The Impact of Serum/Plasma Proteomics on SARS-CoV-2 Diagnosis and Prognosis
Abstract
:1. Introduction
2. The Use of Serum/Plasma for Investigating COVID-19
3. Methodology Followed for the Preparation of the Current Article
4. Serum/Plasma Proteomics for the Identification of Biomarkers/Predictors of the Disease
5. Use of Multi-Omics in COVID-19 Research
6. Did Proteomics Meet Expectations in COVID-19 Research ?
7. What Is the Added Value Provided by Multi-Omics?
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Althaus, C.L.; Riou, J. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV). Euro Surveill. 2020, 25, 2000058. [Google Scholar]
- Wan, X.; Cheng, C.; Zhang, Z. Transmission rate and control efficiency of COVID-19 was lower in warm and wet climate. Int. J. Environ. Health Res. 2024, 34, 575–586. [Google Scholar] [CrossRef]
- He, D.; Cowling, B.J.; Ali, S.T.; Stone, L. Rapid global spread of Variant of Concern of SARS-CoV-2. IJID Reg. 2023, 7, 63–65. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Cui, J.; Zhang, J.; Pei, X.; Sun, G. Transmission characteristic and dynamic analysis of COVID-19 on contact network with Tianjin city in China. Phys. A 2022, 608, 128246. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.C.; Fann, L.Y.; Chou, Y.C.; Liu, C.C.; Hu, H.Y.; Chu, D. Nosocomial infection and spread of SARS-CoV-2 infection among hospital staff, patients and caregivers. World J. Clin. Cases 2022, 10, 12559–12565. [Google Scholar] [CrossRef]
- Wong, S.C.; Chan, V.W.; Yuen, L.L.; AuYeung, C.H.; Leung, J.O.; Li, C.K.; Kwok, M.O.; So, S.Y.; Chen, J.H.; Chiu, K.H.; et al. Infection of healthcare workers despite a high vaccination rate during the fifth wave of COVID-19 due to Omicron variant in Hong Kong. Infect. Prev. Pract. 2023, 5, 100261. [Google Scholar] [CrossRef]
- Naz, R.; Torrisi, M. The Transmission dynamics of a compartmental epidemic model for COVID-19 with the asymptomatic population via closed-form solutions. Vaccines 2022, 10, 2162. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Aizawa, K.; Shibuya, K.; Yamanaka, S.; Anzai, Y.; Kurokawa, K.; Nagai, R. Prevalence of asymptomatic SARS-CoV-2 infection in Japan. JAMA Netw. Open 2022, 5, e2247704. [Google Scholar] [CrossRef]
- Wong, T.F.; So, P.K.; Yao, Z.P. Advances in rapid detection of SARS-CoV-2 by mass spectrometry. Trends Analyt. Chem. 2022, 157, 116759. [Google Scholar] [CrossRef]
- Ilkhani, H.; Hedayat, N.; Farhad, S. Novel approaches for rapid detection of COVID-19 during the pandemic: A review. Anal. Biochem. 2021, 634, 114362. [Google Scholar] [CrossRef]
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brunink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019-NCoV by RT-PCR. Euro Surveill. 2020, 25, 2000045. [Google Scholar] [CrossRef] [PubMed]
- Wölfel, R.; Corman, V.M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Müller, M.A.; Niemeyer, D.; Jones, T.C.; Vollmar, P.; Rothe, C.; et al. Virological Assessment of Hospitalized Patients with COVID-2019. Nature 2020, 581, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Filchakova, O.; Dossym, D.; Ilyas, A.; Kuanysheva, T.; Abdizhamil, A.; Bukasov, R. Review of COVID-19 testing and diagnostic methods. Talanta 2022, 244, 123409. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Fu, R.; Qiao, S.; Zhang, J.; Xianyu, Y. Nanotechnology-based diagnostic methods for coronavirus: From nucleic acid extraction to amplification. Biosens. Bioelectron. X 2023, 13, 100289. [Google Scholar] [CrossRef] [PubMed]
- Duarte, T.T.; Spencer, C.T. Personalized proteomics: The future of precision medicine. Proteomes 2016, 4, 29. [Google Scholar] [CrossRef] [PubMed]
- Prasad, B.; Vrana, M.; Mehrotra, A.; Johnson, K.; Bhatt, D.K. The promises of quantitative proteomics in precision medicine. J. Pharm. Sci. 2017, 106, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Yi, J.; Huang, C.; Zhang, J.; Fu, S.; Li, Z.; Lyu, Q.; Xu, Y.; Wang, K.; Yang, H.; et al. Rapid Detection of COVID-19 Using MALDI-TOF-Based Serum Peptidome Profiling. Anal. Chem. 2021, 93, 4782–4787. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cryar, A.; Lemke, O.; Tober-Lau, P.; Ludwig, D.; Helbig, E.T.; Hippenstiel, S.; Sander, L.E.; Blake, D.; Lane, C.S.; et al. A multiplex protein panel assay for severity prediction and outcome prognosis in patients with COVID-19: An observational multi-cohort study. eClinicalMedicine 2022, 49, 101495. [Google Scholar] [CrossRef] [PubMed]
- Nikolaev, E.N.; Indeykina, M.I.; Brzhozovskiy, A.G.; Bugrova, A.E.; Kononikhin, A.S.; Starodubtseva, N.L.; Petrotchenko, E.V.; Kovalev, G.I.; Borchers, C.H.; Sukhikh, G.T. Mass-Spectrometric Detection of SARS-CoV-2 Virus in Scrapings of the Epithelium of the Nasopharynx of Infected Patients via Nucleocapsid N Protein. Proteome Res. 2020, 19, 4393–4397. [Google Scholar] [CrossRef]
- Chatterjee, S.; Zaia, J. Proteomics-based mass spectrometry profiling of SARS-CoV-2 infection from human nasopharyngeal samples. Mass. Spectrom. Rev. 2024, 43, 193–229. [Google Scholar] [CrossRef]
- Martinson, N.; Gordhan, B.; Petkov, S.; Pillay, A.D.; Seiphetlo, T.; Singh, N.; Otwombe, K.; Lebina, L.; Fredolini, C.; Chiodi, F.; et al. Proteomic Analysis of Mucosal and Systemic Responses to SARS-CoV-2 Antigen. Vaccines 2023, 11, 334. [Google Scholar] [CrossRef] [PubMed]
- Iles, R.K.; Iles, J.K.; Lacey, J.; Gardiner, A.; Zmuidinaite, R. Direct Detection of Glycated Human Serum Albumin and Hyperglycosylated IgG3 in Serum, by MALDI-ToF Mass Spectrometry, as a Predictor of COVID-19 Severity. Diagnostics 2022, 12, 2521. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Zhang, X.; Wu, X.; Lu, M.; Wang, D.; Xu, M.; Wang, H.; Liang, T.; Dai, J.; Duan, H.; et al. Serum Protein Profiling Reveals a Landscape of Inflammation and Immune Signaling in Early-stage COVID-19 Infection. Mol. Cell Proteom. 2020, 19, 1749–1759. [Google Scholar] [CrossRef] [PubMed]
- Shu, T.; Ning, W.; Wu, D.; Xu, J.; Han, Q.; Huang, M.; Zou, X.; Yang, Q.; Yuan, Y.; Bie, Y.; et al. Plasma Proteomics Identify Biomarkers and Pathogenesis of COVID-19. Immunity 2020, 53, 1108–1122. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, S.; Yau, Y.; Boys, V.; Chang, J.; Paramsothy, S.; Pudipeddi, A.; Leong, R.W.; Wasinger, V.C. Tryptophan Metabolism ‘Hub’ Gene Expression Associates with Increased Inflammation and Severe Disease Outcomes in COVID-19 Infection and Inflammatory Bowel Disease. Int. J. Mol. Sci. 2022, 23, 14776. [Google Scholar] [CrossRef] [PubMed]
- Kruger, A.; Vlok, M.; Turner, S.; Venter, C.; Laubscher, G.J.; Kell, D.B.; Pretorius, E. Proteomics of fibrin amyloid microclots in long COVID/post-acute sequelae of COVID-19 (PASC) shows many entrapped pro-inflammatory molecules that may also contribute to a failed fibrinolytic system. Cardiovasc. Diabetol. 2022, 21, 190. [Google Scholar] [CrossRef] [PubMed]
- Doykov, I.; Baldwin, T.; Spiewak, J.; Gilmour, K.C.; Gibbons, J.M.; Pade, C.; Reynolds, C.J.; McKnight, Á.; Noursadeghi, M.; Maini, M.K.; et al. Quantitative, multiplexed, targeted proteomics for ascertaining variant specific SARS-CoV-2 antibody response. Cell Rep. Methods 2022, 2, 100279. [Google Scholar] [CrossRef] [PubMed]
- Villar, M.; Urra, J.M.; Artigas-Jerónimo, S.; Mazuecos, L.; Contreras, M.; Vaz-Rodrigues, R.; Rodríguez-Del-Río, F.J.; Gortázar, C.; de la Fuente, J. Correlates with Vaccine Protective Capacity and COVID-19 Disease Symptoms Identified by Serum Proteomics in Vaccinated Individuals. Molecules 2022, 27, 5933. [Google Scholar] [CrossRef]
- Nückel, J.; Planatscher, E.; Mohr, A.W.; Deichl, K.; Mijo?evi?, H.; Feuerherd, M.; Wolff, L.; Erber, J.; Schneider, J.; Quante, M.; et al. Association between IgG responses against the nucleocapsid proteins of alphacoronaviruses and COVID-19 severity. Front. Immunol. 2022, 13, 889836. [Google Scholar] [CrossRef]
- Wu, S.; Xu, Y.; Zhang, J.; Ran, X.; Jia, X.; Wang, J.; Sun, L.; Yang, H.; Li, Y.; Fu, B.; et al. Longitudinal serum proteome characterization of COVID-19 patients with different severities revealed potential therapeutic strategies. Front. Immunol. 2022, 13, 893943. [Google Scholar] [CrossRef]
- Facciuolo, A.; Scruten, E.; Lipsit, S.; Lang, A.; Parker Cates, Z.; Lew, J.M.; Falzarano, D.; Gerdts, V.; Kusalik, A.J.; Napper, S. High-resolution analysis of long-term serum antibodies in humans following convalescence of SARS-CoV-2 infection. Sci. Rep. 2022, 12, 9045. [Google Scholar] [CrossRef] [PubMed]
- Beltrán-Camacho, L.; Eslava-Alcón, S.; Rojas-Torres, M.; Sánchez-Morillo, D.; Martinez-Nicolás, M.P.; Martín-Bermejo, V.; de la Torre, I.G.; Berrocoso, E.; Moreno, J.A.; Moreno-Luna, R.; et al. The serum of COVID-19 asymptomatic patients up-regulates proteins related to endothelial dysfunction and viral response in circulating angiogenic cells ex-vivo. Mol. Med. 2022, 28, 40. [Google Scholar] [CrossRef]
- Souza Junior, D.R.; Silva, A.R.M.; Rosa-Fernandes, L.; Reis, L.R.; Alexandria, G.; Bhosale, S.D.; Ghilardi, F.R.; Dalçóquio, T.F.; Bertolin, A.J.; Nicolau, J.C.; et al. HDL proteome remodeling associates with COVID-19 severity. J. Clin. Lipidol. 2021, 15, 796–804. [Google Scholar] [CrossRef] [PubMed]
- Lei, Q.; Li, Y.; Hou, H.Y.; Wang, F.; Ouyang, Z.Q.; Zhang, Y.; Lai, D.Y.; Banga Ndzouboukou, J.L.; Xu, Z.W.; Zhang, B.; et al. Antibody dynamics to SARS-CoV-2 in asymptomatic COVID-19 infections. Allergy 2021, 76, 551–561. [Google Scholar] [CrossRef]
- Beimdiek, J.; Janciauskiene, S.; Wrenger, S.; Volland, S.; Rozy, A.; Fuge, J.; Olejnicka, B.; Pink, I.; Illig, T.; Popov, A.; et al. Plasma markers of COVID-19 severity: A pilot study. Respir. Res. 2022, 23, 343. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Han, D.; Kim, S.Y.; Hong, K.H.; Jang, M.J.; Kim, M.J.; Kim, Y.G.; Park, J.H.; Cho, S.I.; Park, W.B.; et al. Longitudinal proteomic profiling provides insights into host response and proteome dynamics in COVID-19 progression. Proteomics 2021, 21, e2000278. [Google Scholar] [CrossRef] [PubMed]
- Geyer, P.E.; Arend, F.M.; Doll, S.; Louiset, M.L.; Virreira Winter, S.; Müller-Reif, J.B.; Torun, F.M.; Weigand, M.; Eichhorn, P.; Bruegel, M.; et al. High-resolution serum proteome trajectories in COVID-19 reveal patient-specific seroconversion. EMBO Mol. Med. 2021, 13, e14167. [Google Scholar] [CrossRef]
- Liang, X.; Sun, R.; Wang, J.; Zhou, K.; Li, J.; Chen, S.; Lyu, M.; Li, S.; Xue, Z.; Shi, Y.; et al. Proteomics Investigation of Diverse Serological Patterns in COVID-19. Mol. Cell Proteom. 2023, 22, 100493. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yao, H.; Zhang, N.; Wu, J.; Gao, S.; Guo, J.; Lu, X.; Cheng, L.; Luo, R.; Liang, X.; et al. Proteomic analysis identifies prolonged disturbances in pathways related to cholesterol metabolism and myocardium function in the COVID-19 recovery stage. J. Proteome Res. 2021, 20, 3463–3474. [Google Scholar] [CrossRef]
- Li, C.; Yue, L.; Ju, Y.; Wang, J.; Chen, M.; Lu, H.; Liu, S.; Liu, T.; Wang, J.; Hu, X.; et al. Serum proteomic analysis for new types of long-term persistent COVID-19 patients in Wuhan. Microbiol. Spectr. 2022, 10, e0127022. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, X.; Ge, W.; Wang, D.; Zhu, G.; Qian, L.; Xiang, N.; Yue, L.; Liang, S.; Zhang, F.; et al. Potential use of serum proteomics for monitoring COVID-19 progression to complement RT-PCR detection. J. Proteome Res. 2022, 21, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Völlmy, F.; van den Toorn, H.; Zenezini Chiozzi, R.; Zucchetti, O.; Papi, A.; Volta, C.A.; Marracino, L.; Vieceli Dalla Sega, F.; Fortini, F.; Demichev, V.; et al. A serum proteome signature to predict mortality in severe COVID-19 patients. Life Sci. Alliance 2021, 4, e202101099. [Google Scholar] [CrossRef] [PubMed]
- Vaz-Rodrigues, R.; Mazuecos, L.; Villar, M.; Urra, J.M.; Gortázar, C.; de la Fuente, J. Serum biomarkers for nutritional status as predictors in COVID-19 patients before and after vaccination. J. Funct. Foods 2023, 101, 105412. [Google Scholar] [CrossRef] [PubMed]
- Villar, M.; Urra, J.M.; Rodríguez-Del-Río, F.J.; Artigas-Jerónimo, S.; Jiménez-Collados, N.; Ferreras-Colino, E.; Contreras, M.; de Mera, I.G.F.; Estrada-Peña, A.; Gortázar, C.; et al. Characterization by quantitative serum proteomics of immune-related prognostic biomarkers for COVID-19 symptomatology. Front. Immunol. 2021, 12, 730710. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y.; Nakai, Y.; Shin, J.; Hara, M.; Takeda, Y.; Kubo, S.; Jeremiah, S.S.; Ino, Y.; Akiyama, T.; Moriyama, K.; et al. Identification of serum prognostic biomarkers of severe COVID-19 using a quantitative proteomic approach. Sci. Rep. 2021, 11, 20638. [Google Scholar] [CrossRef] [PubMed]
- Di, B.; Jia, H.; Luo, O.J.; Lin, F.; Li, K.; Zhang, Y.; Wang, H.; Liang, H.; Fan, J.; Yang, Z. Identification and validation of predictive factors for progression to severe COVID-19 pneumonia by proteomics. Signal Transduct. Target. Ther. 2020, 5, 217. [Google Scholar] [CrossRef] [PubMed]
- Merk, M.; Mitchell, R.A.; Endres, S.; Bucala, R. D-dopachrome tautomerase (D-DT or MIF-2): Doubling the MIF cytokine family. Cytokine 2012, 59, 10–17. [Google Scholar] [CrossRef]
- Jin, M.; Tong, Q. Rhabdomyolysis as potential late complication associated with COVID-19. Emerg. Infect. Dis. 2020, 26, 2297–2298. [Google Scholar] [CrossRef]
- Buyukozkan, M.; Alvarez-Mulett, S.; Racanelli, A.C.; Schmidt, F.; Batra, R.; Hoffman, K.L.; Sarwath, H.; Engelke, R.; Gomez-Escobar, L.; Simmons, W.; et al. Integrative metabolomic and proteomic signatures define clinical outcomes in severe COVID-19. iScience 2022, 25, 104612. [Google Scholar] [CrossRef]
- Wu, P.; Chen, D.; Ding, W.; Wu, P.; Hou, H.; Bai, Y.; Zhou, Y.; Li, K.; Xiang, S.; Liu, P.; et al. The trans-omics landscape of COVID-19. Nat. Commun. 2021, 12, 4543. [Google Scholar] [CrossRef]
- Thomas, T.; Stefanoni, D.; Reisz, J.A.; Nemkov, T.; Bertolone, L.; Francis, R.O.; Hudson, K.E.; Zimring, J.C.; Hansen, K.C.; Hod, E.A.; et al. COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal status. JCI Insight 2020, 5, 140327. [Google Scholar] [CrossRef] [PubMed]
- Barberis, E.; Timo, S.; Amede, E.; Vanella, V.V.; Puricelli, C.; Cappellano, G.; Raineri, D.; Cittone, M.G.; Rizzi, E.; Pedrinelli, A.R.; et al. Largescale plasma analysis revealed new mechanisms and molecules associated with the host response to SARS-CoV-2. Int. J. Mol. Sci. 2020, 21, 8623. [Google Scholar] [CrossRef] [PubMed]
- Lazari, L.C.; Ghilardi, F.R.; Rosa-Fernandes, L.; Assis, D.M.; Nicolau, J.C.; Santiago, V.F.; Dalçóquio, T.F.; Angeli, C.B.; Bertolin, A.J.; Marinho, C.R.; et al. Prognostic accuracy of MALDI-TOF mass spectrometric analysis of plasma in COVID-19. Life Sci. Alliance 2021, 4, e202000946. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Rais, Y.; Dara, D.; Jackson, D.; Drabovich, A.P. Rational design and development of SARS-CoV-2 serological diagnostics by immunoprecipitation-targeted proteomics. Anal. Chem. 2022, 94, 12990–12999. [Google Scholar] [CrossRef] [PubMed]
- Gutmann, C.; Takov, K.; Burnap, S.A.; Singh, B.; Ali, H.; Theofilatos, K.; Reed, E.; Hasman, M.; Nabeebaccus, A.; Fish, M.; et al. SARS-CoV-2 RNAemia and proteomic trajectories inform prognostication in COVID-19 patients admitted to intensive care. Nat. Commun. 2021, 12, 3406. [Google Scholar] [CrossRef] [PubMed]
- Delafiori, J.; Navarro, L.C.; Siciliano, R.F.; de Melo, G.C.; Busanello, E.N.B.; Nicolau, J.C.; Sales, G.M.; de Oliveira, A.N.; Val, F.F.A.; de Oliveira, D.N.; et al. Covid-19 automated diagnosis and risk assessment through metabolomics and machine learning. Anal. Chem. 2021, 93, 2471–2479. [Google Scholar] [CrossRef] [PubMed]
- Kimhofer, T.; Lodge, S.; Whiley, L.; Gray, N.; Loo, R.L.; Lawler, N.G.; Nitschke, P.; Bong, S.H.; Morrison, D.L.; Begum, S.; et al. Integrative modeling of quantitative plasma lipoprotein, metabolic, and amino acid data reveals a multiorgan pathological signature of SARS-CoV-2 Infection. J. Proteome Res. 2020, 19, 4442–4454. [Google Scholar] [CrossRef] [PubMed]
- Messner, C.B.; Demichev, V.; Wendisch, D.; Michalick, L.; White, M.; Freiwald, A.; Textoris-Taube, K.; Vernardis, S.I.; Egger, A.S.; Kreidl, M.; et al. Ultra-High-Throughput Clinical Proteomics Reveals Classifiers of COVID-19 Infection. Cell Syst. 2020, 11, 11–24. [Google Scholar] [CrossRef] [PubMed]
- di Flora, D.C.; Dionizio, A.; Pereira, H.A.B.S.; Garbieri, T.F.; Grizzo, L.T.; Dionisio, T.J.; Leite, A.L.; Silva-Costa, L.C.; Buzalaf, N.R.; Reis, F.N.; et al. Analysis of plasma proteins involved in inflammation, immune response/complement system, and blood coagulation upon admission of COVID-19 patients to hospital may help to predict the prognosis of the disease. Cells 2023, 12, 1601. [Google Scholar] [CrossRef]
- Meizlish, M.L.; Pine, A.B.; Bishai, J.D.; Goshua, G.; Nadelmann, E.R.; Simonov, M.; Chang, C.H.; Zhang, H.; Shallow, M.; Bahel, P.; et al. A neutrophil activation signature predicts critical illness and mortality in COVID-19. Blood Adv. 2021, 5, 1164–1177. [Google Scholar] [CrossRef]
- Beltrami, A.P.; De Martino, M.; Dalla, E.; Malfatti, M.C.; Caponnetto, F.; Codrich, M.; Stefanizzi, D.; Fabris, M.; Sozio, E.; D’Aurizio, F.; et al. Combining Deep Phenotyping of Serum Proteomics and Clinical Data via Machine Learning for COVID-19 Biomarker Discovery. Int. J. Mol. Sci. 2022, 23, 9161. [Google Scholar] [CrossRef] [PubMed]
- Olink. Proximity Extension Assay (PEA) Technology. Available online: https://www.olink.com/our-platform/our-pea-technology/ (accessed on 4 March 2022).
- Iosef, C.; Knauer, M.J.; Nicholson, M.; Van Nynatten, L.R.; Cepinskas, G.; Draghici, S.; Han, V.K.M.; Fraser, D.D. Plasma proteome of Long-COVID patients indicates HIF-mediated vasculo-proliferative disease with impact on brain and heart function. J. Transl. Med. 2023, 21, 377. [Google Scholar] [CrossRef] [PubMed]
- Iosef, C.; Martin, C.M.; Slessarev, M.; Gillio-Meina, C.; Cepinskas, G.; Han, V.K.M.; Fraser, D.D. COVID-19 plasma proteome reveals novel temporal and cell-specific signatures for disease severity and high-precision disease management. J. Cell Mol. Med. 2023, 27, 141–157. [Google Scholar] [CrossRef]
- Pavel, A.B.; Glickman, J.W.; Michels, J.R.; Kim-Schulze, S.; Miller, R.L.; Guttman-Yassky, E. Th2/Th1 cytokine imbalance is associated with higher COVID-19 risk mortality. Front. Genet. 2021, 12, 706902. [Google Scholar] [CrossRef]
- Li, Y.; Schneider, A.M.; Mehta, A.; Sade-Feldman, M.; Kays, K.R.; Gentili, M.; Charland, N.C.; Gonye, A.L.; Gushterova, I.; Khanna, H.K.; et al. SARSCoV2 viremia is associated with distinct proteomic pathways and predicts COVID-19 outcomes. J. Clin. Investig. 2021, 131, e148635. [Google Scholar] [CrossRef]
- Al-Nesf, M.A.Y.; Abdesselem, H.B.; Bensmail, I.; Ibrahim, S.; Saeed, W.A.H.; Mohammed, S.S.I.; Razok, A.; Alhussain, H.; Aly, R.M.A.; Al Maslamani, M.; et al. Prognostic tools and candidate drugs based on plasma proteomics of patients with severe COVID-19 complications. Nat. Commun. 2022, 13, 946. [Google Scholar] [CrossRef]
- Ciccosanti, F.; Antonioli, M.; Sacchi, A.; Notari, S.; Farina, A.; Beccacece, A.; Fusto, M.; Vergori, A.; Offizi, G.; Taglietti, F.; et al. Proteomic analysis identifies a signature of disease severity in the plasma of COVID-19 pneumonia patients associated to neutrophil, platelet and complement activation. Clin. Proteom. 2022, 19, 38. [Google Scholar] [CrossRef]
- Paes Leme, A.F.; Yokoo, S.; Normando, A.G.C.; Ormonde, J.V.S.; Domingues, R.R.; Cruz, F.F.; Silva, P.L.; Souza, B.S.F.; Dos Santos, C.C.; Castro-Faria-Neto, H.; et al. Proteomics of serum-derived extracellular vesicles are associated with the severity and different clinical profiles of patients with COVID-19: An exploratory secondary analysis. Cytotherapy 2024, 26, 444–455. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Li, X.; Xin, Z.; Sun, L.; Shi, J. Proteomic insights into SARS-CoV-2 infection mechanisms, diagnosis, therapies and prognostic monitoring methods. Front. Immunol. 2022, 13, 923387. [Google Scholar] [CrossRef]
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol. 2017, 18, 83. [Google Scholar] [CrossRef]
- Shen, B.; Yi, X.; Sun, Y.; Bi, X.; Du, J.; Zhang, C.; Quan, S.; Zhang, F.; Sun, R.; Qian, L.; et al. Proteomic and metabolomic characterization of COVID-19 patient sera. Cell 2020, 182, 59–72. [Google Scholar] [CrossRef]
- Spick, M.; Campbell, A.; Baricevic-Jones, I.; von Gerichten, J.; Lewis, H.M.; Frampas, C.F.; Longman, K.; Stewart, A.; Dunn-Walters, D.; Skene, D.J.; et al. Multi-Omics reveals mechanisms of partial modulation of COVID-19 dysregulation by glucocorticoid treatment. Int. J. Mol. Sci. 2022, 23, 12079. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Liang, X.; Du, J.; He, Z.; Wang, Y.; Lyu, M.; Yue, L.; Zhang, F.; Xue, Z.; Xu, L.; et al. Proteomic and metabolomic investigation of serum lactate dehydrogenase elevation in COVID-19 patients. Proteomics 2021, 21, e2100002. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, C.; Chen, W.; Huang, L.; Fu, Z.; Ye, K.; Lv, L.; Nong, Z.; Zhou, X.; Lu, W.; et al. Proteomics and metabonomics analyses of Covid-19 complications in patients with pulmonary fibrosis. Sci. Rep. 2021, 11, 14601. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, X.; Wu, Q.; Wang, X.; Qin, Z.; Wang, Y.; He, Y.; Wu, Q.; Li, L.; Chen, H. Plasma proteomic and metabolomic characterization of COVID-19 survivors 6 months after discharge. Cell Death Dis. 2022, 13, 235. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Liu, W.; Ding, X.; Liang, S.; Zheng, Y.; Zhu, X.; Quan, S.; Yi, X.; Xiang, N.; Du, J.; et al. Proteomic and metabolomic profiling of urine uncovers immune responses in patients with COVID-19. Cell Rep. 2022, 38, 110271. [Google Scholar] [CrossRef] [PubMed]
- Cui, T.; Miao, G.; Jin, X.; Yu, H.; Zhang, Z.; Xu, L.; Wu, Y.; Qu, G.; Liu, G.; Zheng, Y.; et al. The adverse inflammatory response of tobacco smoking in COVID-19 patients: Biomarkers from proteomics and metabolomics. J. Breath. Res. 2022, 16, 4. [Google Scholar] [CrossRef]
- Costanzo, M.; Caterino, M.; Fedele, R.; Cevenini, A.; Pontillo, M.; Barra, L.; Ruoppolo, M. COVIDomics: The Proteomic and Metabolomic Signatures of COVID-19. Int. J. Mol. Sci. 2022, 23, 2414. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, T.; Takeda, Y.; Edahiro, R.; Shirai, Y.; Nogami-Itoh, M.; Matsuki, T.; Kida, H.; Enomoto, T.; Hara, R.; Noda, Y.; et al. Next-generation proteomics of serum extracellular vesicles combined with single-cell RNA sequencing identifies MACROH2A1 associated with refractory COVID-19. Inflamm. Regen. 2022, 42, 53. [Google Scholar] [CrossRef]
- Sánchez, A.; García-Pardo, G.; Gómez-Bertomeu, F.; López-Dupla, M.; Foguet-Romero, E.; Buzón, M.J.; Almirante, B.; Olona, M.; Fernández-Veledo, S.; Vidal, F.; et al. Mitochondrial dysfunction, lipids metabolism, and amino acid biosynthesis are key pathways for COVID-19 recovery. iScience 2023, 26, 107948. [Google Scholar] [CrossRef]
- Altendahl, M.; Mok, T.; Jang, C.; Yeo, S.; Quach, A.; Afshar, Y. Severe COVID-19 in pregnancy has a distinct serum profile, including greater complement activation and dysregulation of serum lipids. PLoS ONE 2022, 17, e0276766. [Google Scholar] [CrossRef] [PubMed]
- Kugler, S.; Hahnefeld, L.; Kloka, J.A.; Ginzel, S.; Nürenberg-Goloub, E.; Zinn, S.; Vehreschild, M.J.; Zacharowski, K.; Lindau, S.; Ullrich, E.; et al. Short-term predictor for COVID-19 severity from a longitudinal multi-omics study for practical application in intensive care units. Talanta 2024, 268 Pt 1, 125295. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J.; HLH Across Speciality Collaboration, UK. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, D.; Xu, B.; Xu, L.; Lyu, Q.; Liu, X.; Li, Z.; Zhang, J.; Sun, W.; Ma, Q.; et al. Serum peptidome profiles immune response of COVID-19 Vaccine administration. Front. Immunol. 2022, 13, 956369. [Google Scholar] [CrossRef] [PubMed]
- Stamoula, E.; Sarantidi, E.; Dimakopoulos, V.; Ainatzoglou, A.; Dardalas, I.; Papazisis, G.; Kontopoulou, K.; Anagnostopoulos, A.K. serum proteome signatures of anti-SARS-CoV-2 vaccinated healthcare workers in Greece associated with their prior infection status. Int. J. Mol. Sci. 2022, 23, 10153. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 2022, 23, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Nalbantoglu, S. Metabolomics: Basic Principles and Strategies. In Molecular Medicine; Nalbantoglu, S., Amri, H., Eds.; IntechOpen: London, UK, 2019; pp. 137–150. [Google Scholar]
- Bruzzone, C.; Bizkarguenaga, M.; Gil-Redondo, R.; Diercks, T.; Arana, E.; García de Vicuña, A.; Seco, M.; Bosch, A.; Palazón, A.; San Juan, I.; et al. SARS-CoV-2 infection dysregulates the metabolomic and lipidomic profiles of serum. iScience 2020, 23, 101645. [Google Scholar] [CrossRef] [PubMed]
- Bruzzone, C.; Conde, R.; Embade, N.; Mato, J.M.; Millet, O. Metabolomics as a powerful tool for diagnostic, prognostic and drug intervention analysis in COVID-19. Front. Mol. Biosci. 2023, 10, 1111482. [Google Scholar] [CrossRef]
- Babačić, H.; Christ, W.; Araújo, J.E.; Mermelekas, G.; Sharma, N.; Tynell, J.; García, M.; Varnaite, R.; Asgeirsson, H.; Glans, H.; et al. Comprehensive proteomics and meta-analysis of COVID-19 host response. Nat. Commun. 2023, 14, 5921. [Google Scholar] [CrossRef]
Reference | Source | Subjects Investigated * | Proteomic Technique | Main Findings |
---|---|---|---|---|
[35] | Plasma (n = 30) | HC = 10 P = 20 (10 moderate and 10 severe) | Nephelometry ELISA CGE-LIF | COVID-19 affects the levels and glycosylation patterns of certain plasma proteins. |
[36] | Serum (n = 137 plus C) | HC = n.r. ** P = 25 (13 moderate and 12 severe) | LC-ESI-Q-Orbitrap-MS | COVID-19 biomarkers involved in humoral immune response, interferon signaling, acute phase response, lipid metabolism and platelet degranulation have been identified together with 11 predictors of progression to severe form. |
[37] | Serum (n = 458) | C = 262 (Patients with COVID-19-like symptoms negative to RT-PCR) P = 31 | LC-ESI-Q-TOF-MS | A set of 20 biomarkers has been identified, including proteins related to the immune system, blood clotting, and lipid homeostasis. |
[38] | Serum (n = 144 plus C) | C = n.r. ** P = 144 | RT-PCR CLIA nLC-ESI-Q-Orbitrap-MS | High titers of IgM might not be favorable to COVID-19 recovery. |
[39] | Serum (n = 26) | HC = 10 P = 16 (10 moderate and 6 severe) | LC-ESI-Q-TOF-MS | Prolonged disruptions in cholesterol metabolism and myocardial function are related to COVID-19 infection, especially in severely affected patients |
[40] | Serum (n = 27) | HC = 15 P = 12 (5 LTP and 7 LTP-NH) | UPLC-ESI-Q-MS | In both cohorts, there was an increase in coagulation and immune-response proteins. |
[17] | Serum (n = 416) | C = 152 (patients with flu-like symptoms, healthy controls, Tb patients) P = 146 | MALDI-TOF-MS | MALDI-TOF-based serum profiling is a rapid and accurate method for the detection of COVID-19, with great potentials for screening, routine surveillance, and diagnostic applications |
[41] | Serum (n = 275) | HC = 21 C = 24 (patients with flu-like symptoms) P = 144 (108 moderate and 36 severe) | nLC-ESI-TripleTOF-MS | Two machine learning models predicting nucleic acid positivity have been developed. |
[42] | Serum (n = 99 plus C) | C = n.r. ** P = 33 | LC-ESI-Q-Orbitrap-MS | Definition of a protein panel for mortality risk assessment |
[43] | Serum (n = 142) | Pre-vaccine cohorts: 22 Post-vaccine cohorts: 120 | nLC-ESI-TripleTOF-MS ELISA | COVID-19 disease prognosis can be predicted with serum nutritional biomarkers. |
[44] | Serum | HC = 25 P = 95 (16 asymptomatic, 26 post recovery, 28 moderate, and 25 severe | nLC-ESI-TripleTOF-MS | The identification of prognostic biomarker proteins in SARS-CoV-2-host interactions |
[45] | Serum (n = 71 plus C) | Development group: C = n.r. ** P = 10 Validation group: HC = n.r. ** P = 61 (15 adverse prognosis and 46 favorable prognosis) | LC-ESI-Q-Orbitrap-MS | High mortality risk is predicted by serum levels of two proteins closely linked to the pathogenesis of COVID-19. |
[46] | Serum (n = 83) | Development group: P = 23 (8 moderate and 15 severe) Validation group: HC = 10 P = 50 (21 moderate and 29 severe) | LC-ESI-Q-Orbitrap-MS | Identification of a factors panel for predicting deterioration of moderate COVID-19 patients before symptoms manifest |
[49] | Serum (n = 679) | C = 97 (patients with COVID-19 symptoms negative to RT-PCR) P = 330 | HILIC-ESI-Q-Orbitrap-MS | Identification of distinct protein-metabolite cross talk related to immune modulation, energy and nucleotide metabolism, vascular homeostasis, and collagen catabolism |
[53] | Plasma (n = 117 plus C) | C = n.r. ** P = 117 | MALDI-TOF-MS nLC-ESI-Q-Orbitrap-MS | Increased levels of SAA1 and SAA2 proteoforms could be a measure of the increased severity of the disease. |
[54] | Plasma Serum (n = n.r. *) | C = n.r. ** P = n.r. * | Immunoprecipitation nLC-ESI-Q-Orbitrap-MS ELISA | Immunoprecipitation-targeted proteomic assays could facilitate standardization of the existing serological tests. |
[55] | Plasma (n = 474) Serum (n = 474) | C = 55 P = 123 | RT-qPCR nLC-ESI-Q-Orbitrap-MS ELISA | COVID-19 ICU patients have a distinct proteomic pattern associated to mortality. |
[56] | Plasma (n = 1004) | HC = 350 C = 23 (patients with COVID-19 symptoms negative to RT-PCR) P = 442 (246 moderate, and 191 severe) | ESI-Q-Orbitrap-MS | The proposed model demonstrated high accuracy in the diagnosis and risk assessment of COVID-19. |
[57] | Plasma (n = 45) | HC = 25 P = 17 | NMR UPLC-ESI-TripleQ-MS | Several aromatic amino acids and other metabolites were significantly altered, suggesting liver dysfunction, dyslipidemia, diabetes, and coronary heart disease risk. These findings confirmed that COVID-19 is a systemic disease affecting multiple organs and systems. |
[58] | Plasma (n = 63 plus C) | Development group HC = n.r. ** P = 31 Validation group HC = 15 P = 17 | UPLC-ESI-TripleTOF-MS | 27 potential biomarkers of COVID-19 severity have been identified (complement factors, coagulation system components, inflammation modulators, and pro-inflammatory factors). |
[59] | Plasma (n = 163 plus C) | HC = n.r. ** P = 163 (76 moderate, 56 severe, and 31 critic) | UPLC-ESI-Q-TOF-MS | Inflammatory, immune, complement systems, and coagulation proteins could be targets for appropriate therapies. |
[60] | Plasma (n = 112) | Development group Cross-sectional cohort C = 13 asymptomatic patients P = 49 (40 ICU) Validation group Longitudinal cohort | Protein arrays ELISA scRNAseq | Data suggest a central role for neutrophil activation in the pathogenesis of severe COVID-19. |
[61] | Serum (n = 160) | C = n.r. ** P = 160 (80 moderate and 80 severe) | PEA | Identification of 9 severe COVID-19 biomarkers and of 3 biomarkers linked to central nervous system pathologies, whose expression is decreased in severe forms. |
[63] | Plasma (n = 66) | H.C. = n.r. ** P = 66 (22 long COVID, 22 moderate and 22 severe) | PEA ELISA | A vascular proliferative state associated with hypoxia inducible factor 1 pathway suggested progression from acute COVID-19 to long COVID. This may contribute to alterations in the organ-specific proteome, reflecting neurological and cardiometabolic dysfunction. |
[64] | Plasma (n = 30) | HC = 10 C = 10 (COVID-19-negative) P = 10 | PEA ELISA | COVID-19 resulted in reduced antigen presentation and B/T-cell function, increased repurposed neutrophils and M1-type macrophages, relatively immature or disrupted endothelia, fibroblasts with a defined secretome, and reactive myeloid lines. |
[65] | Serum (n = 288 plus C) | C = n.r. ** P = 288 (21 with asthma) | PEA | Th2/Th1 interplay may affect patient outcomes in SARS-CoV2 infection. Th17/Th1 imbalance is increased in all patients that did not survive COVID-19. |
[66] | Plasma (n = 384 plus C) | C = n.r ** P = 300 | PEA | Relevant pathways associated with SARS-CoV-2 viremia (upregulation of virus entry factors, markers of lung tissue damage and coagulation) have been identified. |
[67] | Plasma (n = 534) | Development group HC = 50 P = 100 Validation group HC = 78 P = 306 | PEA | A 12-plasma protein signature and a model of 7 routine clinical tests as early risk predictors of COVID-19 severity and patient survival have been identified. |
[68] | Plasma (n = 30) | HC = 10 P = 20 (10 ICU with severe/fatal pneumonia and 10 non-ICU with pneumonia) | UPLC-ESI-Q-Orbitrap-MS ELISA | A progressive increase in several complement cascade proteins and in inflammatory and platelet functions has been observed in COVID-19 patients. |
[69] | Serum-derived EVs (n = 44 plus C) | HC = n.r. ** P = 44 (14 mild and 30 moderate/severe) | nLC-ESI-Q-Orbitrap-MS | Exploratory proteomic analysis of serum-derived EVs from patients with COVID-19 detected key proteins, associated with disease severity, related to immune response, coagulation activation and complement pathways. |
Reference | Source | Subjects Investigated * | Proteomic Technique | Main Findings |
---|---|---|---|---|
[72] | Serum (n = 118) | HC = 28 C = 25 (Patients with COVID-19-like symptoms negative to RT-PCR) P = 65 (37 non-severe and 28 severe) | LC-ESI-Q-Orbitrap-MS UPLC- ESI-Q-Orbitrap-MS | COVID-19 patients demonstrate characteristic changes in protein and metabolites associated with dysregulation of macrophage response, platelet degranulation, complement pathway signaling, and massive metabolic suppression. |
[73] | Serum (n = 98) | C = 25 P = 73 | UPLC-ESI-Triple Q-MS LC-ESI-Triple TOF-MS | Synthetic glucocorticoids in COVID-19 treatment modulate the neutrophil response. |
[74] | Serum (n = 529) | HC = 125 P = 144 (108 non-severe and 36 severe) | LC-ESI-Q-Orbitrap-MS UPLC-ESI-Q-Orbitrap-MS LC-ESI-Triple TOF-MS | A high serum LDH level, due to hypoxia and tissue damage induced by inflammation, may be associated with higher COVID-19 severity. |
[75] | Serum (n = 85) | HC = n.r. ** P = 85 (41 nonpulmonary fibrosis and 44 pulmonary fibrosis) | LC-ESI-Q-MS | PPAR signaling, TRP-inflammatory, immune system, and the urea cycle were pathways closely linked to the fibrosis formation and progression in patients with COVID-19. |
[76] | Plasma (n ≥ 84) | HC = 30 P = 54 (30 non-severe and 24 severe) | UPLC-ESI-Q-MS UPLC-ESI-Q-Orbitrap-MS | COVID-19 survivors had altered extracellular matrix, immune response, hemostasis pathways, and lipid metabolism and changes in pulmonary fibrosis-related proteins. |
[77] | Serum (n = 115) | HC = 27 C = 17 (patients with COVID-19-like symptoms negative to RT-PCR) P = 71 (48 non-severe and 23 severe) | UPLC-ESI-Q-Orbitrap-MS | The innate immune activation and inflammation triggered renal injuries in patients with COVID-19. |
[78] | Serum (n = 99) | HC = 5 P = 46 | Bioinformatics analysis | Three crucial pathways related to immunity and inflammation, including tryptophan, arginine, and glycerophospholipid metabolism, were considered to affect the effect of smoking on the adverse outcomes of COVID-19 patients. |
[80] | Serum-EVs (n = 31) | HC = 9 P = 22 | nLC-Orbitrap-MS scRNA-seq | MACROH2A1 is a potential biomarker candidate for refractory COVID-19 infection, and it may be involved in the pathogenesis of severe COVID-19 through its role in monocyte lineage and innate immunity. |
[81] | Serum (n ≥ 103) | HC = n.r. ** P = 103 (40 mild, 34 severe, and 29 critic) | LC-ESI-Q-Orbitrap-MS GC-EI-Q-TOF-MS UPLC-ESI-Q-TOF-MS | Patients with the worst prognosis presented alterations in the TCA cycle (mitochondrial dysfunction), lipid metabolism, amino acid biosynthesis, and coagulation. |
[82] | Serum (n = 30) | HC = 5 P = 25 (6 asymptomatic, 13 mild/moderate, and 6 severe) | RP-HILIC-LC-MS-based multi-omics analysis | Pregnancies with severe COVID-19 demonstrated greater inflammation and complement activation and dysregulation of serum lipids. |
[83] | Plasma (n ≥ 82) | HC = 32 P = 50 (ICU) | PEA LC-MS/MS FIA-MS/MS LC-HRMS | Two proteins (CCL7 and CA14) and a lipid (HexCer 18:2; O2/20:0) showed improved sensitivity for predicting COVID-19 symptoms. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Amato, M.; Grignano, M.A.; Iadarola, P.; Rampino, T.; Gregorini, M.; Viglio, S. The Impact of Serum/Plasma Proteomics on SARS-CoV-2 Diagnosis and Prognosis. Int. J. Mol. Sci. 2024, 25, 8633. https://doi.org/10.3390/ijms25168633
D’Amato M, Grignano MA, Iadarola P, Rampino T, Gregorini M, Viglio S. The Impact of Serum/Plasma Proteomics on SARS-CoV-2 Diagnosis and Prognosis. International Journal of Molecular Sciences. 2024; 25(16):8633. https://doi.org/10.3390/ijms25168633
Chicago/Turabian StyleD’Amato, Maura, Maria Antonietta Grignano, Paolo Iadarola, Teresa Rampino, Marilena Gregorini, and Simona Viglio. 2024. "The Impact of Serum/Plasma Proteomics on SARS-CoV-2 Diagnosis and Prognosis" International Journal of Molecular Sciences 25, no. 16: 8633. https://doi.org/10.3390/ijms25168633
APA StyleD’Amato, M., Grignano, M. A., Iadarola, P., Rampino, T., Gregorini, M., & Viglio, S. (2024). The Impact of Serum/Plasma Proteomics on SARS-CoV-2 Diagnosis and Prognosis. International Journal of Molecular Sciences, 25(16), 8633. https://doi.org/10.3390/ijms25168633