Scholar] [CrossRef]
First Author | Year | Country | Histology | Study Period | Study Design | Sample Size | Age (Median) | Sex M/F | TNM Stage | Treatment | SII Cutoff | Method for Cutoff Selection | Follow-Up (Months) | Survival Endpoint |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Passardi [32] | 2016 | Italy | CRC | 2007–2012 | prospect | 289 | 65.5 | 174/115 | I–IV | chemo + targeted therapy | 730 | X-tile | 36 (1–65) | OS PFS |
Chen [26] | 2017 | China | CRC | 1994–2010 | retrospect | 1383 | NA | 788/595 | I–IV | surgical resection | 340 | ROC analysis | NA | OS PFS |
Yang [41] | 2017 | China | CRC | 2009–2015 | retrospect | 95 | 57 | 58/37 | IV | chemo + targeted therapy | 460.7 | median | 40 (12–72) | OS PFS |
Xie [39] | 2018 | China | CRC | 2009–2014 | retrospect | 240 | 59 (18–90) | 157/83 | IV | surgical resection | 649.5 | median | 26.7 (1.1–92.4) | OS |
Tao [36] | 2018 | China | colon | 2011–2013 | retrospect | 118 | 60 | 63/55 | I–IV | surgical resection | 667.8 | median | 36 | OS |
Yang [42] | 2018 | China | CRC | 2010–2015 | retrospect | 98 | 53 (26–83) | 59/39 | I–IV | neoadjuvant chemo-radiotherapy | 437.7 | median | 37 (16.2–93.3) | OS PFS |
Zhou [53] | 2018 | China | CRC | 2007–2015 | retrospect | 516 | 16–87 | 331/185 | I–IV | surgical resection | 568.7 | ROC analysis | 21.7 (2.1–118.7) | OS PFS |
Wang [37] | 2019 | China | CRC | 2002–2016 | retrospect | 452 | 57 | 289/163 | IV | surgical resection | 517 | X-tile | 28 | OS PFS |
Yang [43] | 2019 | China | CRC | 2009–2015 | retrospect | 220 | 57 | 133/87 | III–IV | adjuvant chemo-radiotherapy | 534.9 | ROC analysis | 23.9 (12–87) | OS PFS |
Zhang [52] | 2019 | China | CRC | 2010–2013 | retrospect | 224 | 67 (30–89) | 127/97 | I–IV | surgical resection | 642.2 | median | 48 | OS |
Jiang [30] | 2020 | China | CRC | 2010–2017 | retrospect | 102 | 28–75 | 72/30 | IV | chemo + targeted therapy | 660.6 | ROC analysis | 33.2 (2.6–94.5) | OS PFS |
Yan [40] | 2020 | China | CRC | 1997–2013 | retrospect | 103 | 47 over 60 | 67/46 | III–IV | surgery + chemotherapy | 410 | ROC analysis | 55.4 | OS |
Yatabe [44] | 2020 | Japan | CRC | 2010–2014 | retrospect | 733 | 66 (58–74) | 463/270 | I–IV | surgical resection | median 550 | SII trichotomized into tertiles | 36 60 | OS |
Deng [28] | 2021 | China | CRC | 2006–2016 | retrospect | 283 | 57 (25–82) | 187/96 | I–IV | surgery + chemotherapy | 0.0135 | ROC analysis | 35.4 | OS RFS |
Ying [46] | 2021 | China | CRC | 2013–2016 | retrospect | 1014 | 460 over 60 | 622/392 | II–III | surgery + chemotherapy | 665 | X-tile | 36 | RFS |
Ying [46] | 2021 | China | CRC | 2013–2016 | retrospect | 519 | 328 over 60 | 622/392 | II–III | surgery + chemotherapy | 665 | X-tile | 36 | RFS |
Guan [29] | 2022 | China | rectal | 2016–2019 | retrospect | 278 | 53.97 ± 10.11 | 181/97 | II–IV | neoadjuvant chemo-radiotherapy | 540 | X-tile | Last follow-up: 31 December 2021 | OS DFS |
Jin [31] | 2022 | China | CRC | 2012–2015 | retrospect | 476 | 60.8 (25–90) | 259/217 | I | surgical resection | 540.3 | ROC analysis | 68 | OS DFS |
Polk [25] | 2022 | Hungary | CRC colon (CLM) | 2001–2018 | retrospect | 67 | 65 | 36/31 | IV | surgery + chemotherapy | 535/290 RFS/OS | ROC analysis | 46.5 | OS RFS |
Polk [25] | 2022 | Hungary | CRC renal (RLM) | 2001–2018 | retrospect | 103 | 62 | 69/34 | IV | surgery + chemotherapy | 792/742 RFS/OS | ROC analysis | 59.8 | OS RFS |
Passardi [33] | 2023 | Italy | CRC | 2016–2019 | prospect | 182 | 33–83 | 72/60 | I–IV | chemo + targeted therapy | 730 | ROC analysis | 52.6 | OS PFS |
Chiloiro [27] | 2023 | Italy | rectal | 2002–2019 | retrospect | 808 | 64 (26–88) | 493/315 | I–IV | neoadjuvant chemo-radiotherapy | 500 | log-rank test | 53.5 (range 6–198) | OS DFS |
Sato [34] | 2023 | Japan | CRC | 2013–2020 | retrospect | 86 | 71 (37–93) | 50/36 | II–IV | surgical resection | 597 | ROC analysis | 35 | RFS |
Xiang [38] | 2023 | China | CRC | 2013–2017 | retrospect | 236 | 45 | 143/93 | I–III | neoadjuvant chemo-radiotherapy, adjuvant therapy | 637.6 | survminer R package | 48 | OS |
Yi [45] | 2023 | China | CRC | 2017–2021 | retrospect | 75 | 47 (23–84) | 48/27 | IV | chemo+ immuno-therapy | 409.6 | ROC analysis | 24 | OS PFS |
Young [47] | 2023 | USA | CRC | 2014–2019 | retrospect | 41 | 61.4 ± 8.2 | 21/20 | IV | transarterial radio-embolization (TARE), chemotherapy | 591.7 | median | 12 | OS PFS |
Zhang [50] | 2023 | China | colon | 2013–2018 | retrospect | 188 | 67 (33–92) | 117/71 | I–IV | surgical resection | 514.1 | median | 43 | DFS |
Zhang [49] | 2023 | China | CRC | 2019–2023 | retrospect | 160 | 64 (38–85) | 98/62 | I–IV | surgical resection | 513.5 | ROC analysis | 29.25 (2–60) | OS |
First Author | Year | Country | Histology | Study Period | Study Design | Sample Size | Age (Median) | Sex M/F | TNMStage | Treatment | SIRI Cutoff | Method for Cutoff Selection | Follow-Up (Months) | Survival Endpoint |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ying [46] | 2021 | China | CRC | 2013–2016 | retrospect | 1014 | 460 over 60 | 622/392 | II–III | surgery + chemotherapy | 1.95 | X-tile | 36 | RFS |
Ying [46] | 2021 | China | CRC | 2013–2016 | retrospect | 519 | 328 over 60 | 348/171 | II–III | surgery + chemotherapy | 1.95 | X-tile | 36 | RFS |
Cao [57] | 2023 | China | CRC | 2013–2017 | retrospect | 298 | 56.25 | 172/126 | I–IV | surgical resection | 1.4 | X-tile | 24 | OS, DFS |
Cai [55] | 2023 | China | CRC | 2015–2017 | retrospect | 210 | 121 over/or 60 | 118/92 | I–III | surgery + chemotherapy | 2 | X-tile | 90 | OS |
Cai [56] | 2023 | China | CRC | 2015–2017 | retrospect | 217 | 94 over/or 60 | 124/93 | I–III | surgery + chemotherapy | 1.1 | X-tile | 90 | OS |
Yazici [54] | 2024 | Turkey | rectal | 2017–2022 | retrospect | 104 | 62 (31–89) | 59/45 | I–IV | surgery + chemotherapy | 1.38 | ROC analysis | 33 (1–62) | OS |
Variables | No. of Datasets | No. of Patients | Effect Model | HR (95%CI) | p | Heterogeneity, I2% | Heterogeneity, p |
---|---|---|---|---|---|---|---|
Total number of datasets | 25 | 7714 | random | 1.75 (1.4–2.19) | <0.01 | 90.9 | <0.01 |
Sample size | |||||||
<220 | 11 | 1144 | random | 1.55 (1.13–2.13) | <0.01 | 83.8 | <0.01 |
≥220 | 14 | 6570 | random | 1.9 (1.46–2.49) | <0.01 | 84.6 | <0.01 |
Tumor location | |||||||
CRC | 19 | 5908 | random | 1.92 (1.47–2.50) | <0.01 | 92.4 | <0.01 |
Rectal | 3 | 1518 | random | 1.72 (1.14–2.6) | <0.01 | 66 | 0.05 |
Colon | 1 | 118 | na | 2.07 (1.04–4.1) | na | na | |
TNM stage | |||||||
I–II or I–III | 2 | 712 | random | 4.77 (3.02–7.54) | <0.01 | 0 | 0.61 |
I–IV | 12 | 5032 | random | 1.8 (1.36–2.38) | <0.01 | 81 | <0.01 |
III–IV | 3 | 390 | random | 1.91 (1.08–3.38) | 0.03 | 68.7 | 0.04 |
IV | 7 | 1108 | random | 1.2 (0.94–1.53) | 0.14 | 72 | <0.01 |
Treatment | |||||||
Neoadjuvant/adjuvant chemoradiotherapy | 2 | 318 | random | 2.29 (1.66–3.17) | <0.01 | 0 | 0.65 |
Chemotherapy + targeted therapy | 4 | 668 | random | 1.49 (1.23–1.8) | <0.01 | 0 | 0.77 |
Chemotherapy + immunotherapy | 1 | 75 | na | 4.048 (1.12–14.49) | na | na | |
Surgery + chemotherapy | 9 | 2877 | random | 1.63 (1.02–2.58) | <0.01 | 89.5 | <0.01 |
Surgical resection | 6 | 2455 | random | 2.13 (1.39–3.27) | <0.01 | 76.9 | <0.01 |
Neoadjuvant chemoradiotherapy + surgery | 2 | 1280 | random | 1.56 (0.9–2.72) | 0.11 | 75 | 0.05 |
Cutoff value of SII | |||||||
<550 | 13 | 4458 | random | 2.01 (1.54–2.62) | <0.01 | 79.2 | <0.01 |
≥550 | 12 | 3256 | random | 1.51 (1.15–2.00) | <0.01 | 86.5 | <0.01 |
Cutoff selection method | |||||||
X-tile software | 3 | 1213 | random | 1.47 (1.13–1.9) | <0.01 | 47 | 0.15 |
ROC analysis | 10 | 3500 | random | 2.27 (1.78–2.89) | <0.01 | 63.5 | <0.01 |
Median value | 6 | 1013 | random | 1.55 (1.15–2.08) | <0.01 | 49 | 0.08 |
Country | |||||||
China | 18 | 5491 | random | 2.2 (1.62–2.53) | <0.01 | 76.3 | <0.01 |
Italy | 3 | 1279 | random | 1.39 (1.15–1.69) | <0.01 | 5 | 0.35 |
Japan | 1 | 733 | na | 3.21 (1.87–5.5) | na | na | |
Hungary | 2 | 170 | random | 0.58 (0.37–0.91) | 0.02 | 0 | 0.35 |
USA | 1 | 41 | na | 1 (0.99–1.09) | na | na |
Variables | No. of Datasets | No. of Patients | Effect Model | HR (95%CI) | p | Heterogeneity, I2% | Heterogeneity, p |
---|---|---|---|---|---|---|---|
Total number of datasets | 24 | 8277 | random | 1.25 (1.18–1.33) | <0.01 | 91.6 | <0.01 |
Sample size | |||||||
<220 | 10 | 1037 | random | 1.52 (1.1–2.1) | <0.01 | 85.6 | <0.01 |
≥220 | 14 | 7240 | random | 1.61 (1.26–2.06) | <0.01 | 93.8 | <0.01 |
Tumor location | |||||||
CRC | 18 | 6001 | random | 1.56 (1.23–1.97) | <0.01 | 92.3 | <0.01 |
Rectal | 5 | 2088 | random | 1.6 (1.1–2.34) | 0.01 | 91.5 | <0.01 |
Colon | 1 | 188 | na | 1.65 (0.998–2.7) | na | na | |
TNM stage | |||||||
I or I–III or II–III | 4 | 2301 | random | 1.67 (1.18–2.36) | <0.01 | 69.5 | 0.02 |
I–IV | 9 | 3985 | random | 1.76 (1.29–2.39) | <0.01 | 87.1 | <0.01 |
II–IV or III–IV | 5 | 1123 | random | 1.91 (1.12–3.25) | 0.02 | 87.2 | <0.01 |
IV | 6 | 868 | random | 1.09 (0.82–1.45) | 0.54 | 80.7 | <0.01 |
Treatment | |||||||
Neoadjuvant/adjuvant chemoradiotherapy | 6 | 2114 | random | 1.58 (1.14–2.19) | <0.01 | 86.6 | <0.01 |
Chemotherapy + targeted therapy | 4 | 668 | random | 1.42 (1.16–1.75) | <0.01 | 24 | 0.27 |
Chemotherapy + immunotherapy | 1 | 75 | na | 2.09 (0.62–7.04) | na | na | |
Surgery + chemotherapy | 5 | 1986 | random | 1.31 (0.82–2.09) | <0.01 | 89.5 | <0.01 |
Surgical resection | 7 | 3393 | random | 1.97 (1.37–2.84) | <0.01 | 83.9 | <0.01 |
Cutoff value of SII | |||||||
<550 | 14 | 4953 | random | 1.77 (1.33–2.37) | <0.01 | 93.8 | <0.01 |
≥550 | 10 | 3324 | random | 1.34 (1.06–1.68) | 0.01 | 85.8 | <0.01 |
Cutoff selection | |||||||
X-tile software | 6 | 3024 | random | 1.28 (1.05–1.55) | 0.01 | 81.3 | <0.01 |
ROC analysis | 12 | 3785 | random | 1.82 (1.3–2.53) | <0.01 | 83.2 | <0.01 |
Median value | 4 | 619 | random | 1.95 (1.52–2.5) | <0.01 | 0 | 0.42 |
Country | |||||||
China | 17 | 6701 | random | 1.76 (1.37–2.28) | <0.01 | 93.1 | <0.01 |
Italy | 3 | 1279 | random | 1.22 (0.93–1.59) | 0.14 | 67 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menyhart, O.; Fekete, J.T.; Győrffy, B. Inflammation and Colorectal Cancer: A Meta-Analysis of the Prognostic Significance of the Systemic Immune–Inflammation Index (SII) and the Systemic Inflammation Response Index (SIRI). Int. J. Mol. Sci. 2024, 25, 8441. https://doi.org/10.3390/ijms25158441
Menyhart O, Fekete JT, Győrffy B. Inflammation and Colorectal Cancer: A Meta-Analysis of the Prognostic Significance of the Systemic Immune–Inflammation Index (SII) and the Systemic Inflammation Response Index (SIRI). International Journal of Molecular Sciences. 2024; 25(15):8441. https://doi.org/10.3390/ijms25158441
Chicago/Turabian StyleMenyhart, Otilia, János Tibor Fekete, and Balázs Győrffy. 2024. "Inflammation and Colorectal Cancer: A Meta-Analysis of the Prognostic Significance of the Systemic Immune–Inflammation Index (SII) and the Systemic Inflammation Response Index (SIRI)" International Journal of Molecular Sciences 25, no. 15: 8441. https://doi.org/10.3390/ijms25158441
APA StyleMenyhart, O., Fekete, J. T., & Győrffy, B. (2024). Inflammation and Colorectal Cancer: A Meta-Analysis of the Prognostic Significance of the Systemic Immune–Inflammation Index (SII) and the Systemic Inflammation Response Index (SIRI). International Journal of Molecular Sciences, 25(15), 8441. https://doi.org/10.3390/ijms25158441