Intrinsic Mechanism of CaCl2 Alleviation of H2O2 Inhibition of Pea Primary Root Gravitropism
Abstract
:1. Introduction
2. Results
2.1. Root Non-Geostrophic Validation Experiments
2.2. Transcriptome Analysis and Validation of Key DGEs in Pea Primary Roots under H2O2 and CaCl2 Treatment
2.3. Metabolomic Analysis of Pea Primary Roots under H2O2 and CaCl2 Treatments
2.4. GO Enrichment Analysis of DEGs
2.5. CaCl2 and H2O2 Affect Oxidative Stress within Pea Primary Roots
2.6. Effect of CaCl2 and H2O2 on the Contents of Starch and Soluble Sugar
2.7. Effect of CaCl2 and H2O2 on Calcium Signaling in Pea Primary Roots
2.8. Effects of CaCl2 and H2O2 on Phytohormone Signal Transduction in Pea Primary Roots
2.9. CaCl2 and H2O2 Affect Pea Primary Root Cell Walls
3. Discussion
3.1. CaCl2 and H2O2 Treatments Affect Pea Primary Root Growth toward Gravitropism
3.2. Activation of Oxidative Stress in Primary Roots by CaCl2 and H2O2 Treatments
3.3. Effect of CaCl2 and H2O2 on Starch Metabolism in Primary Roots
3.4. Effects of CaCl2 and H2O2 on Calcium Signaling in Primary Roots
3.5. Effects of CaCl2 and H2O2 on Phytohormone Signal Transduction
3.6. Effect of CaCl2 and H2O2 on the Cell Wall of Primary Roots
4. Materials and Methods
4.1. Plant Materials and Treatment
4.2. Root Germination Potential, Bending Rate and Bending Degree Statistics
4.3. Measurement of Physiological Indices
4.4. H2O2, Starch, and Lignin Staining
4.5. Transcriptome Sequencing
4.6. Quantitative Real-Time PCR
4.7. LC–MS/MS Analysis
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pavan, S.; Delvento, C.; Nazzicari, N.; Ferrari, B.; D’Agostino, N.; Taranto, F.; Lotti, C.; Ricciardi, L.; Annicchiarico, P. Merging genotyping-by-sequencing data from two ex situ collections provides insights on the pea evolutionary history. Hortic. Res. 2022, 9, uhab062. [Google Scholar] [CrossRef] [PubMed]
- Lei, B.; Zhang, F.Y. Responses of seed germination and seeding growth physiology of three pea variants to drought stress. J. Jianghan Univ. Nat. Sci. Ed. 2022, 50, 22–29. [Google Scholar]
- Villordon, A.Q.; Ginzberg, I.; Firon, N. Root architecture and root and tuber crop productivity. Trends Plant Sci. 2014, 19, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Taylor, I.; Lehner, K.; McCaskey, E.; Nirmal, N.; Ozkan-Aydin, Y.; Murray-Cooper, M.; Jain, R.; Hawkes, E.W.; Ronald, P.C.; Goldman, D.I.; et al. Mechanism and function of root circumnutation. Proc. Natl. Acad. Sci. USA 2021, 118, e2018940118. [Google Scholar] [CrossRef] [PubMed]
- Toal, T.W.; Ron, M.; Gibson, D.; Kajala, K.; Splitt, B.; Johnson, L.S. Regulation of root angle and gravitropism. G3 2018, 8, 3841–3855. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kobayashi, A.; Fujii, N.; Miyazawa, Y.; Takahashi, H. Gravitropic response and circumnutation in pea (Pisum sativum) seedling roots. Physiol. Plant 2016, 157, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Gorgues, L.; Li, X.; Maurel, C.; Martinière, A.; Nacry, P. Root osmotic sensing from local perception to systemic responses. Stress Biol. 2022, 2, 36. [Google Scholar] [CrossRef]
- Manzano, C.; Pallero-Baena, M.; Casimiro, I.; Rybel, D.B.; Orman-Ligeza, B.; Isterdael, G.V.; Isterdael, G.V.; Beeckman, T.; Draye, X.; Casero, P.; et al. The emerging role of reactive oxygen species signaling during lateral root development. Plant Physiol. 2014, 165, 1105–1119. [Google Scholar] [CrossRef] [PubMed]
- Mostofa, M.G.; Ghosh, A.; Li, Z.G.; Siddiqui, M.N.; Fujita, M.; Tran, L.S.H. Methylglyoxal-a signaling molecule in plant abiotic stress responses. Free Radic. Biol. Med. 2018, 122, 96–109. [Google Scholar] [CrossRef]
- Wan, J.; Wang, R.; Zhang, P.; Sun, L.; Ju, Q.; Huang, H.; Lü, S.Y.; Tran, L.S.; Xu, J. MYB70 modulates seed germination and root system development in Arabidopsis. iScience 2021, 24, 103228. [Google Scholar] [CrossRef]
- Devireddy, A.R.; Zandalinas, S.I.; Fichman, Y.; Mittler, R. Integration of reactive oxygen species and hormone signaling during abiotic stress. Plant J. 2021, 105, 459–476. [Google Scholar] [CrossRef] [PubMed]
- Su, G.X.; Zhang, W.H.; Liu, Y.L. Involvement of hydrogen peroxide generated by polyamine oxidative degradation in the development of lateral roots in soybean. J. Integr. Plant Biol. 2006, 48, 426–432. [Google Scholar] [CrossRef]
- Pei, Z.M.; Murata, Y.; Benning, G.; Thomine, S.; Klüsener, B.; Allen, G.J.; Grill, E.; Schroeder, J.I. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 2000, 406, 731–734. [Google Scholar] [CrossRef] [PubMed]
- Potikha, T.S.; Collins, C.C.; Johnson, D.I.; Delmer, D.P.; Levine, A. The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiol. 1999, 119, 849–858. [Google Scholar] [CrossRef]
- Tognetti, V.B.; Bielach, A.; Hrtyan, M. Redox regulation at the site of primary growth: Auxin, cytokinin and ROS crosstalk. Plant Cell Environ. 2017, 40, 2586–2605. [Google Scholar] [CrossRef]
- Frigerio, M.; Alabadí, D.; Pérez-Gómez, J.; García-Cárcel, L.; Phillips, A.L.; Hedden, P.; Lázquez, M.A. Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiol. 2006, 142, 553–563. [Google Scholar] [CrossRef]
- Lecourieux, D.; Mazars, C.; Pauly, N.; Ranjeva, R.; Pugin, A. Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells. Plant Cell 2002, 14, 2627–2641. [Google Scholar] [CrossRef]
- Foreman, J.; Demidchik, V.; Bothwell, J.H.; Mylona, P.; Miedema, H.; Torres, M.A.; Linstead, P.; Costa, S.; Brownlee, C.; Jones, J.D.G.; et al. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 2003, 422, 442–446. [Google Scholar] [CrossRef]
- Sanders, D.; Pelloux, J.; Brownlee, C.; Harper, J.F. Calcium at the crossroads of signaling. Plant Cell 2002, 14, S401–S417. [Google Scholar] [CrossRef]
- Wei, R.N.; Ma, L.; Lu, X.; Xu, L.; Feng, X.J.; Ma, Y.T. Research advances in plant root geotropism. Plant Growth Regul. 2024, 102, 237–250. [Google Scholar] [CrossRef]
- Wolf, S.; Hématy, K.; Höfte, H. Growth control and cell wall signaling in plants. Annu. Rev. Plant Biol. 2012, 63, 381–407. [Google Scholar] [CrossRef] [PubMed]
- Nguema-Ona, E.; Vicré-Gibouin, M.; Gotté, M.; Plancot, B.; Lerouge, P.; Bardor, M.; Driouich, A. Cell wall O-glycoproteins and N-glycoproteins: Aspects of biosynthesis and function. Front. Plant Sci. 2014, 5, 499. [Google Scholar] [CrossRef] [PubMed]
- Ganie, S.A.; Ahammed, G.J. Dynamics of cell wall structure and related genomic resources for drought tolerance in rice. Plant Cell Rep. 2021, 40, 437–459. [Google Scholar] [CrossRef] [PubMed]
- McQueen-Mason, S.; Durachko, D.M.; Cosgrove, D.J. Two endogenous proteins that induce cell wall extension in plants. Plant Cell 1992, 4, 1425–1433. [Google Scholar]
- Li, S.; Su, L.R.; Ma, S.Y.; Shi, Z.Z.; Yang, X.M. Initial exploration of the mechanism underlying H2O2-induced root horizontal bending in pea. Sci. Bull. 2015, 60, 1298–1300. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, H.; Wang, H.; Yang, X.; Xu, Y.; Yang, Z.F.; Xu, C.W.; Li, P.C. Integrating transcriptome, co-expression and QTL-seq analysis reveals that primary root growth in maize is regulated via flavonoid biosynthesis and auxin signal transduction. J. Exp. Bot. 2021, 72, 4773–4795. [Google Scholar] [CrossRef]
- Barba-Espin, G.; Diaz-Vivancos, P.; Clemente-Moreno, M.; Albacete, A.; Faize, L.; Faize, M.; Pérez-Alfocea, F.; Hernández, J.A. Interaction between hydrogen peroxide and plant hormones during germination and the early growth of pea seedlings. Plant Cell Environ. 2010, 33, 981–994. [Google Scholar] [CrossRef]
- Jiang, J.; Su, M.; Wang, L.; Jiao, C.; Sun, Z.; Cheng, W.; Li, F.M.; Wang, C.Y. Exogenous hydrogen peroxide reversibly inhibits root gravitropism and induces horizontal curvature of primary root during grass pea germination. Plant Physiol. Biochem. 2012, 53, 84–93. [Google Scholar] [CrossRef]
- Zhou, L.; Hou, H.; Yang, T.; Lian, Y.; Sun, Y.; Bian, Z.; Wang, C.Y. Exogenous hydrogen peroxide inhibits primary root gravitropism by regulating auxin distribution during Arabidopsis seed germination. Plant Physiol. Biochem. 2018, 128, 126–133. [Google Scholar] [CrossRef]
- Richter, P.; Strauch, S.M.; Lebert, M. Disproval of the Starch-Amyloplast Hypothesis? Trends Plant Sci. 2019, 24, 291–293. [Google Scholar] [CrossRef]
- Blancaflor, E.B.; Fasano, J.M.; Gilroy, S. Mapping the role of cap cells in root gravitropism. Plant Physiol. 1998, 116, 213–222. [Google Scholar] [CrossRef]
- Ishikawa, H.; Evans, M.L. Gravity-induced changes in intracelular potentials inelongation cortical cells of mung bean roots. Plant Cell Physiol. 1990, 31, 457–462. [Google Scholar] [PubMed]
- Edelmann, H.G. Graviperception in maize plants: Is amyloplast sedimentation a red herring? Protoplasma 2018, 255, 1877–1881. [Google Scholar] [CrossRef] [PubMed]
- Silva-Navas, J.; Moreno-Risueno, M.A.; Manzano, C.; Téllez-Robledo, B.; Navarro-Neila, S.; Carrasco, V.; Pollmann, S.; Gallego, F.J.; Pozo, J.C.D. Flavonols mediate root phototropism and growth through regulation of proliferation-to-differentiation transition. Plant Cell 2016, 28, 1372–1387. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Zhang, M.; Zhong, F.Y.; Zhou, Q.; Jiang, H.D. Effects of seed soaking with hydrogen peroxide on seedling cold tolerance of late direct-sowing rape. Chin. J. Oil Crop Sci. 2015, 37, 811–819. [Google Scholar]
- Tamás, L.; Durceková, K.; Huttová, L.; Huttová, J.; Mistrík, I.; Ollé, M. Rhizosphere localized cationic peroxidase from barley roots is strongly activated by cadmium and correlated with root growth inhibition. Chemosphere 2007, 66, 1292–1300. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.P.; Tan, X.F. Literature review of researches on superoxide dismutase. Non-Wood For. Res. 2007, 1, 59–65. [Google Scholar]
- Min, H.L.; Cai, S.J.; Xu, J.S.; Shi, X.G. Effects of exogenous calcium on resistance of Hydrilla verticillata (L.f.) Rovle to cadmium stress. Acta Ecol. Sin. 2012, 32, 256–264. [Google Scholar]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef]
- Chu, J.; Monte, I.; DeFalco, T.A.; Köster, P.; Derbyshire, P.; Menke, F.L.; Zipfel, C. Conservation of the PBL-RBOH immune module in land plants. Curr. Biol. 2023, 33, 1130–1137.e5. [Google Scholar] [CrossRef]
- Liu, H.J.; Li, S.; Ma, S.Y.; Zhang, P.N.; Shi, Z.Z.; Yang, X.M. Responses of primary root and antioxidase system to exogenous Ca2+ in pea under H2O2, stress. Acta Prataculturae Sin. 2014, 23, 189–197. [Google Scholar]
- Jing, H.J.; Li, C.X.; Wang, J.F.; Guo, X.D.; Wang, S.L.; Tian, H.Y.; Wang, L.F. Research advances in regulation of noxs-derived ROS on root growth and development. Plant Physiol. J. 2013, 49, 417–424. [Google Scholar]
- Kiss, J.Z.; Hertel, R.; Sack, F.D. Amyloplasts are necessary for full gravitropic sensitivity in roots of Arabidopsis thaliana. Planta 1989, 177, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Christie, J.M.; Murphy, A.S. Shoot phototropism in higher plants: New light through old concepts. Am. J. Bot. 2013, 100, 35–46. [Google Scholar] [CrossRef]
- Gámez-Arjona, F.M.; Mérida, Á. Interplay between the N-terminal domains of Arabidopsis starch synthase 3 determines the interaction of the enzyme with the starch granule. Front. Plant Sci. 2021, 12, 704161. [Google Scholar] [CrossRef] [PubMed]
- Sala, J.; Mosesso, N.; Isono, E.; Schwechheimer, C. Arabidopsis thaliana B-GATA factors repress starch synthesis and gravitropic growth responses. New Phytol. 2023, 239, 979–991. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, W.; Li, L.; Miao, R.; Dai, H.; Zhang, J.; Xu, W.F. Light-dark modulates root hydrotropism associated with gravitropism by involving amyloplast response in Arabidopsis. Cell Rep. 2020, 32, 108198. [Google Scholar] [CrossRef]
- Chen, J.Y.; Yu, R.B.; Li, N.; Deng, A.G.; Zhang, X.X.; Zhao, Y.R.; Qu, C.F.; Yuan, Y.F.; Pan, Z.X.; Zhou, Y.Y.; et al. Amyloplast sedimentation repolarizes LAZYs to achieve gravity sensing in plants. Cell 2023, 186, 4788–4802. [Google Scholar] [CrossRef] [PubMed]
- Kordyum, E.L. A role for the cytoskeleton in plant cell gravisensitivity and Ca(2+)-signaling in microgravity. Cell Biol. Int. 2003, 27, 219–221. [Google Scholar] [CrossRef]
- Kashem, M.A.; Itoh, K.; Iwabuchi, S.; Mitsui, T. Possible involvement of phosphoinositide-Ca2+ signaling in the regulation of alpha-amylase expression and germination of rice seed (Oryza sativa L.). Plant Cell Physiol. 2000, 41, 399–407. [Google Scholar] [CrossRef]
- Hasenstein, K.H.; Park, M.R.; John, S.P.; Ajala, C. High-gradient magnetic fields and starch metabolism: Results from a space experiment. Sci. Rep. 2022, 12, 18256. [Google Scholar] [CrossRef]
- Plieth, C. Calcium: Just another regulator in the machinery of life? Ann. Bot. 2005, 96, 1–8. [Google Scholar] [CrossRef]
- Mori, K.; Renhu, N.; Naito, M.; Nakamura, A.; Shiba, H.; Yamamoto, T.; Suzaki, T.; Iida, H.; Miura, K. Ca2+-permeable mechanosensitive channels MCA1 and MCA2 mediate cold-induced cytosolic Ca2+ increase and cold tolerance in Arabidopsis. Sci. Rep. 2018, 8, 550. [Google Scholar] [CrossRef]
- Yuan, P.; Yang, T.; Poovaiah, B.W. Calcium signaling-mediated plant response to cold stress. Int. J. Mol. Sci. 2018, 19, 3896. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Chen, Z.H.; Liu, X.; Colmer, T.D.; Zhou, M.; Shabala, S. Tissue-specific root ion profiling reveals essential roles of the CAX and ACA calcium transport systems in response to hypoxia in Arabidopsis. J. Exp. Bot. 2016, 67, 3747–3762. [Google Scholar] [CrossRef]
- DeFalco, T.A.; Bender, K.W.; Snedden, W.A. Breaking the code: Ca2+ sensors in plant signalling. Biochem. J. 2010, 425, 27–40. [Google Scholar] [CrossRef]
- Durian, G.; Sedaghatmehr, M.; Matallana-Ramirez, L.P.; Schilling, S.M.; Schaepe, S.; Guerra, T.; Herde, M.; Witte, C.P.; Mueller-Roeber, B.; Schulze, W.X.; et al. Calcium-dependent protein kinase CPK1 controls cell death by in vivo phosphorylation of senescence master regulator ORE1. Plant Cell 2020, 32, 1610–1625. [Google Scholar] [CrossRef]
- Tian, W.; Wang, C.; Gao, Q.; Li, L.; Luan, S. Calcium spikes, waves and oscillations in plant development and biotic interactions. Nat. Plants 2020, 6, 750–759. [Google Scholar] [CrossRef]
- Lee, J.S.; Mulkey, T.J.; Evans, M.L. Gravity-Induced polar transport of calcium across root tips of maize. Plant Physiol. 1983, 73, 874–876. [Google Scholar] [CrossRef]
- Lee, J.S.; Mulkey, T.J.; Evans, M.L. Inhibition of polar calcium movement and gravitropism in roots treated with auxin-transport inhibitors. Planta 1984, 160, 536–543. [Google Scholar] [CrossRef]
- Su, S.H.; Gibbs, N.M.; Jancewicz, A.L.; Masson, P.H. Molecular mechanisms of root gravitropism. Curr. Biol. 2017, 27, R964–R972. [Google Scholar] [CrossRef]
- Petricka, J.J.; Winter, C.M.; Benfey, P.N. Control of Arabidopsis root development. Annu. Rev. Plant Biol. 2012, 63, 563–590. [Google Scholar] [CrossRef]
- Sengupta, D.; Reddy, A.R. Simplifying the root dynamics: From complex hormone–environment interactions to specific root architectural modulation. Plant Growth Regul. 2018, 85, 337–349. [Google Scholar] [CrossRef]
- Sharma, M.; Singh, D.; Saksena, H.B.; Sharma, M.; Tiwari, A.; Awasthi, P.; Botta, H.K.; Shukla, B.N.; Laxmi, A. Understanding the intricate web of phytohormone signalling in modulating root system architecture. Int. J. Mol. Sci. 2021, 22, 5508. [Google Scholar] [CrossRef] [PubMed]
- Hagen, G.; Guilfoyle, T. Auxin-responsive gene expression: Genes, promoters and regulatory factors. Plant Mol. Biol. 2002, 49, 373–385. [Google Scholar] [CrossRef] [PubMed]
- Vanneste, S.; Friml, J. Auxin: A trigger for change in plant development. Cell 2009, 136, 1005–1016. [Google Scholar] [CrossRef]
- Staswick, P.E.; Serban, B.; Rowe, M.; Tiryaki, I.; Maldonado, M.T.; Maldonado, M.C.; Suza, W. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 2005, 17, 616–627. [Google Scholar] [CrossRef]
- Schlereth, A.; Möller, B.; Liu, W.; Kientz, M.; Flipse, J.; Rademacher, E.H.; Schmid, M.; Jürgens, G.; Weijers, D. MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 2010, 464, 913–916. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Han, S.; Qi, Y.H. Advances in structure and function of auxin response factor in plants. J. Integr. Plant Biol. 2023, 65, 617–632. [Google Scholar] [CrossRef]
- Raghavendra, A.S.; Gonugunta, V.K.; Christmann, A.; Grill, E. ABA perception and signalling. Trends Plant Sci. 2010, 157, 395–401. [Google Scholar] [CrossRef]
- Danquah, A.; De Zélicourt, A.; Colcombet, J.; Hirt, H. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol. Adv. 2014, 32, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Sharp, R.E. Complexity and coordination of root growth at low water potentials: Recent advances from transcriptomic and proteomic analyses. Plant Cell Environ. 2010, 33, 590–603. [Google Scholar] [CrossRef] [PubMed]
- Long, G.; Wu, P.; Fu, J.; Lu, H.; Zhang, R. Research progress on regulation of peroxidase on lignin synthesis. Mod. Agric. Sci. Technol. 2021, 23, 47–54. [Google Scholar]
- Yamaguchi, M.; Valliyodan, B.; Zhang, J.; Lenoble, M.E.; Yu, O.; Rogers, E.E.; Nguyen, H.T.; Sharp, R.E. Regulation of growth response to water stress in the soybean primary root. I. Proteomic analysis reveals region-specific regulation of phenylpropanoid metabolism and control of free iron in the elongation zone. Plant Cell Environ. 2010, 33, 223–243. [Google Scholar] [CrossRef] [PubMed]
- Dalal, M.; Sahu, S.; Tiwari, S.; Rao, A.R.; Gaikwad, K. Transcriptome analysis reveals interplay between hormones, ROS metabolism and cell wall biosynthesis for drought-induced root growth in wheat. Plant Physiol. Biochem. 2018, 130, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Braidwood, L.; Breuer, C.; Sugimoto, K. My body is a cage: Mechanisms and modulation of plant cell growth. New Phytol. 2013, 201, 388–402. [Google Scholar] [CrossRef] [PubMed]
- Bashline, L.; Lei, L.; Li, S.D.; Gu, Y. Cell wall, cytoskeleton, and cell expansionin higher plants. Mol. Plant 2014, 7, 586–600. [Google Scholar] [CrossRef] [PubMed]
- Wolf, S.; Höfte, H. Growth control: A saga of cell walls ROS, and peptide receptors. Plant Cell 2014, 26, 1848–1856. [Google Scholar] [CrossRef] [PubMed]
- Nissen, K.S.; Willats, W.G.T.; Malinovsky, F.G. Understanding CrRLK1L function: Cell walls and growth control. Trends Plant Sci. 2016, 21, 516–527. [Google Scholar] [CrossRef]
- Qian, F.; Zeng, F.; Gao, Y.; Pan, X.; Sun, Y.X.; Wu, X.Y. Effect of different exogenous hormone on germination characteristics in quinoa. Mol. Plant Breed. 2014, 1–14. Available online: http://kns.cnki.net/kcms/detail/46.1068.s.20240220.1714.013.html (accessed on 4 August 2024).
- Lee, H.J.; Kim, H.S.; Park, J.M.; Cho, H.S.; Jeon, J.H. PIN-mediated polar auxin transport facilitates root-obstacle avoidance. New Phytol. 2020, 225, 1285–1296. [Google Scholar] [CrossRef]
- Watanabe, N.; Lam, E. BAX inhibitor-1 modulates endoplasmic reticulum stress-mediated programmed cell death in Arabidopsis. J. Biol. Chem. 2008, 283, 3200–3210. [Google Scholar] [CrossRef]
- You, J.; Fang, Y.J.; Xiong, L.Z. Reactive oxygen detection. Bio-101 2018, e1010170. Available online: https://bio-protocol.org/bio101/e1010170 (accessed on 4 August 2024).
- Yin, J.; Xie, M.H.; Wu, X.H.; Wang, X.X.; Chen, B.; Wang, Y.C.; Wang, Q.Q.; Zhang, F.F. Establishment of starch atlas of Tianshui ‘huaniu’ apple. J. Gansu Agric. Univ. 2021, 56, 176–182. [Google Scholar]
- Li, Y.Y.; Zhao, C.T.; Qi, Y.Y.; Liu, M.; Zhang, S.R.; Liu, Z.H.; Li, W.B.; Jiang, Z.F. Analysis on the accumulation of lignin in the stem of soybean. Acta Agric. Boreali-Sin. 2022, 37, 77–85. [Google Scholar]
- Lu, X.; Ma, L.; Zhang, C.; Yan, H.; Bao, J.; Gong, M.S.; Wang, W.H.; Li, S.; Ma, S.Y.; Chen, B.H. Grapevine (Vitis vinifera) responses to salt stress and alkali stress: Transcriptional and metabolic profiling. BMC Plant Biol. 2022, 22, 528. [Google Scholar] [CrossRef]
- Young, M.D.; Wakefield, M.J.; Smyth, G.K.; Oshlack, A. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biol. 2010, 11, R14. [Google Scholar] [CrossRef]
- Mao, X.; Cai, T.; Olyarchuk, J.G.; Wei, L.P. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 2005, 21, 3787–3793. [Google Scholar] [CrossRef]
- Die, J.V.; Román, B.; Nadal, S.; González-Verdejo, C.I. Evaluation of candidate reference genes for expression studies in Pisum sativum under different experimental conditions. Planta 2010, 232, 145–153. [Google Scholar] [CrossRef]
Treatment | H2O2 (mmol·L−1) | CaCl2 (mmol·L−1) | Ca2+ (mmol·L−1) | Cl− (mmol·L−1) |
---|---|---|---|---|
CK | 0 | 0 | 0 | 0 |
CK1 | 150 | 0 | 0 | 0 |
CK2 | 0 | 10 | 10 | 20 |
H1 | 20 | 0 | 0 | 0 |
H2 | 80 | 0 | 0 | 0 |
H3 | 200 | 0 | 0 | 0 |
H4 | 300 | 0 | 0 | 0 |
T1 | 150 | 1 | 1 | 2 |
T3 | 150 | 5 | 5 | 10 |
T5 | 150 | 10 | 10 | 20 |
T7 | 150 | 15 | 15 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, R.; Ma, L.; Ma, S.; Xu, L.; Ma, T.; Ma, Y.; Cheng, Z.; Dang, J.; Li, S.; Chai, Q. Intrinsic Mechanism of CaCl2 Alleviation of H2O2 Inhibition of Pea Primary Root Gravitropism. Int. J. Mol. Sci. 2024, 25, 8613. https://doi.org/10.3390/ijms25168613
Wei R, Ma L, Ma S, Xu L, Ma T, Ma Y, Cheng Z, Dang J, Li S, Chai Q. Intrinsic Mechanism of CaCl2 Alleviation of H2O2 Inhibition of Pea Primary Root Gravitropism. International Journal of Molecular Sciences. 2024; 25(16):8613. https://doi.org/10.3390/ijms25168613
Chicago/Turabian StyleWei, Ruonan, Lei Ma, Shaoying Ma, Ling Xu, Tingfeng Ma, Yantong Ma, Zhen Cheng, Junhong Dang, Sheng Li, and Qiang Chai. 2024. "Intrinsic Mechanism of CaCl2 Alleviation of H2O2 Inhibition of Pea Primary Root Gravitropism" International Journal of Molecular Sciences 25, no. 16: 8613. https://doi.org/10.3390/ijms25168613
APA StyleWei, R., Ma, L., Ma, S., Xu, L., Ma, T., Ma, Y., Cheng, Z., Dang, J., Li, S., & Chai, Q. (2024). Intrinsic Mechanism of CaCl2 Alleviation of H2O2 Inhibition of Pea Primary Root Gravitropism. International Journal of Molecular Sciences, 25(16), 8613. https://doi.org/10.3390/ijms25168613