Genetic Polymorphisms and Genetic Risk Scores Contribute to the Risk of Coronary Artery Disease (CAD) in a North Indian Population
Abstract
:1. Introduction
2. Results
2.1. Genotype and Allele Distribution and Association Analysis
2.2. Linkage Disequilibrium and Haplotype Analysis
2.3. Polygenic Risk Score
3. Discussion
3.1. GSTM1 and GSTT1
3.2. The RAAS Genetic Polymorphisms
3.3. Apolipoprotein Genetic Polymorphisms
3.4. Polygenic Risk Score
3.5. Limitations and Further Research
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organisation. The Top 10 Causes of Death. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 23 April 2023).
- Prabhakaran, D.; Singh, K.; Roth, G.A.; Banerjee, A.; Pagidipati, N.J.; Huffman, M.D. Cardiovascular diseases in India compared with the United States. J. Am. Coll. Cardiol. 2018, 72, 79–95. [Google Scholar] [CrossRef] [PubMed]
- Jayashree, S.; Arindam, M.; Vijay, K. Genetic epidemiology of coronary artery disease: An Asian Indian perspective. J. Genet. 2015, 94, 539–549. [Google Scholar] [CrossRef] [PubMed]
- India State-Level Disease Burden Initiative CVD Collaborators. The changing patterns of cardiovascular diseases and their risk factors in the states of India: The Global Burden of Disease Study 1990–2016. Lancet Glob. Health 2018, 6, e1339–e1351. [Google Scholar] [CrossRef] [PubMed]
- Kalra, A.; Jose, A.P.; Prabhakaran, P.; Kumar, A.; Agrawal, A.; Roy, A.; Bhargava, B.; Tandon, N.; Prabhakaran, D. The burgeoning cardiovascular disease epidemic in Indians—Perspectives on contextual factors and potential solutions. Lancet Reg. Health Southeast Asia 2023, 12, 100156. [Google Scholar] [CrossRef] [PubMed]
- Howson, J.M.M.; Zhao, W.; Barnes, D.R.; Ho, W.-K.; Young, R.; Paul, D.S.; Waite, L.L.; Freitag, D.F.; Fauman, E.B.; Salfati, E.L.; et al. Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms. Nat. Genet. 2017, 49, 1113–1119. [Google Scholar] [CrossRef] [PubMed]
- Aragam, K.G.; Jiang, T.; Goel, A.; Kanoni, S.; Wolford, B.N.; Atri, D.S.; Weeks, E.M.; Wang, M.; Hindy, G.; Zhou, W.; et al. Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants. Nat. Genet. 2022, 54, 1803–1815. [Google Scholar] [CrossRef] [PubMed]
- López Rodríguez, M.; Arasu, U.T.; Kaikkonen, M.U. Exploring the genetic basis of coronary artery disease using functional genomics. Atherosclerosis 2023, 374, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Cao, Y.; Li, J.; Zhu, Y.; Ma, X. GST null polymorphisms may affect the risk of coronary artery disease: Evidence from a meta-analysis. Thromb. J. 2020, 18, 20. [Google Scholar] [CrossRef]
- Takahashi, H.; Yoshika, M.; Komiyama, Y.; Nishimura, M. The central mechanism underlying hypertension: A review of the roles of sodium ions, epithelial sodium channels, the renin–angiotensin–aldosterone system, oxidative stress and endogenous digitalis in the brain. Hypertens Res. 2011, 34, 1147–1160. [Google Scholar] [CrossRef]
- Rai, H.; Sinha, N.; Finn, J.; Agrawal, S.; Mastana, S. Association of serum lipids and coronary artery disease with polymorphisms in the apolipoprotein AI-CIII-AIV gene cluster. Cogent Med. 2016, 3, 1266789. [Google Scholar] [CrossRef]
- Song, Y.; Shan, Z.; Liu, X.; Chen, X.; Luo, C.; Chen, L.; Wang, Y.; Gong, L.; Liu, L.; Liang, J. An updated meta-analysis showed smoking modify the association of GSTM1 null genotype on the risk of coronary heart disease. Biosci. Rep. 2021, 41, BSR20200490. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, J.; Vijayvergiya, R.; Singh, B.; Bhatti, G. Genetic susceptibility of glutathione S-transferase genes (GSTM1/T1andP1) to coronary artery disease in Asian Indians. Ann. Hum. Genet. 2018, 82, 448–456. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Shan, Z.; Luo, C.; Kang, C.; Yang, Y.; He, P.; Li, S.; Chen, L.; Jiang, X.; Liu, L. Glutathione S-Transferase T1 (GSTT1) Null Polymorphism, Smoking, and Their Interaction in Coronary Heart Disease: A Comprehensive Meta-Analysis. Heart Lung Circ. 2017, 26, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Moradzadegan, A.; Vaisi-Raygani, A.; Nikzamir, A.; Rahimi, Z. Angiotensin converting enzyme insertion/deletion (I/D) (rs4646994) and VEGF polymorphism (+405G/C; rs2010963) in type II diabetic patients: Association with the risk of coronary artery disease. J. Renin-Angiotensin Aldosterone Syst. 2014, 16, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Kondo, H.; Ninomiya, T.; Hata, J.; Hirakawa, Y.; Yonemoto, K.; Arima, H.; Nagata, M.; Tsuruya, K.; Kitazono, T.; Kiyohara, Y. Angiotensin I-Converting Enzyme Gene Polymorphism Enhances the Effect of Hypercholesterolemia on the Risk of Coronary Heart Disease in a General Japanese Population: The Hisayama Study. J. Atheroscler. Thromb. 2015, 22, 390–403. [Google Scholar] [CrossRef] [PubMed]
- Temel, S.; Ergoren, M.; Yilmaz, I.; Oral, H. The use of ACE INDEL polymorphism as a biomarker of coronary artery disease (CAD) in humans with Mediterranean-style diet. Int. J. Biol. Macromol. 2018, 123, 576–580. [Google Scholar] [CrossRef] [PubMed]
- Bonfim-Silva, R.; Guimarães, L.; Santos, J.; Pereira, J.; Leal Barbosa, A.; Souza Rios, D. Case–control association study of polymorphisms in the angiotensinogen and angiotensin-converting enzyme genes and coronary artery disease and systemic artery hypertension in African-Brazilians and Caucasian-Brazilians. J. Genet. 2016, 95, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Khatami, M.; Heidari, M.; Hadadzadeh, M.; Scheiber-Mojdehkar, B.; Bitaraf Sani, M. Simultaneous Genotyping of the rs4762 and rs699 Polymorphisms in Angiotensinogen Gene and Correlation with Iranian CAD Patients with Novel Hexa-primer ARMS-PCR. Iran. J. Public Health 2017, 46, 811–819. [Google Scholar] [PubMed]
- Zhao, H.; Zhao, R.; Hu, S.; Rong, J. Gene polymorphism associated with angiotensinogen (M235T), endothelial lipase (584C/T) and susceptibility to coronary artery disease: A meta-analysis. Biosci. Rep. 2020, 40, BSR20201414. [Google Scholar] [CrossRef]
- Pereira, A.; Mendonça, M.; Borges, S.; Freitas, S.; Henriques, E.; Rodrigues, M.; Freitas, A.; Sousa, A.; Brehm, A.; Reis, R. Genetic Risk Analysis of Coronary Artery Disease in a Population based Study in Portugal, Using a Genetic Risk Score of 31 Variants. Arq. Bras. Cardiol. 2018, 111, 50–61. [Google Scholar]
- Li, X.; Li, Q.; Wang, Y.; Li, Y.; Ye, M.; Ren, J.; Wang, Z. AGT gene polymorphisms (M235T, T174M) are associated with coronary heart disease in a Chinese population. J. Renin Angiotensin Aldosterone Syst. 2012, 14, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Wang, W. Association between T174M polymorphism in the angiotensinogen gene and risk of coronary artery disease: A meta-analysis. J. Geriatr. Cardiol. 2013, 10, 59–65. [Google Scholar] [PubMed]
- Jia, E.; Xu, Z.; Guo, C.; Li, L.; Gu, Y.; Zhu, T.; Wang, L.; Cao, K.; Ma, W.; Yang, Z. Renin-Angiotensin-Aldosterone System Gene Polymorphisms and Coronary Artery Disease: Detection of Gene-Gene and Gene-Environment Interactions. Cell. Physiol. Biochem. 2012, 29, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhou, B.; Zhang, L. Association study of angiotensin II type 1 receptor: A1166C (rs5186) polymorphism with coronary heart disease using systematic meta-analysis. J. Renin Angiotensin Aldosterone Syst. 2012, 14, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Hu, S.; Wang, F.; Wang, X.; Li, Y.; Huang, C. PPARG, AGTR1, CXCL16 and LGALS2 polymorphisms are correlated with the risk for coronary heart disease. Int. J. Clin. Exp. Pathol. 2015, 8, 3138–3143. [Google Scholar] [PubMed]
- Duan, L.; Wang, X. Analysis of correlations between coronary heart disease and haplotypes of the angiotensin II receptor type 1 (AGTR1) gene. Genet. Mol. Res. 2016, 15, 10-4238. [Google Scholar] [CrossRef] [PubMed]
- Morjane, I.; Charoute, H.; Ouatou, S.; Elkhattabi, L.; Benrahma, H.; Saile, R.; Rouba, H.; Barakat, A. Association of c.56C > G (rs3135506) Apolipoprotein A5 Gene Polymorphism with Coronary Artery Disease in Moroccan Subjects: A Case-Control Study and an Updated Meta-Analysis. Cardiol. Res. Pract. 2020, 2020, 5981971. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Xu, L.; Huang, R.; Huang, Y.; Le, Y.; Jiang, D.; Yang, X.; Xu, W.; Huang, X.; Dong, C.; et al. Apolipoprotein A5 gene variants and the risk of coronary heart disease: A case-control study and meta-analysis. Mol. Med. Rep. 2013, 8, 1175–1182. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, S.; Kumar, S.; Agarwal, V.; Misra, D.; Rai, M.; Kapoor, A. The association of polymorphic variants, rs2267788, rs1333049 and rs2383207 with coronary artery disease, its severity and presentation in North Indian population. Gene 2018, 648, 89–96. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.; Gao, J. Apolipoprotein C3 gene variants and the risk of coronary heart disease: A meta-analysis. Meta Gene 2016, 9, 104–109. [Google Scholar] [CrossRef]
- Nordlie, M.; Wold, L.; Kloner, R. Genetic contributors toward increased risk for ischemic heart disease. J. Mol. Cell. Cardiol. 2005, 39, 667–679. [Google Scholar] [CrossRef]
- Xu, M.; Zhao, J.; Zhang, Y.; Ma, X.; Dai, Q.; Zhi, H.; Wang, B.; Wang, L. Apolipoprotein E Gene Variants and Risk of Coronary Heart Disease: A Meta-Analysis. BioMed Res. Int. 2016, 3912175. [Google Scholar] [CrossRef] [PubMed]
- Bhat, M.; Gandhi, G. Association of GSTT1 and GSTM1 gene polymorphisms with coronary artery disease in North Indian Punjabi population: A case-control study. Postgrad. Med. J. 2016, 92, 701–706. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, L.; Fan, D.; Wang, Z.; Cui, Y. Effects of GST null genotypes on individual susceptibility to atherosclerotic cardiovascular diseases: A meta-analysis. Free Radic. Res. 2020, 54, 567–573. [Google Scholar] [CrossRef]
- Zhang, F.; He, Q.; Qin, C.H.; Little, P.J.; Weng, J.P.; Xu, S.W. Therapeutic potential of colchicine in cardiovascular medicine: A pharmacological review. Acta Pharmacol. Sin. 2022, 43, 2173–2190. [Google Scholar] [CrossRef]
- Figueiredo, C.S.; Roseira, E.S.; Viana, T.T.; Silveira, M.A.D.; de Melo, R.M.V.; Fernandez, M.G.; Lemos, L.M.G.; Passos, L.C.S. Inflammation in Coronary Atherosclerosis: Insights into Pathogenesis and Therapeutic Potential of Anti-Inflammatory Drugs. Pharmaceuticals 2023, 16, 1242. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, G.; Bhatti, J.; Vijayvergiya, R.; Singh, B. Implications of ACE (I/D) Gene Variants to the Genetic Susceptibility of Coronary Artery Disease in Asian Indians. Indian J. Clin. Biochem. 2016, 32, 163–170. [Google Scholar] [CrossRef]
- Agrawal, S.; Singh, V.; Tewari, S.; Sinha, N.; Ramesh, V.; Agarwal, S.; Gilmour, A.; Mastana, S. Angiotensin-converting enzyme gene polymorphism in coronary artery disease in north India. Indian Heart J. 2004, 56, 44–46. [Google Scholar] [PubMed]
- Nair, K.; Shalia, K.; Ashavaid, T.; Dalal, J. Coronary Heart Disease, Hypertension, and Angiotensinogen Gene Variants in Indian Population. J. Clin. Lab. Anal. 2003, 17, 141–146. [Google Scholar] [CrossRef]
- Mishra, A.; Srivastava, A.; Mittal, T.; Garg, N.; Mittal, B. Impact of Renin-Angiotensin-Aldosterone System Gene Polymorphisms on Left Ventricular Dysfunction in Coronary Artery Disease Patients. Dis. Markers 2012, 32, 33–41. [Google Scholar] [CrossRef]
- Takeuchi, F.; Isono, M.; Katsuya, T.; Yokota, M.; Yamamoto, K.; Nabika, T.; Shimokawa, K.; Nakashima, E.; Sugiyama, T.; Rakugi, H.; et al. Association of genetic variants influencing lipid levels with coronary artery disease in Japanese individuals. PLoS ONE 2012, 7, e46385. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Djan, I.; Stokic, E.; Sakac, D.; Djan, M.; Obreht, D.; Erak, M.; Jovanovic, N. Case-control study of apoE gene polymorphism in young CHD patients and controls in the Serbian population. Arch. Biol. Sci. 2011, 63, 89–98. [Google Scholar] [CrossRef]
- Afroze, D.; Yousuf, A.; Tramboo, N.; Shah, Z.; Ahmad, A. ApoE gene polymorphism and its relationship with coronary artery disease in ethnic Kashmiri population. Clin. Exp. Med. 2016, 16, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Ghaznavi, H.; Kiani, A.; Soltanpour, M. Association study between DNA methylation and genetic variation of APOE gene with the risk of coronary artery disease. Mol. Biol. Res. Commun. 2018, 7, 173–179. [Google Scholar]
- Dai, W.; Zhang, Z.; Yao, C.; Zhao, S. Emerging evidences for the opposite role of apolipoprotein C3 and apolipoprotein A5 in lipid metabolism and coronary artery disease. Lipids Health Dis. 2019, 18, 220. [Google Scholar] [CrossRef] [PubMed]
- Bhanushali, A.; Das, B. Influence of genetic variants in the apolipoprotein A5 and C3 gene on lipids, lipoproteins, and its association with coronary artery disease in Indians. J. Community Genet. 2010, 1, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, S.; Narang, R.; Lakshmy, R.; Vasisht, S.; Agarwal, D.; Srivastava, M.; Manchanda, S.; Das, N. Apolipoprotein C3 SstI polymorphism in the risk assessment of CAD. Mol. Cell. Biochem. 2004, 259, 59–66. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, X.; Ma, Y.; Zheng, Y.; Yang, Y.; Li, X.; Fu, Z.; Dai, C.; Zhang, M.; Yin, G.; et al. Association between Apolipoprotein C-III Gene Polymorphisms and Coronary Heart Disease: A Meta-analysis. Aging Dis. 2016, 7, 36. [Google Scholar] [CrossRef] [PubMed]
- Hindy, G.; Aragam, K.; Ng, K.; Chaffin, M.; Lotta, L.; Baras, A.; Drake, I.; Orho-Melander, M.; Melander, O.; Kathiresan, S.; et al. Genome-Wide Polygenic Score, Clinical Risk Factors, and Long-Term Trajectories of Coronary Artery Disease. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 2738–2746. [Google Scholar] [CrossRef]
- Wang, M.; Menon, R.; Mishra, S.; Patel, A.P.; Chaffin, M.; Tanneeru, D.; Deshmukh, M.; Mathew, O.; Apte, S.; Devanboo, C.S.; et al. Validation of a Genome-Wide Polygenic Score for Coronary Artery Disease in South Asians. J. Am. Coll. Cardiol. 2020, 76, 703–714. [Google Scholar] [CrossRef]
- Shahid, S.; Shabana, C.J.; Beaney, K.; Li, K.; Rehman, A.; Humphries, S. Genetic risk analysis of coronary artery disease in Pakistani subjects using a genetic risk score of 21 variants. Atherosclerosis 2017, 258, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ward, H.; Mitrou, P.; Bowman, R.; Luben, R.; Wareham, N.; Khaw, K.; Bingham, S. APOE Genotype, Lipids, and Coronary Heart Disease Risk. Arch. Intern. Med. 2009, 169, 1424–1429. [Google Scholar] [CrossRef] [PubMed]
- Mastana, S.; Prakash, S.; Akam, E.; Kirby, M.; Lindley, M.; Sinha, N.; Agrawal, S. Genetic association of pro-inflammatory cytokine gene polymorphisms with coronary artery disease (CAD) in a North Indian population. Gene 2017, 628, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Gauderman, W.J.; Morrison, J.M. QUANTO 1.1 A Computer Program for Power and Sample Size Calculations for Genetic-Epidemiology Studies. 2006. Available online: https://hydra.usc.edu/gxe (accessed on 15 February 2024).
- SNPStats: Your Web Tool for SNP Analysis. 2018. Available online: https://www.snpstats.net/start.htm (accessed on 24 April 2021).
Gene | SNP/Variant | Variant Type | Cytoband | Alleles | Description of Variant | CAD Risk | Supporting Studies | Contradicting Studies |
---|---|---|---|---|---|---|---|---|
Glutathione S-transferase mu 1 (GSTM1) | rs366631 | Deletion | 1p13.3 | null/wild | Homozygous deletion (null) leads to the absence of the enzyme. Non-deletion allele carriers produce a function enzyme. | ↑ | Su et al., 2020 [9] Song et al., 2021 [12] | |
Glutathione S-transferase theta 1 (GSTT1) | rs17856199 | Deletion | 22q11.23 | null/wild | Homozygous deletion (null) leads to the absence of the enzyme. Non-deletion allele carriers produce a function enzyme. | ↓ | Bhatti et al., 2018 [13] | Song et al., 2017 [14] |
Angiotensinogen-converting enzyme (ACE) | rs4646994 | Insertion/deletion | 17q23.3 | I/D | Located in intron 16 of ACE, it is an insertion (I) or deletion (D) of a 287bp Alu repeat. | ↑ | Moradzadegan et al., 2015 [15] | Kondo et al., 2015 [16] |
Temel et al., 2018 [17] | Bonfim-Silva et al., 2016 [18] | |||||||
Angiotensinogen (AGT) | rs699 | Exonic | 1q42.2 | M/T (T/C) | Transition from T-to-C at nucleotide 704 of exon 2 results in substituting threonine for methionine at amino acid 235. It is also known as M235T. | ↑ | Khatami et al., 2017 [19] Zhao et al., 2020 [20] | Bonfim-Silva et al., 2016 [18] Pereira et al., 2018 [21] |
rs4762 | Exonic | 1q42.2 | C/T | Methionine substitutes threonine at amino acid 174, due to the transition of C-to-T at nucleotide 521 on exon 2. It is also known as T174M. | ↑ | Li et al., 2012 [22] Khatami et al., 2017 [19] | Wang, 2013 [23] Jia et al., 2012 [24] | |
Angiotensinogen receptor type 1 (AGTR1) | rs5186 | Exonic | 3q24 | A/C | Also known as A1166C, it is a transversion at nucleotide 1166 from A-to-C in the 3′ untranslated region of the AGTR1. | ↑ | Zhang et al., 2012 [25] Tian et al., 2015 [26] Duan and Wang, 2016 [27] | Pereira et al., 2018 [21] |
Apolipoprotein A-V (APOA5) | rs3135506 | Exonic | 11q23.3 | G/C | Also known as S19W, is the substitution of tryptophan from serine, due to a G-to-C transversion. | ↑ | Morjane et al., 2020 [28] | Zhou et al., 2013 [29] |
Kashyap et al., 2018 [30] | ||||||||
Apolipoprotein C-III (APOC3) | rs5128 | 3′UTR | 11q23.3 | C/G | Transversion at nucleotide 3238 from C-to-G, located within the 3′ untranslated region of APOC3. | ↑ | Li et al., 2016 [31] | Rai et al., 2016 [11] |
Apolipoprotein E (APOE) | rs7412 | Exonic | 19q13.32 | C/T | These two variants combined create the three alleles ε2, ε3 and ε4. If the rs429358 allele is T and the same chromosome has the rs7412 T allele, ε2 is created. If the same chromosome harbours both C alleles, then ε4 is formed. ε3 is created by the rs7412 C allele and the rs429358 T allele. | ε2: ↓ ε4: ↑ | Nordlie et al. 2005 [32] Xu et al., 2016 [33] | |
rs429358 | Exonic | 19q13.32 | T/C |
Parameter | Controls (n = 175) | Cases (n = 177) | p Values |
---|---|---|---|
Age (years) | 54.63 ± 12.63 | 62.94 ± 11.54 | <0.001 * |
Sex | |||
Male | 104 (59%) | 112 (63%) | 0.512 |
Female | 71 (41%) | 65 (37%) | |
BMI | 26.21 (23.85–29.29) | 25.50 (23.42–28.23) | 0.129 |
Smoking | |||
Non-smoker | 172 (98%) | 173 (99%) | 0.684 |
Smoker | 3 (2%) | 2 (1%) | |
Diabetics % | 19 (11%) | 110 (62%) | <0.0001 * |
SBP (mm Hg) | 136 (126–147) | 142 (130–160) | 0.002 * |
DBP (mm Hg) | 85 (79–90) | 81 (72–90) | 0.047 * |
Hypertension (>140/90) % | 38 (21%) | 92 (52%) | <0.0001 * |
Cholesterol (mg/dL) | 195 (164–221) | 162 (143–198) | <0.001 * |
TG (mg/dL) | 147 (109–201) | 135 (107–196) | 0.239 |
LDL (mg/dL) | 116 (89–139) | 95 (66–125) | <0.001 * |
HDL (mg/dL) | 47 (41–50) | 43 (38–47) | <0.001 * |
Total lipids (mg/dL) | 539 (462–633) | 481 (394–577) | <0.001 * |
Elevated TG % (>200 mg/dL)) | 44 (25%) | 38 (21%) | 0.491 |
Lower HDL % (<40 mg/dL) | 28 (16%) | 53 (30%) | 0.003 * |
High Total Cholesterol % (>240 mg/dL) | 22 (13%) | 17 (10%) | 0.473 |
High LDL Cholesterol % (>160 mg/dL) | 23 (13%) | 14 (8%) | 0.154 |
Gene (Variant) | Group (n) | Genotype Frequency | Risk Allele Frequency (±SE) | HWE p Value | |||
---|---|---|---|---|---|---|---|
Wild | Null | ||||||
GSTM1 (rs366631) | Control (175) | 0.720 | 0.280 | - | - | ||
Case (177) | 0.480 | 0.520 | - | - | |||
GSTT1 (rs17856199) | Control (175) | 0.829 | 0.171 | - | - | ||
Case (177) | 0.695 | 0.305 | - | - | |||
I/I | I/D | D/D | D | ||||
ACE (rs4646994) | Control (175) | 0.263 | 0.514 | 0.223 | 0.480 ± 0.028 | 0.689 | |
Case (177) | 0.119 | 0.463 | 0.418 | 0.650 ± 0.019 | 0.813 | ||
T/T | C/T | C/C | C | ||||
AGT (rs699) | Control (173) | 0.798 | 0.179 | 0.023 | 0.113 ± 0.048 | 0.171 | |
Case (174) | 0.460 | 0.448 | 0.092 | 0.316 ± 0.037 | 0.627 | ||
C/C | C/T | T/T | T | ||||
AGT (rs4762) | Control (175) | 0.771 | 0.211 | 0.017 | 0.123 ± 0.047 | 0.801 | |
Case (177) | 0.452 | 0.452 | 0.096 | 0.322 ± 0.036 | 0.641 | ||
A/A | A/C | C/C | C | ||||
AGTR1 (rs5186) | Control (175) | 0.794 | 0.177 | 0.029 | 0.117 ± 0.047 | 0.058 | |
Case (177) | 0.441 | 0.446 | 0.113 | 0.336 ± 0.035 | 1.000 | ||
C/C | C/T | T/T | T | ||||
APOE (rs7412) | Control (175) | 0.931 | 0.069 | 0.000 | 0.034 ± 0.052 | 0.639 | |
Case (177) | 0.921 | 0.079 | 0.000 | 0.040 ± 0.051 | 0.584 | ||
T/T | C/T | C/C | C | ||||
APOE (rs429358) | Control (174) | 0.736 | 0.236 | 0.029 | 0.147 ± 0.046 | 0.444 | |
Case (177) | 0.667 | 0.322 | 0.011 | 0.172 ± 0.044 | 0.086 | ||
G/G | C/G | C/C | C | ||||
APOA5 (rs3135506) | Control (169) | 0.651 | 0.314 | 0.036 | 0.192 ± 0.044 | 0.901 | |
Case (175) | 0.543 | 0.371 | 0.086 | 0.271 ± 0.039 | 0.421 | ||
C/C | C/G | G/G | G | ||||
APOC3 (rs5128) | Control (173) | 0.717 | 0.260 | 0.023 | 0.153 ± 0.046 | 0.972 | |
Case (175) | 0.703 | 0.257 | 0.040 | 0.169 ± 0.044 | 0.274 |
Locus/Association Model | Crude OR [95% CI] | p Value | Adjusted OR [95% CI] a | p Value |
---|---|---|---|---|
GSTM1 (rs366631) | ||||
Recessive (null vs. wild) | 2.78 [1.79–4.33] | <0.0001 ** | - | - |
GSTT1 (rs17856199) | ||||
Recessive (null vs. wild) | 2.12 [1.28–3.52] | 0.0050 ** | - | - |
ACE (rs4646994) | ||||
Multiplicative/Allelic | 2.05 [1.49–2.81] | <0.0001 ** | 2.14 [1.50–3.05] | <0.0001 ** |
Genotypic (I/D vs. I/I) | 2.00 [1.10–3.62] | <0.0001 ** | 2.13 [1.10–4.13] | 0.0004 ** |
Genotypic (D/D vs. I/I) | 4.16 [2.18–7.93] | <0.0001 ** | 4.57 [2.22–9.42] | 0.0004 ** |
Dominant (I/D + D/D vs. I/I) | 2.65 [1.50–4.67] | <0.0001 ** | 2.83 [1.51–5.31] | 0.0008 ** |
Recessive (D/D vs. I/D + I/I) | 2.51 [1.57–3.99] | <0.0001 ** | 2.61 [1.55–4.39] | 0.0002 ** |
AGT M235T (rs699) | ||||
Multiplicative/Allelic | 3.61 [2.37–5.49] | <0.0001 ** | 3.36 [2.11–5.35] | <0.0001 ** |
Genotypic (C/T vs. T/T) | 4.34 [2.64–7.15] | <0.0001 ** | 4.27 [2.46–7.40] | <0.0001 ** |
Genotypic (C/C vs. T/T) | 6.90 [2.23–21.35] | <0.0001 ** | 5.03 [2.57–17.33] | <0.0001 ** |
Dominant (C/T + C/C vs. T/T) | 4.63 [2.88–7.46] | <0.0001 ** | 4.36 [2.57–7.39] | <0.0001 ** |
Recessive (C/C vs. C/T + T/T) | 4.28 [1.40–13.07] | 0.0045 ** | 2.97 [0.88–10.03] | 0.0640 |
AGT T174M (rs4762) | ||||
Multiplicative/Allelic | 3.46 [2.29–5.21] | <0.0001 ** | 2.99 [1.91–4.68] | <0.0001 ** |
Genotypic (C/T vs. C/C) | 3.65 [2.26–5.88] | <0.0001 ** | 3.16 [1.87–5.35] | <0.0001 ** |
Genotypic (T/T vs. C/C) | 9.56 [2.72–33.65] | <0.0001 ** | 7.22 [1.87–27.83] | <0.0001 ** |
Dominant (C/T + T/T vs. C/C) | 4.09 [2.58–6.49] | <0.0001 ** | 3.74 [2.08–5.76] | <0.0001 ** |
Recessive (T/T vs. C/T + C/C) | 6.09 [1.75–21.18] | <0.0001 ** | 4.78 [1.24–18.36] | 0.0110 * |
AGTR1 A1166C (rs5186) | ||||
Multiplicative/Allelic | 3.62 [2.41–5.44] | <0.0001 ** | 3.98 [2.54–6.26] | <0.0001 ** |
Genotypic (A/C vs. A/A) | 4.54 [2.76–7.48] | <0.0001 ** | 4.72 [2.71–8.22] | <0.0001 ** |
Genotypic (C/C vs. A/A) | 7.13 [2.57–19.74] | <0.0001 ** | 10.15 [3.14–32.84] | <0.0001 ** |
Dominant (A/C + C/C vs. A/A) | 4.90 [3.06–7.85] | <0.0001 ** | 5.28 [3.10–8.98] | <0.0001 ** |
Recessive (C/C vs. A/C + A/A) | 4.33 [1.59–11.82] | <0.0001 ** | 5.65 [1.82–17.59] | 0.0011 ** |
APOE (rs7412) | ||||
Multiplicative/Allelic | 1.16 [0.53–2.54] | 0.71 | 1.16 [0.53–2.54] | 0.87 |
Genotypic (C/T vs. C/C) | 1.17 [0.52–2.60] | 0.71 | 1.17 [0.52–2.60] | 0.87 |
APOE (rs429358) | ||||
Multiplicative/Allelic | 1.21 [0.81–1.82] | 0.35 | 1.20 [0.75–1.93] | 0.45 |
Genotypic (C/T vs. T/T) | 1.51 [0.94–2.42] | 0.11 | 1.39 [0.81–2.37] | 0.36 |
Genotypic (C/C vs. T/T) | 0.43 [0.08–2.28] | 0.11 | 0.55 [0.08–3.84] | 0.36 |
Dominant (C/T + C/C vs. T/T) | 1.39 [0.88–2.20] | 0.16 | 1.32 [0.78–2.23] | 0.30 |
Recessive (C/C vs. C/T + T/T) | 0.39 [0.07–2.02] | 0.24 | 0.49 [0.10–3.31] | 0.45 |
APOA5 (rs3135506) | ||||
Multiplicative/Allelic | 1.54 [1.08–2.21] | 0.02 * | 1.59 [1.06–2.37] | 0.02 * |
Genotypic (C/G vs. G/G) | 1.42 [0.90–2.24] | 0.02 * | 1.45 [0.87–2.28] | 0.06 |
Genotypic (C/C vs. G/G) | 2.89 [1.08–7.76] | 0.05 * | 3.16 [1.00–9.94] | 0.05 * |
Dominant (C/G + C/C vs. G/G) | 1.57 [1.02–2.42] | 0.04 * | 1.61 [0.99–2.60] | 0.05 |
Recessive (C/C vs. C/G + G/G) | 2.55 [0.96–6.73] | 0.05 | 2.76 [0.89–8.55] | 0.06 |
APOC3 (rs5128) | ||||
Multiplicative/Allelic | 1.12 [0.75–1.66] | 0.58 | 1.04 [0.66–1.63] | 0.87 |
Genotypic (C/G vs. C/C) | 1.01 [0.62–1.63] | 0.66 | 1.06 [0.62–1.81] | 0.98 |
Genotypic (G/G vs. C/C) | 1.76 [0.50–6.18] | 0.66 | 0.99 [0.24–4.09] | 0.98 |
Dominant (C/G + G/G vs. C/C) | 1.07 [0.67–1.70] | 0.78 | 1.05 [0.63–1.77] | 0.85 |
Recessive (G/G vs. C/G vs. C/C) | 1.76 [0.51–1.59] | 0.37 | 0.98 [0.24–3.98] | 0.97 |
Haplotypes | Frequencies | OR [95% CI] | p Value | Adjusted OR [95% CI] a | p Value | |
---|---|---|---|---|---|---|
Controls | Cases | |||||
AGT rs699-rs4762 | ||||||
TC | 0.856 | 0.661 | 1.00 (ref) | 1.00 (ref) | ||
CT | 0.091 | 0.304 | 4.44 [2.81–7.02] | <0.0001 ** | 3.93 [2.39–6.48] | <0.0001 ** |
TT | 0.032 | 0.018 | 0.89 [0.35–2.27] | 0.82 | 0.80 [0.31–2.09] | 0.65 |
CC | 0.021 | 0.017 | 1.03 [0.35–3.03] | 0.96 | 0.97 [0.32–3.00] | 0.96 |
Global haplotype association | <0.0001 * | <0.0001 * | ||||
APOE rs7412-rs429358 | ||||||
CT | 0.822 | 0.792 | 1.00 (ref) | 1.00 (ref) | ||
CC | 0.143 | 0.169 | 1.23 [0.80–1.88] | 0.35 | 1.21 [0.76–1.92] | 0.43 |
TT | 0.031 | 0.036 | 1.19 [0.47–3.03] | 0.72 | 1.04 [0.39–2.74] | 0.94 |
TC | 0.004 | 0.003 | 1.37 [0.01–139.56] | 0.89 | 2.17 [0.01–356.30] | 0.77 |
Global haplotype association | 0.78 | 0.85 | ||||
APOA5/C3 rs3135506-rs5128 | ||||||
GC | 0.691 | 0.605 | 1.00 (ref) | 1.00 (ref) | ||
CC | 0.156 | 0.227 | 1.62 [1.07–2.45] | 0.024 * | 1.86 [1.14–3.03] | 0.013 * |
GG | 0.117 | 0.124 | 1.19 [0.71–1.98] | 0.51 | 1.28 [0.72–2.28] | 0.40 |
CG | 0.037 | 0.045 | 1.43 [0.57–3.59] | 0.44 | 0.88 [0.26–3.01] | 0.83 |
Global haplotype association | 0.10 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mastana, S.; Halai, K.C.; Akam, L.; Hunter, D.J.; Singh, P. Genetic Polymorphisms and Genetic Risk Scores Contribute to the Risk of Coronary Artery Disease (CAD) in a North Indian Population. Int. J. Mol. Sci. 2024, 25, 8552. https://doi.org/10.3390/ijms25158552
Mastana S, Halai KC, Akam L, Hunter DJ, Singh P. Genetic Polymorphisms and Genetic Risk Scores Contribute to the Risk of Coronary Artery Disease (CAD) in a North Indian Population. International Journal of Molecular Sciences. 2024; 25(15):8552. https://doi.org/10.3390/ijms25158552
Chicago/Turabian StyleMastana, Sarabjit, Kushni Charisma Halai, Liz Akam, David John Hunter, and Puneetpal Singh. 2024. "Genetic Polymorphisms and Genetic Risk Scores Contribute to the Risk of Coronary Artery Disease (CAD) in a North Indian Population" International Journal of Molecular Sciences 25, no. 15: 8552. https://doi.org/10.3390/ijms25158552
APA StyleMastana, S., Halai, K. C., Akam, L., Hunter, D. J., & Singh, P. (2024). Genetic Polymorphisms and Genetic Risk Scores Contribute to the Risk of Coronary Artery Disease (CAD) in a North Indian Population. International Journal of Molecular Sciences, 25(15), 8552. https://doi.org/10.3390/ijms25158552