Beyond Anticoagulation: A Comprehensive Review of Non-Vitamin K Oral Anticoagulants (NOACs) in Inflammation and Protease-Activated Receptor Signaling
Abstract
:1. Introduction
1.1. Mechanism and Regulation of the Blood Coagulation Cascade
1.2. Anticoagulants and Non-Vitamin K Oral Anticoagulants (NOACs)
2. Exploring NOACs: From Pharmacokinetics to Clinical Efficacy and Pivotal Trials
2.1. Mechanism of Anticoagulation: Inhibition of Factor Xa and Thrombin
- Apixaban is a potent, highly selective, and direct FXa inhibitor [29]. It effectively prevents arterial and venous thrombosis at doses that preserve hemostasis. Enzyme kinetics indicate that apixaban is a direct and competitive inhibitor of free human FXa, independent of antithrombin III. It likely acts as a mixed-type inhibitor of FXa activation of prothrombin in blood [30]. Additionally, apixaban inhibits prothrombinase-bound FXa activity in vitro, reducing prothrombin to thrombin conversion, suggesting its efficacy against both free and prothrombinase-bound FXa [30].
- Rivaroxaban is a highly potent, competitive, reversible, and direct FXa inhibitor with a Ki of 0.4 nM for free human FXa [31]. In vivo studies show that rivaroxaban effectively prevents arterial and venous thrombosis. Its high affinity for the prothrombinase-bound FXa complex supports its efficacy. Almost complete inhibition of thrombin generation was observed at 80 nM rivaroxaban. Unlike fondaparinux, an antithrombin-dependent FXa inhibitor, rivaroxaban can access the active site within the prothrombinase-bound FXa more effectively. The antithrombotic effect of rivaroxaban primarily results from FXa inhibition, though it may indirectly decrease platelet activation by inhibiting thrombin generation.
- Edoxaban inhibits FXa with Ki values of 0.561 nM for free human FXa and 2.98 nM for FXa within the prothrombinase complex, showing over 10,000-fold selectivity for FXa [32]. Its inhibition is concentration-dependent and competitive. Edoxaban is a highly selective direct FXa inhibitor, offering significant potency [33]. In vitro studies found edoxaban to be a more potent inhibitor of tissue factor-induced platelet aggregation and clot-bound FXa than fondaparinux, suggesting that direct FXa inhibition provides additional benefits over indirect inhibition [34].
2.2. Pharmacodynamic and Pharmacokinetic Characteristics of NOACs
2.3. Dabigatran’s Clinical Efficacy and Application
2.4. Rivaroxaban’s Clinical Efficacy and Application
2.5. Apixaban’s Clinical Efficacy and Application
2.6. Edoxaban’s Clinical Efficacy and Application
3. Exploring Protease-Activated Receptors (PARs): Unveiling Their Role in Inflammation and Disease
3.1. Exploring the Role of PARs in Neuroinflammation and Hyperalgesia
3.2. Chronic Gastrointestinal Inflammation
3.3. Inflammatory Disorders of Respiratory System
3.4. Cardiovascular Inflammatory Disorders
3.5. Inflammatory Disorders of Urinary System
3.6. Rheumatoid Arthritis and Osteoarthritis
4. Anti-Inflammatory Potentials of NOACs
4.1. Apixaban
Analysis of the Anti-Inflammatory and Risk-Benefit Profile and Clinical Implications of Apixaban
Model or Population | Mono/Combination Therapy | Condition Investigated | Inflammatory Markers Examined | Effect Observed | Reference |
---|---|---|---|---|---|
Inflammatory marker was measured at study entry, and at 2 months in 4830 patients in the ARISTOTLE trial with 1.8 years median follow-up. | Monotherapy | AF | IL-6 | Repeated measurements of IL-6 suggest that persistent systemic inflammation is independently associated with increased mortality in apixaban treated AF patients, even after considering established clinical risk factors and other strong cardiovascular biomarkers. | Circulation. 2014 Nov 18;130(21):1847–58. [182] |
18,201 patients with AF from the ARISTOTLE trial, out of which biomarkers were measured for 14,798 patients. | Monotherapy | AF | GDF-15 | The effects of apixaban in reducing stroke, mortality, and bleeding were consistent irrespective of GDF-15 levels, but no data is shown if apixaban had any influence on the levels of GDF-15 to mitigate inflammation. | Heart. 2016 Apr;102(7):508–17.(***) [181] |
18,201 patients with AF who were randomized to receive either apixaban or warfarin in the ARISTOTLE trial. | Monotherapy | AF | hs-CRP and IL-6 | No significant interactions were observed with respect to apixaban and IL-6 or CRP levels and their outcomes. | Heart. 2016 Apr;102(7):508–17. (***) [181] |
14,753 patients from the Apixaban for Reduction In STroke and Other ThromboemboLic Events in Atrial Fibrillation (ARISTOTLE) trial. | Monotherapy | AF | Hs-CRP and IL-6 | Obesity was found to be linked with better survival outcomes in apixaban treated patients. Given that obesity is often associated with chronic inflammation, it is possible that apixaban may have a modulatory role in dampening inflammation in obese, anticoagulated patients with AF. | Open Heart. 2018 Nov 1;5(2):e000908. [183] |
In vitro model: Glia cell lines (specifically microglial and astrocytic cell lines). In vivo animal model: Adult male mice, of similar genetic lineage as C57BL/6, developed by Institute of Cancer Research. Human model: Human plasma and cerebrospinal fluid (CSF), specifically, the CSF taken from viral meningoencephalitis patients and controls was analyzed. | Combination therapy where apixaban individually and in combination with alpha-naphthylsulphonylglycyl-4-amidinophenylalanine piperidine (NAPAP) was used. | Measurement of activated protein C (APC) activity in the context of neural inflammation:
| Conventional inflammatory markers were not assessed but APC titers were measured. APC modulates inflammation by:
| Apixaban increases the specificity of APC activity, which in turn alludes to the possibility that APC’s anti-inflammatory effects are advantageously affected in the presence of apixaban. | Int J Mol Sci. 2020 Mar 31;21(7):2422. [184] |
Venovenous extracorporeal membrane oxygenation (n = 10) due to acute respiratory distress syndrome; and patients treated with venoarterial extracorporeal membrane oxygenation (n = 8) due to cardiocirculatory failure in the ICU of a university hospital. | Monotherapy | Coagulopathy associated with extracorporeal membrane oxygenation (ECMO) in patients with severe cardiocirculatory and/or respiratory failure. | Plasmatic coagulation and platelet aggregation. | Plasmatic coagulation and platelet aggregation were impaired before ECMO due to apixaban. | Crit Care Med. 2020 May;48(5):e400–e408. [185] |
Macrovascular endothelial cells: HUVEC (Human Umbilical Vein Endothelial Cells) Microvascular endothelial cells: HMEC (Human Microvascular Endothelial Cells) | Monotherapy | Protective role of apixaban in uremia caused by CKD. | VCAM-1, ICAM-1, p38MAPK and p42/44 (also known as ERK1/2) | Apixaban reduced VCAM-1, ICAM-1, and VWF expression, normalized ROS levels and eNOS, and inhibited p38MAPK and p42/44 activation in endothelial cells exposed to uremic serum. | Cardiovasc Drugs Ther. 2021 Jun;35(3):521–532. [186] |
4.2. Edoxaban’s Anti-Inflammatory Profile
Model or Population | Mono/Combination Therapy | Condition Investigated | Inflammatory Markers Examined | Effect Observed | Reference |
---|---|---|---|---|---|
Male diabetic mice models, specifically eNOS+/+DM, eNOS+/-DM, and eNOS−/−DM, to investigate the effects of FXa inhibition. Effects of PAR2 absence on DN were assessed using F2rl1−/−; Ins2Akita/+; eNOS+/- mice and compared to F2rl1+/+; Ins2Akita/+; eNOS+/- mice. | Monotherapy | Diabetic nephropathy | TGF β, PAI-1, Collagen Type I, Collagen Type IV, TNF-α, MCP-1, IL- 8 and Prostaglandin-endoperoxide Synthase 2 or COX-2 | Edoxaban ameliorated diabetic nephropathy by reducing the expression of key proinflammatory and profibrotic genes, as well as the expression of PAR1 and PAR2. | Arterioscler Thromb Vasc Biol. 2016;36(8):1525–1533. [194] |
Unilateral ureteral obstruction (UUO) mice (a renal tubulointerstitial fibrosis model) and data from the Food and Drug Administration Adverse Events Reporting System (FAERS) database | Monotherapy | Renal tubulointerstitial injury, which is associated with inflammation and is a major cause of CKD. | PAR1, PAR2, Collagen type 1 and 3, Fibronectin, F4/80 (macrophage marker), TNF-α, IL-10, MCP1, IL1 β, TGFβ, Alpha-smooth muscle actin. | Edoxaban suppressed the elevated levels of FX, PAR-1, and PAR-2, reduced fibrosis and extracellular matrix expression, and attenuated the upregulation of inflammatory molecules and macrophage infiltration in the UUO mouse model of renal tubulointerstitial injury. | Sci Rep. 2018;8(1):10858. [166] |
Immortalized proximal tubule epithelial cell line (HK-2) derived from normal adult human kidneys | Monotherapy | CKD | The study investigated markers of oxidative stress which is closely interrelated with inflammation. (Intracellular ROS, superoxide anion, peroxynitrite, radical scavenging activity for hydroxyl radicals and hydrogen peroxide. | Edoxaban through its FXa inhibitory and direct radical scavenging activity alleviates oxidative stress induced by FXa, thereby breaking the cycle between oxidative stress and inflammation. | Int J Mol Sci. 2019;20(17):4140. [200] |
Apolipoprotein E knockout (ApoE−/−) mice fed with cholesterol-rich diet categorized into three groups: a control (Co) group on the diet alone, a Warf group treated with warfarin and vitamin K1, and an Edo group treated with edoxaban. | Monotherapy and combination therapy approaches. Co group received cholesterol-rich diet only, Warf group received warfarin and vitamin K1, and the Edo group received edoxaban. | Vascular remodeling, atherosclerosis and arteriogenesis. | Histological assessment of smooth muscle cells per collateral artery in both hind limbs; Frequency of perivascular macrophages in the ligated and non-ligated hind limb; Expression of inflammatory cytokines—IL6, MCP-1, IL1b and TNF-α. | Edoxaban did not exhibit significant effect on inflammation, specifically the mRNA expression of IL6, MCP-1, IL1b and TNF-α in the murine hindlimbs or the spleen remained unaltered. | Vascul Pharmacol. 2020;127:106661. (***) [196] |
Individuals aged ≥ 18 years, on continuous ART with maintained HIV RNA < 200 copies/mL for 2+ years, having plasma D-dimer level ≥ 100 ng/mL, creatinine clearance ≥ 50 mL/min, and weight ≥ 60 kg, excluding those with recent VTE, contraindications to anticoagulant therapy, certain health conditions like prior stroke, and invasive cancer within the past year, among other criteria. | Monotherapy | Effects of edoxaban in relation to elevated risk of thrombotic events and pro-inflammatory state in the HIV-positive population. | Systemic inflammation—IL6 (high-sensitivity), IL1b and TNFr-1; Monocyte activation—soluble cluster of differentiation (sCD)14 and sCD163; Vascular injury—sVCAM; Thrombin generation—D-dimer, thrombin antithrombin complex (TAT); Circulating microparticle procoagulant activity (MPTF), whole blood tissue factor (WBTF), functional phospholipid surface assay; immunophenotyping of cryopreserved peripheral blood mononuclear cells (PBMC). | Edoxaban did not significantly impact most inflammatory or immune activation markers, but it reduced specific coagulation markers like D-dimer and TAT and was associated with a decrease in effector memory T cells. | Open Forum Infect Dis. 2020;7(2):ofaa026. (***) [198] |
Male C57Bl/6 N mice aged 6–8 weeks subjected to a transient middle cerebral artery occlusion (tMCAO) procedure. Edoxaban was administered in two different doses across three dosing regimens, with a specific dose of 3.3 mg/kg used for tMCAO experiments. Additionally, the vitamin K antagonist (VKA) phenprocoumon was given at 0.3 mg/kg, three times prior to tMCAO, aiming to achieve INR between 2 and 3 during the tMCAO procedure. | Monotherapy where both drugs (edoxaban and phenprocoumon) were given via oral gavage using a gastric tube and were dissolved in 0.5% (w/v) methyl cellulose. | Effect of edoxaban on thrombin mediated inflammatory processes in ischemic stroke. | The inflammatory markers and pathways assessed included IL-1b, IL-6, TNF-α gene expression, invasion of immune cells (T cells, neutrophils, macrophages/microglia), and the stabilization of the blood-brain barrier (BBB) through tight junction protein expression and reduced Evans Blue extravasation. | Edoxaban reduced infarct volumes, improved neurological outcomes, enhanced blood-brain barrier function, and attenuated brain tissue inflammation, suggesting its potential protective effects in ischemic stroke. | Int J Mol Sci. 2021;22(18):9893 [195] |
Male Slc:Wistar rats were used in an LPS-induced microvascular thrombosis model. | Monotherapy | Effect of edoxaban on risk of thrombosis during infection, specifically focusing on LPS-induced coagulopathy in rats, where the effect focused on microvascular thrombus formation in the context of this coagulopathy. | The study investigated microvascular thrombus formation in the liver and kidneys, focusing on inflammatory markers IL-6, TNF-α and MCP-1. | Edoxaban did not affect the levels of inflammatory cytokines, | J Thromb Thrombolysis. 2021;52(1):9–17. (***) [197] |
Patients with AF from the ENGAGE AF-TIMI 48 trial. This randomized trial compared edoxaban versus warfarin in these patients and followed them for a median of 2.8 years. | Monotherapy with either edoxaban or warfarin | Relationship between neutrophil-to-lymphocyte ratio (NLR) and clinical outcomes in AF patients. | NLR | Systemic inflammation (as reflected by NLR) is associated with adverse outcomes in AF patients, and that edoxaban offers protection against some of these outcomes regardless of the inflammatory state | Int J Cardiol. 2023;386:118–124. [201] |
4.3. Rivaroxaban’s Anti-Inflammatory Profile
4.4. Dabigatran’s Anti-Inflammatory Profile
Human Model or Population | Mono/Combination Therapy | Condition Investigated | Inflammatory Markers Examined | Effect Observed | Reference |
Patients who had elective orthopedic surgical procedures, specifically total hip or knee arthroplasty. | Monotherapy (dabigatran vs. low-molecular weight heparin) | Thromboembolic complications post-total hip or knee arthroplasty |
| No significant difference in the incidence of local or systemic inflammatory complications between dabigatran and low-molecular weight heparin | Pol Orthop Traumatol. 2012 (***) [241] |
| Monotherapy | Impact of dabigatran on pro-inflammatory cytokines, growth factors, and chemokines; exploring its potential anti-inflammatory effects. | Angiogenin, CXCL1/GRO alpha, IL-1β/IL-1F2, human IL-6, IL-8/CXCL8, CCL2/MCP-1, TGFβ 1, TNF-α, Vascular endothelial growth factor (VEGF). |
| Life Sci. 2020 Dec 1;262:118474. [242] |
Cell, Mice, or Combined Models | Mono/Combination Therapy | Condition Investigated | Inflammatory Markers Examined | Effect Observed | Reference |
Female C57BL/6 mice | Mono therapy |
|
|
| Arthritis Rheum. 2011 May;63(5):1416–25. [243] |
Transgenic atherosclerosis-prone mice with diminished coagulant or hypercoagulable phenotype (FII(-/WT):ApoE(-/-) and TM(Pro/Pro):ApoE(-/-)) | Monotherapy (dabigatran etexilate or recombinant APC) |
|
|
| PLoS One. 2013;8(2):e55784. [249] |
| Monotherapy (dabigatran) |
|
|
| Front Aging Neurosci. 2013 May 9;5:19. [250] |
| Monotherapy |
|
|
| J Pharmacol Exp Ther. 2014 Nov;351(2):288–97. [244] |
| Monotherapy with the thrombin inhibitor dabigatran at a dosage of 1.2 g/kg/day. |
|
|
| Arch Med Sci. 2014 Feb 24;10(1):154–60. [251] |
| Monotherapy |
| The mean lesion area in the aortic sinus and the innominate artery.
|
| Drug Des Devel Ther. 2015 Sep 10;9:5203–11. [252] |
| Monotherapy using the oral thrombin inhibitor dabigatran (10 mg/g) |
|
|
| Am J Physiol Lung Cell Mol Physiol. 2015 Oct 15;309(8):L768–75. (***) [253] |
| Monotherapy (dabigatran etexilate or warfarin) |
|
|
| J Neuroimmunol. 2016 Aug 15;297:159–68. [254] |
| Monotherapy with dabigatran etexilate at a dosage of 15 mg/kg. |
|
|
| Curr Neurovasc Res. 2016;13(3):199–206. [255] |
Vascular leak-dependent mice model for pulmonary fibrosis | Monotherapy |
|
|
| JCI Insight. 2017 May 4;2(9):e86608. [256] |
| Monotherapy |
|
|
| J Clin Invest. 2017 Aug 1;127(8):3152–3166. [257] |
| Mono therapy (dabigatran administered either during the onset of fibrotic phase (late treatment) or inflammatory phase (early treatment)). |
|
|
| Clin Exp Rheumatol. 2017 Sep-Oct;35 Suppl 106(4):35–39. (***) [258] |
| Monotherapy (dabigatran) |
|
|
| Acta Ophthalmol. 2018 Aug;96(5):452–458. [259] |
| Monotherapy Group 1: Control (No treatment) Group 2: Dabigatran etexilate (10 mg/kg orally for 7 days) Group 3: Bemiparin sodium (250 IU/kg subcutaneously for 7 days) |
|
|
| World Neurosurg. 2019 Jun;126:e731-e735. (***) [260] |
| Monotherapy |
|
|
| Atherosclerosis. 2019 Aug;287:81–88. [261] |
| Combination therapy (dabigatran with gentamicin) |
|
|
| PLoS One. 2019 Apr 19;14(4):e0215333. [262] |
| Monotherapy (dabigatran) |
|
|
| J Thromb Haemost. 2019 Mar;17(3):538–550. [263] |
| Monotherapy (dabigatran) |
|
|
| Biochem Biophys Rep. 2020 Nov 19;24:100862. [264] |
| Monotherapy (dabigatran) |
|
|
| Front Mol Neurosci. 2020 Jun 30;13:114. [265] |
| Monotherapy (dabigatran etexilate) |
|
|
| Vascul Pharmacol. 2020 [266] |
| Monotherapy |
|
|
| Eur J Pharmacol. 2021 Feb 15;893:173838. [267] |
| Monotherapy |
|
|
| Liver Transpl. 2021 Feb;27(3):363–384. [268] |
| Monotherapy (warfarin, dabigatran, and heparin are each used independently). |
|
|
| Theranostics. 2021 Feb 20;11(9):4251–4261 [269] |
| Monotherapy Control (Western-type diet only) Dabigatran etexilate (duration: 6 or 18 weeks) Warfarin (duration: 6 or 18 weeks) |
|
|
| J Thromb Haemost. 2021 May;19(5):1348–1363. [23] |
| Monotherapy (dabigatran etexilate or Warfarin) |
|
|
| J Thromb Haemost. 2021 May;19(5):1348–1363. [23] |
Retinoic acid (RA)-differentiated human neuroblastoma cell line SH-SY5Y | Monotherapy (250 nM dabigatran with/without 10–100 nM thrombin) |
|
|
| Cereb Circ Cogn Behav. 2021 May 6;2:100014 [270] |
| Monotherapy |
|
|
| J Crohns Colitis. 2021 May 4;15(5):787–799. [271] |
Pig coronary artery stenting model | Combination therapy (dabigatran, aspirin, and clopidogrel) |
|
|
| Front Cardiovasc Med. 2021 Jul 2;8:690476. [272] |
| Monotherapy |
|
|
| Front Pharmacol. 2022 Feb 28;13:834472(***) [273] |
Rat model of complete Freund’s adjuvant (CFA)-induced arthritis. | Monotherapy |
|
|
| Int J Mol Sci. 2022 Sep 7;23(18):10297. [274] |
Mouse model (T7K24R trypsinogen mutant mouse and T7D23A mouse) | Monotherapy |
|
|
| JCI Insight. 2022 Nov 8;7(21):e161145. [275] |
Pig stenting coronary artery model | Combination therapy: dabigatran with dual antiplatelet therapy (DAPT) (clopidogrel 75 mg + aspirin 100 mg) |
|
|
| J Pers Med. 2023 Jan 31;13(2):280 [276] |
4.5. Comparative Anti-Inflammatory Potential of NOACs
Model or Population | NOACs Used | Condition Investigated | Inflammatory Markers Examined | Effect Observed | Reference |
---|---|---|---|---|---|
The study utilized the Berkeley (BERK) mouse model of Sickle Cell Disease (SCD) which has specific genetic modifications involving human and murine globins. For certain experiments, wild-type (WT) mice and PAR-1 and PAR-2 deficient mice were used. Additionally, bone marrow (BM) transplantation was conducted where irradiated PAR-1 and PAR-2 mice received bone marrow cells from either the BERK or WT control mice. | Dabigatran and rivaroxaban | Sickle Cell Disease (SCD) | IL-6, sVCAM-1 was assessed in relation to the activation of TF in sickle mice, MPO which is an enzyme primarily found in neutrophils and is released during the activation of neutrophils. |
| Blood. 2014;123(11):1747–1756. [277] |
Human umbilical vascular endothelial cells (HUVECs) | Dabigatran and rivaroxaban | Transcriptional changes in HUVECs when exposed to thrombin, focusing on the expression levels of preselected pro-inflammatory genes. | Endothelial Leukocyte Adhesion Molecule (ELAM)-1, VCAM-1, ICAM-1, MCP-1, IL-8, CXCL1, CXCL2 and TF |
| Thromb Res. 2016 Jun;142:44–51 [278] |
44 patients with acute ischemic stroke patients who were newly prescribed anti-thrombotic agents. | Dabigatran (n = 12) and apixaban (n = 14) with antiplatelet agents (n = 18) used as control. | Acute ischemic stroke | Hs-CRP, IL-6, pentraxin–3 |
| Clin Transl Med. 2018 Jan 12;7(1):2. [279] |
Polymorphonuclear leukocytes (PMNLs) isolated from heparinized venous blood taken from non-smoking, healthy adults. | Dabigatran and rivaroxaban | Inflammatory response by NOACs | ROS, elastase release, cytosolic calcium flux, neutrophil extracellular trap (NET) formation, cell viability | No significant pro-inflammatory effects of dabigatran or rivaroxaban at concentrations of up to 10 µM was observed on the indicated PMNL markers. | Activation. Pharmaceuticals (Basel). 2018 May 14;11(2):46. [282] |
187 patients with NVAF | Dabigatran (n = 96) and rivaroxaban (n = 91) | NVAF | Hs-CRP, pentraxin-3, IL-1β, IL-6, IL-18, TNF-α, MCP-1, GDF-15, and soluble thrombomodulin. |
| Heart Vessels. 2019 Jun;34(6):1002–1013 [283] |
Male Wistar rats weighing between 250 and 350 g | Apixaban, dabigatran, and rivaroxaban | Ischemia-reperfusion injury in the kidneys | IL-1β and TNF-α. |
| Turk Gogus Kalp Damar Cerrahisi Derg. 2022 Apr 27;30(2):184–191. [280] |
Human umbilical vascular endothelial cells (HUVECs) | Dabigatran and rivaroxaban | Inflammatory activation in endothelial cells caused by 25-hydroxycholesterol (25-OHC), which is associated with atherosclerosis. | Anti-inflammatory cytokines: TGF-β IL-37 IL-35 (specifically its subunits EBI3 and p35) Pro-inflammatory cytokines: IL-18 IL-23 | 25-OHC Effects:
Effects of Rivaroxaban and Dabigatran Alone:
Effects of Rivaroxaban and Dabigatran on 25-OHC Treated Cells:
| Clin Exp Pharmacol Physiol. 2022 Aug;49(8):805–812. [284] |
Animal model: 60 C57B/6J mice divided into groups: control (CON) group, AF group, AF + edoxaban group, and AF + rivaroxaban group. Human Model: Erythrocytes of patients with atrial fibrillation | Edoxaban and rivaroxaban | Atrial fibrillation | TNF-α, IL-1β, IL-6, and IL-10. | Both edoxaban and rivaroxaban reduced inflammation in atrial fibrillation, where the effect of edoxaban was superior to that of rivaroxaban. | Front Pharmacol. 2022;13:904317. [285] |
A syngeneic mouse model comprising male BALB/c mice that were inoculated with colon cancer Colon26 cells. | Dabigatran, edoxaban, and rivaroxaban | Effect of NOACs on tumor progression in colorectal cancer. | Appraisal of tissue-factor, plasminogen activator inhibitor–1 (PAI-1), IL-6 and MMP-2 in the plasma of Colon26-inoculated mice. | All NOACs displayed anti-inflammatory effect, edoxaban displayed a superior ability not just to suppress tumor growth but also to mitigate elevated levels of inflammatory markers. | TH Open. 2023;7(1):e1-e13. [281] |
5. Novel Revelations of Apixaban in Osteoarthritis
6. Comparison of Anti-Inflammation Mediated by NOACs vs. Heparins and Fondaparinux
7. Unexplored Aspects of NOACs in Inflammation
7.1. Identified Gaps in Current Research
7.1.1. Limited Understanding of Molecular Mechanisms
7.1.2. Inconsistencies in Anti-Inflammatory Effects across Models
7.1.3. Lack of Longitudinal Human Studies
7.1.4. Population Diversity in Research
7.1.5. Comparative Effectiveness of Different NOACs
7.2. Proposed Methodologies and Future Directions
7.2.1. Advanced Molecular and Cellular Studies
7.2.2. Standardized Experimental Models
7.2.3. Longitudinal Clinical Studies
7.2.4. Population-Specific Research
7.2.5. Comparative Effectiveness of Research
7.2.6. Integration of Multi-Omics Approaches
7.2.7. Innovative Experimental Models
7.2.8. Designing Better Thrombin and Factor Xa Using AI
7.2.9. Designing NOAC-Antibody Conjugates for Enhanced Anti-Inflammatory Activity
7.2.10. Design of Aptameric NOAC Conjugates to Attenuate PAR-Mediated Inflammation
8. Addressing Specific Research Gaps
8.1. Molecular Mechanism of NOACs
8.2. Comparative Studies in Diverse Models
8.3. Long-Term Impacts of NOACs
8.4. Broadening Research Populations
8.5. Integration of Multi-Omics Data
8.6. Effects of NOAC Antidotes on Anti-Inflammatory Properties
9. Materials and Methods
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palta, S.; Saroa, R.; Palta, A. Overview of the coagulation system. Indian J. Anaesth. 2014, 58, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, F.; Mariani, G. Biochemical, molecular and clinical aspects of coagulation factor VII and its role in hemostasis and thrombosis. Haematologica 2021, 106, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Owens, A.P., 3rd; Mackman, N. Tissue factor and thrombosis: The clot starts here. Thromb. Haemost. 2010, 104, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Chapin, J.C.; Hajjar, K.A. Fibrinolysis and the control of blood coagulation. Blood Rev. 2015, 29, 17–24. [Google Scholar] [CrossRef] [PubMed]
- England, N.H.S.N. Community Pharmacy Oral Anticoagulant Safety Audit 2021/22: NHS England. 2023. Available online: https://www.england.nhs.uk/long-read/community-pharmacy-oral-anticoagulant-safety-audit-2021-22/#about-this-report (accessed on 15 June 2024).
- Navar, A.M.; Kolkailah, A.A.; Overton, R.; Shah, N.P.; Rousseau, J.F.; Flaker, G.C.; Pignone, M.P.; Peterson, E.D. Trends in Oral Anticoagulant Use Among 436 864 Patients With Atrial Fibrillation in Community Practice, 2011 to 2020. J. Am. Heart Assoc. 2022, 11, e026723. [Google Scholar] [CrossRef] [PubMed]
- Arepally, G.M.; Cines, D.B. Pathogenesis of heparin-induced thrombocytopenia. Transl. Res. 2020, 225, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Kimmel, S.E. Warfarin therapy: In need of improvement after all these years. Expert Opin. Pharmacother. 2008, 9, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Shields, L.B.E.; Fowler, P.; Siemens, D.M.; Lorenz, D.J.; Wilson, K.C.; Hester, S.T.; Honaker, J.T. Standardized warfarin monitoring decreases adverse drug reactions. BMC Fam. Pract. 2019, 20, 151. [Google Scholar] [CrossRef] [PubMed]
- Holbrook, A.M.; Pereira, J.A.; Labiris, R.; McDonald, H.; Douketis, J.D.; Crowther, M.; Wells, P.S. Systematic overview of warfarin and its drug and food interactions. Arch. Intern. Med. 2005, 165, 1095–1106. [Google Scholar] [CrossRef]
- Tan, C.S.S.; Lee, S.W.H. Warfarin and food, herbal or dietary supplement interactions: A systematic review. Br J Clin Pharmacol. 2021, 87, 352–374. [Google Scholar] [CrossRef]
- Chilbert, M.R.; Zammit, K.; Ahmed, U.; Devlin, A.; Radparvar, S.; Schuler, A.; Woodruff, A.E. A systematic review of therapeutic enoxaparin dosing in obesity. J. Thromb. Thrombolysis 2024, 57, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Connolly, S.J.; Ezekowitz, M.D.; Yusuf, S.; Eikelboom, J.; Oldgren, J.; Parekh, A.; Pogue, J.; Reilly, P.A.; Themeles, E.; Varrone, J.; et al. Dabigatran versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 2009, 361, 1139–1151. [Google Scholar] [CrossRef] [PubMed]
- Al Said, S.; Ellscheid, M.; Beltsios, E.T.; Frey, N. Non-Vitamin K Antagonist Oral Anticoagulants in Coronary Artery Disease. Hamostaseologie 2022, 42, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Kemkes-Matthes, B. Anticoagulation-direct oral anticoagulants. Internist 2017, 58, 585–597. [Google Scholar] [CrossRef]
- Mueck, W.; Schwers, S.; Stampfuss, J. Rivaroxaban and other novel oral anticoagulants: Pharmacokinetics in healthy subjects, specific patient populations and relevance of coagulation monitoring. Thromb. J. 2013, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Eek, A.K.; Oie, E.; Granas, A.G. Prescribing of NOACs has outnumbered warfarin: Exploring how physicians choose anticoagulant treatments. Eur. J. Clin. Pharmacol. 2018, 74, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Di Minno, A.; Frigerio, B.; Spadarella, G.; Ravani, A.; Sansaro, D.; Amato, M.; Kitzmiller, J.P.; Pepi, M.; Tremoli, E.; Baldassarre, D. Old and new oral anticoagulants: Food, herbal medicines and drug interactions. Blood Rev. 2017, 31, 193–203. [Google Scholar] [CrossRef]
- Udayachalerm, S.; Rattanasiri, S.; Angkananard, T.; Attia, J.; Sansanayudh, N.; Thakkinstian, A. The Reversal of Bleeding Caused by New Oral Anticoagulants (NOACs): A Systematic Review and Meta-Analysis. Clin. Appl. Thromb. Hemost. 2018, 24, 117S–126S. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, M.; Monroe, D.M. Impact of Non-Vitamin K Antagonist Oral Anticoagulants From a Basic Science Perspective. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1812–1818. [Google Scholar] [CrossRef]
- Ruff, C.T.; Giugliano, R.P.; Antman, E.M. Management of Bleeding with Non-Vitamin K Antagonist Oral Anticoagulants in the Era of Specific Reversal Agents. Circulation 2016, 134, 248–261. [Google Scholar] [CrossRef]
- Coughlin, S.R.; Camerer, E. PARticipation in inflammation. J. Clin. Investig. 2003, 111, 25–27. [Google Scholar] [CrossRef] [PubMed]
- van Gorp, R.H.; Dijkgraaf, I.; Broker, V.; Bauwens, M.; Leenders, P.; Jennen, D.; Dweck, M.R.; Bucerius, J.; Briede, J.J.; van Ryn, J.; et al. Off-target effects of oral anticoagulants—Vascular effects of vitamin K antagonist and non-vitamin K antagonist oral anticoagulant dabigatran etexilate. J. Thromb. Haemost. 2021, 19, 1348–1363. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Maejima, Y.; Nakagama, S.; Shiheido-Watanabe, Y.; Tamura, N.; Sasano, T. Rivaroxaban, a Direct Oral Factor Xa Inhibitor, Attenuates Atherosclerosis by Alleviating Factor Xa-PAR2-Mediated Autophagy Suppression. JACC Basic Transl. Sci. 2021, 6, 964–980. [Google Scholar] [CrossRef] [PubMed]
- Ruff, C.T.; Giugliano, R.P.; Braunwald, E.; Hoffman, E.B.; Deenadayalu, N.; Ezekowitz, M.D.; Camm, A.J.; Weitz, J.I.; Lewis, B.S.; Parkhomenko, A.; et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: A meta-analysis of randomised trials. Lancet 2014, 383, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, F.; Koshio, H.; Ishihara, T.; Hachiya, S.; Sugasawa, K.; Koga, Y.; Seki, N.; Shiraki, R.; Shigenaga, T.; Iwatsuki, Y.; et al. Discovery of N-[2-hydroxy-6-(4-methoxybenzamido)phenyl]-4-(4-methyl-1,4-diazepan-1-yl)benzamide (darexaban, YM150) as a potent and orally available factor Xa inhibitor. J. Med. Chem. 2011, 54, 8051–8065. [Google Scholar] [CrossRef] [PubMed]
- Lagos, C.F.; Segovia, G.F.; Nunez-Navarro, N.; Faundez, M.A.; Zacconi, F.C. Novel FXa Inhibitor Identification through Integration of Ligand- and Structure-Based Approaches. Molecules 2017, 22, 1588. [Google Scholar] [CrossRef] [PubMed]
- Schechter, I.; Berger, A. On the active site of proteases. 3. Mapping the active site of papain; specific peptide inhibitors of papain. Biochem. Biophys. Res. Commun. 1968, 32, 898–902. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.C.; Crain, E.J.; Xin, B.; Wexler, R.R.; Lam, P.Y.; Pinto, D.J.; Luettgen, J.M.; Knabb, R.M. Apixaban, an oral, direct and highly selective factor Xa inhibitor: In vitro, antithrombotic and antihemostatic studies. J. Thromb. Haemost. 2008, 6, 820–829. [Google Scholar] [CrossRef] [PubMed]
- Krishnaswamy, S. Exosite-driven substrate specificity and function in coagulation. J. Thromb. Haemost. 2005, 3, 54–67. [Google Scholar] [CrossRef]
- Perzborn, E.; Strassburger, J.; Wilmen, A.; Pohlmann, J.; Roehrig, S.; Schlemmer, K.H.; Straub, A. In vitro and in vivo studies of the novel antithrombotic agent BAY 59-7939—An oral, direct Factor Xa inhibitor. J. Thromb. Haemost. 2005, 3, 514–521. [Google Scholar] [CrossRef]
- Furugohri, T.; Isobe, K.; Honda, Y.; Kamisato-Matsumoto, C.; Sugiyama, N.; Nagahara, T.; Morishima, Y.; Shibano, T. DU-176b, a potent and orally active factor Xa inhibitor: In vitro and in vivo pharmacological profiles. J. Thromb. Haemost. 2008, 6, 1542–1549. [Google Scholar] [CrossRef] [PubMed]
- Lip, G.Y.; Agnelli, G. Edoxaban: A focused review of its clinical pharmacology. Eur. Heart J. 2014, 35, 1844–1855. [Google Scholar] [CrossRef] [PubMed]
- Honda, Y.; Kamisato, C.; Morishima, Y. Edoxaban, a direct factor Xa inhibitor, suppresses tissue-factor induced human platelet aggregation and clot-bound factor Xa in vitro: Comparison with an antithrombin-dependent factor Xa inhibitor, fondaparinux. Thromb. Res. 2016, 141, 17–21. [Google Scholar] [CrossRef]
- Tulinsky, A. Molecular Interactions of Thrombin. Semin. Thromb. Hemost. 1996, 22, 117–124. [Google Scholar] [CrossRef]
- Bates, S.M.; Weitz, J.I. The mechanism of action of thrombin inhibitors. J. Invasive Cardiol. 2000, 12 (Suppl. F), 27F–32F. [Google Scholar]
- Wienen, W.; Stassen, J.M.; Priepke, H.; Ries, U.J.; Hauel, N. In-vitro profile and ex-vivo anticoagulant activity of the direct thrombin inhibitor dabigatran and its orally active prodrug, dabigatran etexilate. Thromb. Haemost. 2007, 98, 155–162. [Google Scholar]
- Eisert, W.G.; Hauel, N.; Stangier, J.; Wienen, W.; Clemens, A.; van Ryn, J. Dabigatran: An oral novel potent reversible nonpeptide inhibitor of thrombin. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 1885–1889. [Google Scholar] [CrossRef]
- Vakkalagadda, B.; Frost, C.; Byon, W.; Boyd, R.A.; Wang, J.; Zhang, D.; Yu, Z.; Dias, C.; Shenker, A.; LaCreta, F. Effect of Rifampin on the Pharmacokinetics of Apixaban, an Oral Direct Inhibitor of Factor Xa. Am. J. Cardiovasc. Drugs 2016, 16, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Parasrampuria, D.A.; Kanamaru, T.; Connor, A.; Wilding, I.; Ogata, K.; Shimoto, Y.; Kunitada, S. Evaluation of regional gastrointestinal absorption of edoxaban using the enterion capsule. J. Clin. Pharmacol. 2015, 55, 1286–1292. [Google Scholar] [CrossRef]
- Matsushima, N.; Lee, F.; Sato, T.; Weiss, D.; Mendell, J. Bioavailability and Safety of the Factor Xa Inhibitor Edoxaban and the Effects of Quinidine in Healthy Subjects. Clin. Pharmacol. Drug Dev. 2013, 2, 358–366. [Google Scholar] [CrossRef]
- Mueck, W.; Stampfuss, J.; Kubitza, D.; Becka, M. Clinical pharmacokinetic and pharmacodynamic profile of rivaroxaban. Clin. Pharmacokinet. 2014, 53, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Grainger, B.; Holloway, R.; Merriman, E.; Booth, M.; Royle, G.; Babor, R.; Beban, G.; Young, L. Evidence of impaired dabigatran absorption following laparoscopic Roux-en-Y gastric bypass surgery: The Auckland regional experience (2011–2018). Br. J. Haematol. 2020, 191, e67–e69. [Google Scholar] [CrossRef]
- Stangier, J.; Stahle, H.; Rathgen, K.; Fuhr, R. Pharmacokinetics and pharmacodynamics of the direct oral thrombin inhibitor dabigatran in healthy elderly subjects. Clin. Pharmacokinet. 2008, 47, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Byon, W.; Garonzik, S.; Boyd, R.A.; Frost, C.E. Apixaban: A Clinical Pharmacokinetic and Pharmacodynamic Review. Clin. Pharmacokinet. 2019, 58, 1265–1279. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; He, K.; Herbst, J.J.; Kolb, J.; Shou, W.; Wang, L.; Balimane, P.V.; Han, Y.H.; Gan, J.; Frost, C.E.; et al. Characterization of efflux transporters involved in distribution and disposition of apixaban. Drug Metab. Dispos. 2013, 41, 827–835. [Google Scholar] [CrossRef]
- Parasrampuria, D.A.; Truitt, K.E. Pharmacokinetics and Pharmacodynamics of Edoxaban, a Non-Vitamin K Antagonist Oral Anticoagulant that Inhibits Clotting Factor Xa. Clin. Pharmacokinet. 2016, 55, 641–655. [Google Scholar] [CrossRef]
- Yin, O.Q.; Tetsuya, K.; Miller, R. Edoxaban population pharmacokinetics and exposure-response analysis in patients with non-valvular atrial fibrillation. Eur. J. Clin. Pharmacol. 2014, 70, 1339–1351. [Google Scholar] [CrossRef] [PubMed]
- Bratsos, S. Pharmacokinetic Properties of Rivaroxaban in Healthy Human Subjects. Cureus 2019, 11, e5484. [Google Scholar] [CrossRef]
- Fawzy, A.M.; Lip, G.Y.H. Pharmacokinetics and pharmacodynamics of oral anticoagulants used in atrial fibrillation. Expert Opin. Drug Metab. Toxicol. 2019, 15, 381–398. [Google Scholar] [CrossRef]
- Stangier, J.; Clemens, A. Pharmacology, pharmacokinetics, and pharmacodynamics of dabigatran etexilate, an oral direct thrombin inhibitor. Clin. Appl. Thromb. Hemost. 2009, 15 (Suppl. 1), 9S–16S. [Google Scholar] [CrossRef]
- Frost, C.; Wang, J.; Nepal, S.; Schuster, A.; Barrett, Y.C.; Mosqueda-Garcia, R.; Reeves, R.A.; LaCreta, F. Apixaban, an oral, direct factor Xa inhibitor: Single dose safety, pharmacokinetics, pharmacodynamics and food effect in healthy subjects. Br. J. Clin. Pharmacol. 2013, 75, 476–487. [Google Scholar] [CrossRef] [PubMed]
- Mendell, J.; Tachibana, M.; Shi, M.; Kunitada, S. Effects of food on the pharmacokinetics of edoxaban, an oral direct factor Xa inhibitor, in healthy volunteers. J. Clin. Pharmacol. 2011, 51, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Stampfuss, J.; Kubitza, D.; Becka, M.; Mueck, W. The effect of food on the absorption and pharmacokinetics of rivaroxaban. Int. J. Clin. Pharmacol. Ther. 2013, 51, 549–561. [Google Scholar] [CrossRef] [PubMed]
- Stangier, J.; Eriksson, B.I.; Dahl, O.E.; Ahnfelt, L.; Nehmiz, G.; Stahle, H.; Rathgen, K.; Svard, R. Pharmacokinetic profile of the oral direct thrombin inhibitor dabigatran etexilate in healthy volunteers and patients undergoing total hip replacement. J. Clin. Pharmacol. 2005, 45, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Frost, C.E.; Song, Y.; Shenker, A.; Wang, J.; Barrett, Y.C.; Schuster, A.; Harris, S.I.; LaCreta, F. Effects of age and sex on the single-dose pharmacokinetics and pharmacodynamics of apixaban. Clin. Pharmacokinet. 2015, 54, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Kubitza, D.; Becka, M.; Roth, A.; Mueck, W. The influence of age and gender on the pharmacokinetics and pharmacodynamics of rivaroxaban—An oral, direct Factor Xa inhibitor. J. Clin. Pharmacol. 2013, 53, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Byon, W.; Sweeney, K.; Frost, C.; Boyd, R.A. Population Pharmacokinetics, Pharmacodynamics, and Exploratory Exposure-Response Analyses of Apixaban in Subjects Treated for Venous Thromboembolism. CPT Pharmacomet. Syst. Pharmacol. 2017, 6, 340–349. [Google Scholar] [CrossRef]
- Sankyo, D. Lixiana Summary of Product Characteristics; European Medicine Agency: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Kubitza, D.; Becka, M.; Mueck, W.; Halabi, A.; Maatouk, H.; Klause, N.; Lufft, V.; Wand, D.D.; Philipp, T.; Bruck, H. Effects of renal impairment on the pharmacokinetics, pharmacodynamics and safety of rivaroxaban, an oral, direct Factor Xa inhibitor. Br. J. Clin. Pharmacol. 2010, 70, 703–712. [Google Scholar] [CrossRef]
- Stangier, J.; Rathgen, K.; Stahle, H.; Mazur, D. Influence of renal impairment on the pharmacokinetics and pharmacodynamics of oral dabigatran etexilate: An open-label, parallel-group, single-centre study. Clin. Pharmacokinet. 2010, 49, 259–268. [Google Scholar] [CrossRef]
- Mendell, J.; Johnson, L.; Chen, S. An open-label, phase 1 study to evaluate the effects of hepatic impairment on edoxaban pharmacokinetics and pharmacodynamics. J. Clin. Pharmacol. 2015, 55, 1395–1405. [Google Scholar] [CrossRef]
- Kubitza, D.; Roth, A.; Becka, M.; Alatrach, A.; Halabi, A.; Hinrichsen, H.; Mueck, W. Effect of hepatic impairment on the pharmacokinetics and pharmacodynamics of a single dose of rivaroxaban, an oral, direct Factor Xa inhibitor. Br. J. Clin. Pharmacol. 2013, 76, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Stangier, J.; Stahle, H.; Rathgen, K.; Roth, W.; Shakeri-Nejad, K. Pharmacokinetics and pharmacodynamics of dabigatran etexilate, an oral direct thrombin inhibitor, are not affected by moderate hepatic impairment. J. Clin. Pharmacol. 2008, 48, 1411–1419. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, B.I.; Dahl, O.E.; Rosencher, N.; Clemens, A.; Hantel, S.; Feuring, M.; Kreuzer, J.; Huo, M.; Friedman, R.J. Oral dabigatran etexilate versus enoxaparin for venous thromboembolism prevention after total hip arthroplasty: Pooled analysis of two phase 3 randomized trials. Thromb. J. 2015, 13, 36. [Google Scholar] [CrossRef] [PubMed]
- Goldhaber, S.Z.; Schulman, S.; Eriksson, H.; Feuring, M.; Fraessdorf, M.; Kreuzer, J.; Schuler, E.; Schellong, S.; Kakkar, A. Dabigatran versus Warfarin for Acute Venous Thromboembolism in Elderly or Impaired Renal Function Patients: Pooled Analysis of RE-COVER and RE-COVER II. Thromb. Haemost. 2017, 117, 2045–2052. [Google Scholar] [CrossRef] [PubMed]
- Diez-Villanueva, P.; Cosin-Sales, J.; Roldan-Schilling, V.; Barrios, V.; Riba-Artes, D.; Gavin-Sebastian, O.; RE_BELD Spanish Investigator’s Group. Use of Direct Acting Oral Anticoagulants in Elderly Patients with Atrial Fibrillation: A Multicenter, Cross-Sectional Study in Spain. J. Clin. Med. 2023, 12, 1224. [Google Scholar] [CrossRef]
- Yu, Y.B.; Liu, J.; Fu, G.H.; Fang, R.Y.; Gao, F.; Chu, H.M. Comparison of dabigatran and warfarin used in patients with non-valvular atrial fibrillation: Meta-analysis of random control trial. Medicine 2018, 97, e12841. [Google Scholar] [CrossRef] [PubMed]
- Grymonprez, M.; De Backer, T.L.; Bertels, X.; Steurbaut, S.; Lahousse, L. Long-term comparative effectiveness and safety of dabigatran, rivaroxaban, apixaban and edoxaban in patients with atrial fibrillation: A nationwide cohort study. Front. Pharmacol. 2023, 14, 1125576. [Google Scholar] [CrossRef] [PubMed]
- Achilles, A.; Mohring, A.; Dannenberg, L.; Grandoch, M.; Hohlfeld, T.; Fischer, J.W.; Levkau, B.; Kelm, M.; Zeus, T.; Polzin, A. Dabigatran enhances platelet reactivity and platelet thrombin receptor expression in patients with atrial fibrillation. J. Thromb. Haemost. 2017, 15, 473–476. [Google Scholar] [CrossRef] [PubMed]
- Russell, R.D.; Hotchkiss, W.R.; Knight, J.R.; Huo, M.H. The efficacy and safety of rivaroxaban for venous thromboembolism prophylaxis after total hip and total knee arthroplasty. Thrombosis 2013, 2013, 762310. [Google Scholar] [CrossRef]
- Prins, M.H.; Lensing, A.W.; Bauersachs, R.; van Bellen, B.; Bounameaux, H.; Brighton, T.A.; Cohen, A.T.; Davidson, B.L.; Decousus, H.; Raskob, G.E.; et al. Oral rivaroxaban versus standard therapy for the treatment of symptomatic venous thromboembolism: A pooled analysis of the EINSTEIN-DVT and PE randomized studies. Thromb. J. 2013, 11, 21. [Google Scholar] [CrossRef]
- Patel, M.R.; Mahaffey, K.W.; Garg, J.; Pan, G.; Singer, D.E.; Hacke, W.; Breithardt, G.; Halperin, J.L.; Hankey, G.J.; Piccini, J.P.; et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N. Engl. J. Med. 2011, 365, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Piazza, G.; Spyropoulos, A.C.; Hsia, J.; Goldin, M.; Towner, W.J.; Go, A.S.; Bull, T.M.; Weng, S.; Lipardi, C.; Barnathan, E.S.; et al. Rivaroxaban for Prevention of Thrombotic Events, Hospitalization, and Death in Outpatients with COVID-19: A Randomized Clinical Trial. Circulation 2023, 147, 1891–1901. [Google Scholar] [CrossRef] [PubMed]
- Ray, W.A.; Chung, C.P.; Stein, C.M.; Smalley, W.; Zimmerman, E.; Dupont, W.D.; Hung, A.M.; Daugherty, J.R.; Dickson, A.; Murray, K.T. Association of Rivaroxaban vs Apixaban with Major Ischemic or Hemorrhagic Events in Patients with Atrial Fibrillation. JAMA 2021, 326, 2395–2404. [Google Scholar] [CrossRef] [PubMed]
- Ageno, W.; Bertu, L.; Bucherini, E.; Camporese, G.; Dentali, F.; Iotti, M.; Lessiani, G.; Parisi, R.; Prandoni, P.; Sartori, M.; et al. Rivaroxaban treatment for six weeks versus three months in patients with symptomatic isolated distal deep vein thrombosis: Randomised controlled trial. BMJ 2022, 379, e072623. [Google Scholar] [CrossRef] [PubMed]
- Ajmal, M.; Friedman, J.; Sipra, Q.; Lassar, T. Rivaroxaban: Expanded Role in Cardiovascular Disease Management-A Literature Review. Cardiovasc. Ther. 2021, 2021, 8886210. [Google Scholar] [CrossRef] [PubMed]
- Young, G.; Lensing, A.W.A.; Monagle, P.; Male, C.; Thelen, K.; Willmann, S.; Palumbo, J.S.; Kumar, R.; Nurmeev, I.; Hege, K.; et al. Rivaroxaban for treatment of pediatric venous thromboembolism. An Einstein-Jr phase 3 dose-exposure-response evaluation. J. Thromb. Haemost. 2020, 18, 1672–1685. [Google Scholar] [CrossRef]
- Cohen, A.T.; Wallenhorst, C.; Rivera, M.; Ay, C.; Schaefer, B.; Abdelgawwad, K.; Psaroudakis, G.; Brobert, G.; Ekbom, A.; Lee, A.Y.Y.; et al. Comparison of Clinical Outcomes in Patients with Active Cancer Receiving Rivaroxaban or Low-Molecular-Weight Heparin: The OSCAR-UK Study. Thromb. Haemost. 2024. [Google Scholar] [CrossRef]
- Adelkhanova, A.; Oli, P.R.; Shrestha, D.B.; Shtembari, J.; Jha, V.; Shantha, G.; Bodziock, G.M.; Biswas, M.; Zaman, M.O.; Patel, N.K. Safety and efficacy of direct oral anticoagulants in comparison to warfarin in obese patients with atrial fibrillation: A systematic review and meta-analysis. Health Sci. Rep. 2024, 7, e2044. [Google Scholar] [CrossRef] [PubMed]
- Lassen, M.R.; Raskob, G.E.; Gallus, A.; Pineo, G.; Chen, D.; Hornick, P.; investigators, A. Apixaban versus enoxaparin for thromboprophylaxis after knee replacement (ADVANCE-2): A randomised double-blind trial. Lancet 2010, 375, 807–815. [Google Scholar] [CrossRef]
- Agnelli, G.; Buller, H.R.; Cohen, A.; Curto, M.; Gallus, A.S.; Johnson, M.; Masiukiewicz, U.; Pak, R.; Thompson, J.; Raskob, G.E.; et al. Oral apixaban for the treatment of acute venous thromboembolism. N. Engl. J. Med. 2013, 369, 799–808. [Google Scholar] [CrossRef]
- Liu, X.; Johnson, M.; Mardekian, J.; Phatak, H.; Thompson, J.; Cohen, A.T. Apixaban Reduces Hospitalizations in Patients with Venous Thromboembolism: An Analysis of the Apixaban for the Initial Management of Pulmonary Embolism and Deep-Vein Thrombosis as First-Line Therapy (AMPLIFY) Trial. J. Am. Heart Assoc. 2015, 4, e002340. [Google Scholar] [CrossRef] [PubMed]
- Connolly, S.J.; Eikelboom, J.; Joyner, C.; Diener, H.C.; Hart, R.; Golitsyn, S.; Flaker, G.; Avezum, A.; Hohnloser, S.H.; Diaz, R.; et al. Apixaban in patients with atrial fibrillation. N. Engl. J. Med. 2011, 364, 806–817. [Google Scholar] [CrossRef]
- O’Donnell, M.J.; Eikelboom, J.W.; Yusuf, S.; Diener, H.C.; Hart, R.G.; Smith, E.E.; Gladstone, D.J.; Sharma, M.; Dias, R.; Flaker, G.; et al. Effect of apixaban on brain infarction and microbleeds: AVERROES-MRI assessment study. Am. Heart J. 2016, 178, 145–150. [Google Scholar] [CrossRef]
- Granger, C.B.; Alexander, J.H.; McMurray, J.J.; Lopes, R.D.; Hylek, E.M.; Hanna, M.; Al-Khalidi, H.R.; Ansell, J.; Atar, D.; Avezum, A.; et al. Apixaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 2011, 365, 981–992. [Google Scholar] [CrossRef] [PubMed]
- Carrier, M.; Abou-Nassar, K.; Mallick, R.; Tagalakis, V.; Shivakumar, S.; Schattner, A.; Kuruvilla, P.; Hill, D.; Spadafora, S.; Marquis, K.; et al. Apixaban to Prevent Venous Thromboembolism in Patients with Cancer. N. Engl. J. Med. 2019, 380, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Agnelli, G.; Becattini, C.; Meyer, G.; Munoz, A.; Huisman, M.V.; Connors, J.M.; Cohen, A.; Bauersachs, R.; Brenner, B.; Torbicki, A.; et al. Apixaban for the Treatment of Venous Thromboembolism Associated with Cancer. N. Engl. J. Med. 2020, 382, 1599–1607. [Google Scholar] [CrossRef]
- Guntupalli, S.R.; Brennecke, A.; Behbakht, K.; Tayebnejad, A.; Breed, C.A.; Babayan, L.M.; Cheng, G.; Ramzan, A.A.; Wheeler, L.J.; Corr, B.R.; et al. Safety and Efficacy of Apixaban vs Enoxaparin for Preventing Postoperative Venous Thromboembolism in Women Undergoing Surgery for Gynecologic Malignant Neoplasm: A Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e207410. [Google Scholar] [CrossRef]
- Reinecke, H.; Engelbertz, C.; Bauersachs, R.; Breithardt, G.; Echterhoff, H.H.; Gerss, J.; Haeusler, K.G.; Hewing, B.; Hoyer, J.; Juergensmeyer, S.; et al. A Randomized Controlled Trial Comparing Apixaban with the Vitamin K Antagonist Phenprocoumon in Patients on Chronic Hemodialysis: The AXADIA-AFNET 8 Study. Circulation 2023, 147, 296–309. [Google Scholar] [CrossRef]
- Payne, R.M.; Burns, K.M.; Glatz, A.C.; Male, C.; Donti, A.; Brandao, L.R.; Balling, G.; VanderPluym, C.J.; Bu’Lock, F.; Kochilas, L.K.; et al. Apixaban for Prevention of Thromboembolism in Pediatric Heart Disease. J. Am. Coll. Cardiol. 2023, 82, 2296–2309. [Google Scholar] [CrossRef]
- O’Brien, S.H.; Rodriguez, V.; Lew, G.; Newburger, J.W.; Schultz, C.L.; Orgel, E.; Derr, K.; Ranalli, M.A.; Esbenshade, A.J.; Hochberg, J.; et al. Apixaban versus no anticoagulation for the prevention of venous thromboembolism in children with newly diagnosed acute lymphoblastic leukaemia or lymphoma (PREVAPIX-ALL): A phase 3, open-label, randomised, controlled trial. Lancet Haematol. 2024, 11, e27–e37. [Google Scholar] [CrossRef]
- Giugliano, R.P.; Ruff, C.T.; Braunwald, E.; Murphy, S.A.; Wiviott, S.D.; Halperin, J.L.; Waldo, A.L.; Ezekowitz, M.D.; Weitz, J.I.; Spinar, J.; et al. Edoxaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 2013, 369, 2093–2104. [Google Scholar] [CrossRef] [PubMed]
- Hokusai, V.T.E.I.; Buller, H.R.; Decousus, H.; Grosso, M.A.; Mercuri, M.; Middeldorp, S.; Prins, M.H.; Raskob, G.E.; Schellong, S.M.; Schwocho, L.; et al. Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism. N. Engl. J. Med. 2013, 369, 1406–1415. [Google Scholar]
- Raskob, G.E.; van Es, N.; Segers, A.; Angchaisuksiri, P.; Oh, D.; Boda, Z.; Lyons, R.M.; Meijer, K.; Gudz, I.; Weitz, J.I.; et al. Edoxaban for venous thromboembolism in patients with cancer: Results from a non-inferiority subgroup analysis of the Hokusai-VTE randomised, double-blind, double-dummy trial. Lancet Haematol. 2016, 3, e379–e387. [Google Scholar] [CrossRef] [PubMed]
- Raskob, G.E.; van Es, N.; Verhamme, P.; Carrier, M.; Di Nisio, M.; Garcia, D.; Grosso, M.A.; Kakkar, A.K.; Kovacs, M.J.; Mercuri, M.F.; et al. Edoxaban for the Treatment of Cancer-Associated Venous Thromboembolism. N. Engl. J. Med. 2018, 378, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Fuji, T.; Fujita, S.; Kawai, Y.; Nakamura, M.; Kimura, T.; Kiuchi, Y.; Abe, K.; Tachibana, S. Safety and efficacy of edoxaban in patients undergoing hip fracture surgery. Thromb. Res. 2014, 133, 1016–1022. [Google Scholar] [CrossRef] [PubMed]
- Fuji, T.; Wang, C.J.; Fujita, S.; Kawai, Y.; Nakamura, M.; Kimura, T.; Ibusuki, K.; Ushida, H.; Abe, K.; Tachibana, S. Safety and efficacy of edoxaban, an oral factor Xa inhibitor, versus enoxaparin for thromboprophylaxis after total knee arthroplasty: The STARS E-3 trial. Thromb. Res. 2014, 134, 1198–1204. [Google Scholar] [CrossRef] [PubMed]
- Koretsune, Y.; Yamashita, T.; Kimura, T.; Fukuzawa, M.; Abe, K.; Yasaka, M. Short-Term Safety and Plasma Concentrations of Edoxaban in Japanese Patients with Non-Valvular Atrial Fibrillation and Severe Renal Impairment. Circ. J. 2015, 79, 1486–1495. [Google Scholar] [CrossRef]
- Goette, A.; Merino, J.L.; Ezekowitz, M.D.; Zamoryakhin, D.; Melino, M.; Jin, J.; Mercuri, M.F.; Grosso, M.A.; Fernandez, V.; Al-Saady, N.; et al. Edoxaban versus enoxaparin-warfarin in patients undergoing cardioversion of atrial fibrillation (ENSURE-AF): A randomised, open-label, phase 3b trial. Lancet 2016, 388, 1995–2003. [Google Scholar] [CrossRef]
- Portman, M.A.; Jacobs, J.P.; Newburger, J.W.; Berger, F.; Grosso, M.A.; Duggal, A.; Tao, B.; Goldenberg, N.A.; Investigators, E.-A.T. Edoxaban for Thromboembolism Prevention in Pediatric Patients with Cardiac Disease. J. Am. Coll. Cardiol. 2022, 80, 2301–2310. [Google Scholar] [CrossRef]
- Shim, C.Y.; Seo, J.; Kim, Y.J.; Lee, S.H.; De Caterina, R.; Lee, S.; Hong, G.R.; Lee, C.J.; Shin, D.H.; Ha, J.W.; et al. Efficacy and safety of edoxaban in patients early after surgical bioprosthetic valve implantation or valve repair: A randomized clinical trial. J. Thorac. Cardiovasc. Surg. 2023, 165, 58–67.e54. [Google Scholar] [CrossRef]
- Hosokawa, K.; Watanabe, H.; Taniguchi, Y.; Ikeda, N.; Inami, T.; Yasuda, S.; Murohara, T.; Hatano, M.; Tamura, Y.; Yamashita, J.; et al. A Multicenter, Single-Blind, Randomized, Warfarin-Controlled Trial of Edoxaban in Patients with Chronic Thromboembolic Pulmonary Hypertension: KABUKI Trial. Circulation 2024, 149, 406–409. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, R.; Hollenberg, M.D. Proteinases and signalling: Pathophysiological and therapeutic implications via PARs and more. Br. J. Pharmacol. 2008, 153 (Suppl. 1), S263–S282. [Google Scholar] [CrossRef] [PubMed]
- Kahn, M.L.; Zheng, Y.W.; Huang, W.; Bigornia, V.; Zeng, D.; Moff, S.; Farese, R.V., Jr.; Tam, C.; Coughlin, S.R. A dual thrombin receptor system for platelet activation. Nature 1998, 394, 690–694. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Liu, A.P.; Smith, T.H.; Trejo, J. Cofactoring and dimerization of proteinase-activated receptors. Pharmacol. Rev. 2013, 65, 1198–1213. [Google Scholar] [CrossRef]
- Ruf, W. Roles of factor Xa beyond coagulation. J. Thromb. Thrombolysis 2021, 52, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Bukowska, A.; Zacharias, I.; Weinert, S.; Skopp, K.; Hartmann, C.; Huth, C.; Goette, A. Coagulation factor Xa induces an inflammatory signalling by activation of protease-activated receptors in human atrial tissue. Eur. J. Pharmacol. 2013, 718, 114–123. [Google Scholar] [CrossRef]
- Ohba, T.; Takase, Y.; Ohhara, M.; Kasukawa, R. Thrombin in the synovial fluid of patients with rheumatoid arthritis mediates proliferation of synovial fibroblast-like cells by induction of platelet derived growth factor. J. Rheumatol. 1996, 23, 1505–1511. [Google Scholar] [PubMed]
- Itsekson-Hayosh, Z.; Shavit-Stein, E.; Last, D.; Goez, D.; Daniels, D.; Bushi, D.; Gera, O.; Zibly, Z.; Mardor, Y.; Chapman, J.; et al. Thrombin Activity and Thrombin Receptor in Rat Glioblastoma Model: Possible Markers and Targets for Intervention? J. Mol. Neurosci. 2015, 56, 644–651. [Google Scholar] [CrossRef]
- Ofosu, F.A. Protease activated receptors 1 and 4 govern the responses of human platelets to thrombin. Transfus. Apher. Sci. 2003, 28, 265–268. [Google Scholar] [CrossRef]
- Coughlin, S.R. How the protease thrombin talks to cells. Proc. Natl. Acad. Sci. USA 1999, 96, 11023–11027. [Google Scholar] [CrossRef]
- Garcia, P.S.; Ciavatta, V.T.; Fidler, J.A.; Woodbury, A.; Levy, J.H.; Tyor, W.R. Concentration-Dependent Dual Role of Thrombin in Protection of Cultured Rat Cortical Neurons. Neurochem. Res. 2015, 40, 2220–2229. [Google Scholar] [CrossRef]
- Lee, P.R.; Johnson, T.P.; Gnanapavan, S.; Giovannoni, G.; Wang, T.; Steiner, J.P.; Medynets, M.; Vaal, M.J.; Gartner, V.; Nath, A. Protease-activated receptor-1 activation by granzyme B causes neurotoxicity that is augmented by interleukin-1beta. J. Neuroinflamm. 2017, 14, 131. [Google Scholar] [CrossRef]
- Kempuraj, D.; Selvakumar, G.P.; Thangavel, R.; Ahmed, M.E.; Zaheer, S.; Kumar, K.K.; Yelam, A.; Kaur, H.; Dubova, I.; Raikwar, S.P.; et al. Glia Maturation Factor and Mast Cell-Dependent Expression of Inflammatory Mediators and Proteinase Activated Receptor-2 in Neuroinflammation. J. Alzheimer’s Dis. 2018, 66, 1117–1129. [Google Scholar] [CrossRef]
- Takayama, Y.; Derouiche, S.; Maruyama, K.; Tominaga, M. Emerging Perspectives on Pain Management by Modulation of TRP Channels and ANO1. Int. J. Mol. Sci. 2019, 20, 3411. [Google Scholar] [CrossRef] [PubMed]
- Poole, D.P.; Amadesi, S.; Veldhuis, N.A.; Abogadie, F.C.; Lieu, T.; Darby, W.; Liedtke, W.; Lew, M.J.; McIntyre, P.; Bunnett, N.W. Protease-activated receptor 2 (PAR2) protein and transient receptor potential vanilloid 4 (TRPV4) protein coupling is required for sustained inflammatory signaling. J. Biol. Chem. 2013, 288, 5790–5802. [Google Scholar] [CrossRef] [PubMed]
- Cenac, N.; Andrews, C.N.; Holzhausen, M.; Chapman, K.; Cottrell, G.; Andrade-Gordon, P.; Steinhoff, M.; Barbara, G.; Beck, P.; Bunnett, N.W.; et al. Role for protease activity in visceral pain in irritable bowel syndrome. J. Clin. Investig. 2007, 117, 636–647. [Google Scholar] [CrossRef]
- Vergnolle, N.; Bunnett, N.W.; Sharkey, K.A.; Brussee, V.; Compton, S.J.; Grady, E.F.; Cirino, G.; Gerard, N.; Basbaum, A.I.; Andrade-Gordon, P.; et al. Proteinase-activated receptor-2 and hyperalgesia: A novel pain pathway. Nat. Med. 2001, 7, 821–826. [Google Scholar] [CrossRef]
- Asfaha, S.; Brussee, V.; Chapman, K.; Zochodne, D.W.; Vergnolle, N. Proteinase-activated receptor-1 agonists attenuate nociception in response to noxious stimuli. Br. J. Pharmacol. 2002, 135, 1101–1106. [Google Scholar] [CrossRef]
- Saeed, M.A.; Ng, G.Z.; Dabritz, J.; Wagner, J.; Judd, L.; Han, J.X.; Dhar, P.; Kirkwood, C.D.; Sutton, P. Protease-activated Receptor 1 Plays a Proinflammatory Role in Colitis by Promoting Th17-related Immunity. Inflamm. Bowel Dis. 2017, 23, 593–602. [Google Scholar] [CrossRef]
- Cenac, N.; Cellars, L.; Steinhoff, M.; Andrade-Gordon, P.; Hollenberg, M.D.; Wallace, J.L.; Fiorucci, S.; Vergnolle, N. Proteinase-activated receptor-1 is an anti-inflammatory signal for colitis mediated by a type 2 immune response. Inflamm. Bowel Dis. 2005, 11, 792–798. [Google Scholar] [CrossRef]
- Boucher, A.A.; Rosenfeldt, L.; Mureb, D.; Shafer, J.; Sharma, B.K.; Lane, A.; Crowther, R.R.; McKell, M.C.; Whitt, J.; Alenghat, T.; et al. Cell type-specific mechanisms coupling protease-activated receptor-1 to infectious colitis pathogenesis. J. Thromb. Haemost. 2020, 18, 91–103. [Google Scholar] [CrossRef]
- Lau, C.; Lytle, C.; Straus, D.S.; DeFea, K.A. Apical and basolateral pools of proteinase-activated receptor-2 direct distinct signaling events in the intestinal epithelium. Am. J. Physiol. Cell Physiol. 2011, 300, C113–C123. [Google Scholar] [CrossRef]
- Hansen, K.K.; Sherman, P.M.; Cellars, L.; Andrade-Gordon, P.; Pan, Z.; Baruch, A.; Wallace, J.L.; Hollenberg, M.D.; Vergnolle, N. A major role for proteolytic activity and proteinase-activated receptor-2 in the pathogenesis of infectious colitis. Proc. Natl. Acad. Sci. USA 2005, 102, 8363–8368. [Google Scholar] [CrossRef]
- Liu, B.; Yang, M.Q.; Yu, T.Y.; Yin, Y.Y.; Liu, Y.; Wang, X.D.; He, Z.G.; Yin, L.; Chen, C.Q.; Li, J.Y. Mast Cell Tryptase Promotes Inflammatory Bowel Disease-Induced Intestinal Fibrosis. Inflamm. Bowel Dis. 2021, 27, 242–255. [Google Scholar] [CrossRef]
- Her, J.Y.; Lee, Y.; Kim, S.J.; Heo, G.; Choo, J.; Kim, Y.; Howe, C.; Rhee, S.H.; Yu, H.S.; Chung, H.Y.; et al. Blockage of protease-activated receptor 2 exacerbates inflammation in high-fat environment partly through autophagy inhibition. Am. J. Physiol. Gastrointest. Liver Physiol. 2021, 320, G30–G42. [Google Scholar] [CrossRef]
- Majewski, S.; Zhou, X.; Milkowska-Dymanowska, J.; Bialas, A.J.; Piotrowski, W.J.; Malinovschi, A. Proteomic profiling of peripheral blood and bronchoalveolar lavage fluid in interstitial lung diseases: An explorative study. ERJ Open Res. 2021, 7, 00489–2020. [Google Scholar] [CrossRef]
- Bhargava, M.; Viken, K.; Wang, Q.; Jagtap, P.; Bitterman, P.; Ingbar, D.; Wendt, C. Bronchoalveolar Lavage Fluid Protein Expression in Acute Respiratory Distress Syndrome Provides Insights into Pathways Activated in Subjects with Different Outcomes. Sci. Rep. 2017, 7, 7464. [Google Scholar] [CrossRef]
- Lambrecht, B.N.; Hammad, H. Asthma and coagulation. N. Engl. J. Med. 2013, 369, 1964–1966. [Google Scholar] [CrossRef]
- de Boer, J.D.; Majoor, C.J.; van’t Veer, C.; Bel, E.H.; van der Poll, T. Asthma and coagulation. Blood 2012, 119, 3236–3244. [Google Scholar] [CrossRef]
- Deng, Z.; Xie, H.; Cheng, W.; Zhang, M.; Liu, J.; Huo, Y.; Liao, Y.; Cheng, Y. Dabigatran ameliorates airway smooth muscle remodeling in asthma by modulating Yes-associated protein. J. Cell. Mol. Med. 2020, 24, 8179–8193. [Google Scholar] [CrossRef]
- Yue, M.; Hu, M.; Fu, F.; Ruan, H.; Wu, C. Emerging Roles of Platelets in Allergic Asthma. Front. Immunol. 2022, 13, 846055. [Google Scholar] [CrossRef]
- Gandhi, V.D.; Shrestha Palikhe, N.; Vliagoftis, H. Protease-activated receptor-2: Role in asthma pathogenesis and utility as a biomarker of disease severity. Front. Med. 2022, 9, 954990. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, X.; Reihill, J.A.; Douglas, L.E.J.; Martin, S.L. Airborne indoor allergen serine proteases and their contribution to sensitisation and activation of innate immunity in allergic airway disease. Eur. Respir. Rev. 2024, 33, 230126. [Google Scholar] [CrossRef]
- Rivas, C.M.; Yee, M.C.; Addison, K.J.; Lovett, M.; Pal, K.; Ledford, J.G.; Dussor, G.; Price, T.J.; Vagner, J.; DeFea, K.A.; et al. Proteinase-activated receptor-2 antagonist C391 inhibits Alternaria-induced airway epithelial signalling and asthma indicators in acute exposure mouse models. Br. J. Pharmacol. 2022, 179, 2208–2222. [Google Scholar] [CrossRef] [PubMed]
- Ricciardolo, F.L.; Steinhoff, M.; Amadesi, S.; Guerrini, R.; Tognetto, M.; Trevisani, M.; Creminon, C.; Bertrand, C.; Bunnett, N.W.; Fabbri, L.M.; et al. Presence and bronchomotor activity of protease-activated receptor-2 in guinea pig airways. Am. J. Respir. Crit. Care Med. 2000, 161, 1672–1680. [Google Scholar] [CrossRef]
- Carr, M.J.; Schechter, N.M.; Undem, B.J. Trypsin-induced, neurokinin-mediated contraction of guinea pig bronchus. Am. J. Respir. Crit. Care Med. 2000, 162, 1662–1667. [Google Scholar] [CrossRef]
- Schmidlin, F.; Amadesi, S.; Vidil, R.; Trevisani, M.; Martinet, N.; Caughey, G.; Tognetto, M.; Cavallesco, G.; Mapp, C.; Geppetti, P.; et al. Expression and function of proteinase-activated receptor 2 in human bronchial smooth muscle. Am. J. Respir. Crit. Care Med. 2001, 164, 1276–1281. [Google Scholar] [CrossRef]
- Hauck, R.W.; Schulz, C.; Schomig, A.; Hoffman, R.K.; Panettieri, R.A., Jr. alpha-Thrombin stimulates contraction of human bronchial rings by activation of protease-activated receptors. Am. J. Physiol. 1999, 277, L22–L29. [Google Scholar] [PubMed]
- Lin, C.; von der Thusen, J.; Daalhuisen, J.; ten Brink, M.; Crestani, B.; van der Poll, T.; Borensztajn, K.; Spek, C.A. Protease-activated receptor (PAR)-2 is required for PAR-1 signalling in pulmonary fibrosis. J. Cell. Mol. Med. 2015, 19, 1346–1356. [Google Scholar] [CrossRef]
- Howell, D.C.; Laurent, G.J.; Chambers, R.C. Role of thrombin and its major cellular receptor, protease-activated receptor-1, in pulmonary fibrosis. Biochem. Soc. Trans. 2002, 30, 211–216. [Google Scholar] [CrossRef]
- Lin, C.; von der Thusen, J.; Daalhuisen, J.; ten Brink, M.; Crestani, B.; van der Poll, T.; Borensztajn, K.; Spek, C.A. Pharmacological Targeting of Protease-Activated Receptor 2 Affords Protection from Bleomycin-Induced Pulmonary Fibrosis. Mol. Med. 2015, 21, 576–583. [Google Scholar] [CrossRef]
- Miyake, Y.; D’Alessandro-Gabazza, C.N.; Takagi, T.; Naito, M.; Hataji, O.; Nakahara, H.; Yuda, H.; Fujimoto, H.; Kobayashi, H.; Yasuma, T.; et al. Dose-dependent differential effects of thrombin in allergic bronchial asthma. J. Thromb. Haemost. 2013, 11, 1903–1915. [Google Scholar] [CrossRef]
- Jose, R.J.; Williams, A.E.; Mercer, P.F.; Sulikowski, M.G.; Brown, J.S.; Chambers, R.C. Regulation of neutrophilic inflammation by proteinase-activated receptor 1 during bacterial pulmonary infection. J. Immunol. 2015, 194, 6024–6034. [Google Scholar] [CrossRef]
- Jose, R.; Williams, A.; Sulikowski, M.; Brealey, D.; Brown, J.; Chambers, R. Regulation of neutrophilic inflammation in lung injury induced by community-acquired pneumonia. Lancet 2015, 385 (Suppl. 1), S52. [Google Scholar] [CrossRef]
- van den Boogaard, F.E.; Brands, X.; Duitman, J.; de Stoppelaar, S.F.; Borensztajn, K.S.; Roelofs, J.; Hollenberg, M.D.; Spek, C.A.; Schultz, M.J.; van’t Veer, C.; et al. Protease-Activated Receptor 2 Facilitates Bacterial Dissemination in Pneumococcal Pneumonia. J. Infect. Dis. 2018, 217, 1462–1471. [Google Scholar] [CrossRef]
- Rayees, S.; Joshi, J.C.; Tauseef, M.; Anwar, M.; Baweja, S.; Rochford, I.; Joshi, B.; Hollenberg, M.D.; Reddy, S.P.; Mehta, D. PAR2-Mediated cAMP Generation Suppresses TRPV4-Dependent Ca(2+) Signaling in Alveolar Macrophages to Resolve TLR4-Induced Inflammation. Cell Rep. 2019, 27, 793–805.e794. [Google Scholar] [CrossRef]
- de Stoppelaar, S.F.; Van’t Veer, C.; van den Boogaard, F.E.; Nieuwland, R.; Hoogendijk, A.J.; de Boer, O.J.; Roelofs, J.J.; van der Poll, T. Protease activated receptor 4 limits bacterial growth and lung pathology during late stage Streptococcus pneumoniae induced pneumonia in mice. Thromb. Haemost. 2013, 110, 582–592. [Google Scholar]
- Sabri, A.; Muske, G.; Zhang, H.; Pak, E.; Darrow, A.; Andrade-Gordon, P.; Steinberg, S.F. Signaling properties and functions of two distinct cardiomyocyte protease-activated receptors. Circ. Res. 2000, 86, 1054–1061. [Google Scholar] [CrossRef]
- Ide, J.; Aoki, T.; Ishivata, S.; Glusa, E.; Strukova, S.M. Proteinase-activated receptor agonists stimulate the increase in intracellular Ca2+ in cardiomyocytes and proliferation of cardiac fibroblasts from chick embryos. Bull. Exp. Biol. Med. 2007, 144, 760–763. [Google Scholar] [CrossRef]
- Pawlinski, R.; Tencati, M.; Hampton, C.R.; Shishido, T.; Bullard, T.A.; Casey, L.M.; Andrade-Gordon, P.; Kotzsch, M.; Spring, D.; Luther, T.; et al. Protease-activated receptor-1 contributes to cardiac remodeling and hypertrophy. Circulation 2007, 116, 2298–2306. [Google Scholar] [CrossRef]
- Weithauser, A.; Witkowski, M.; Rauch, U. The Role of Protease-Activated Receptors for the Development of Myocarditis: Possible Therapeutic Implications. Curr. Pharm. Des. 2016, 22, 472–484. [Google Scholar] [CrossRef] [PubMed]
- Antoniak, S.; Owens, A.P., 3rd; Baunacke, M.; Williams, J.C.; Lee, R.D.; Weithauser, A.; Sheridan, P.A.; Malz, R.; Luyendyk, J.P.; Esserman, D.A.; et al. PAR-1 contributes to the innate immune response during viral infection. J. Clin. Investig. 2013, 123, 1310–1322. [Google Scholar] [CrossRef] [PubMed]
- Tatsumi, K.; Schmedes, C.M.; Houston, E.R.; Butler, E.; Mackman, N.; Antoniak, S. Protease-activated receptor 4 protects mice from Coxsackievirus B3 and H1N1 influenza A virus infection. Cell. Immunol. 2019, 344, 103949. [Google Scholar] [CrossRef] [PubMed]
- Naldini, A.; Carney, D.H. Thrombin modulation of natural killer activity in human peripheral lymphocytes. Cell. Immunol. 1996, 172, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Mackman, N.; Antoniak, S. Roles of PAR1 and PAR2 in viral myocarditis. Thromb. Res. 2014, 133 (Suppl. 1), S18–S20. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.Y.; Yano, M.; Kido, H. Effects of inhibitors of Toll-like receptors, protease-activated receptor-2 signalings and trypsin on influenza A virus replication and upregulation of cellular factors in cardiomyocytes. J. Med. Investig. 2011, 58, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Kouzoukas, D.E.; Meyer-Siegler, K.L.; Ma, F.; Westlund, K.N.; Hunt, D.E.; Vera, P.L. Macrophage Migration Inhibitory Factor Mediates PAR-Induced Bladder Pain. PLoS ONE 2015, 10, e0127628. [Google Scholar] [CrossRef]
- Ma, F.; Hunt, D.E.; Leng, L.; Bucala, R.; Meyer-Siegler, K.L.; Vera, P.L. Protease activated-receptor 4 activation as a model of persistent bladder pain: Essential role of macrophage migration inhibitory factor and high mobility group box 1. Int. J. Urol. 2018, 25, 887–893. [Google Scholar] [CrossRef]
- Saban, R.; D’Andrea, M.R.; Andrade-Gordon, P.; Derian, C.K.; Dozmorov, I.; Ihnat, M.A.; Hurst, R.E.; Davis, C.A.; Simpson, C.; Saban, M.R. Mandatory role of proteinase-activated receptor 1 in experimental bladder inflammation. BMC Physiol. 2007, 7, 4. [Google Scholar] [CrossRef]
- Monjotin, N.; Gillespie, J.; Farrie, M.; Le Grand, B.; Junquero, D.; Vergnolle, N. F16357, a novel protease-activated receptor 1 antagonist, improves urodynamic parameters in a rat model of interstitial cystitis. Br. J. Pharmacol. 2016, 173, 2224–2236. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Wang, P.; Bjorling, D.E. Role of mast cells and protease-activated receptor-2 in cyclooxygenase-2 expression in urothelial cells. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 297, R1127–R1135. [Google Scholar] [CrossRef]
- Madhusudhan, T.; Kerlin, B.A.; Isermann, B. The emerging role of coagulation proteases in kidney disease. Nat. Rev. Nephrol. 2016, 12, 94–109. [Google Scholar] [CrossRef] [PubMed]
- Blanc-Brude, O.P.; Archer, F.; Leoni, P.; Derian, C.; Bolsover, S.; Laurent, G.J.; Chambers, R.C. Factor Xa stimulates fibroblast procollagen production, proliferation, and calcium signaling via PAR1 activation. Exp. Cell Res. 2005, 304, 16–27. [Google Scholar] [CrossRef]
- Horinouchi, Y.; Ikeda, Y.; Fukushima, K.; Imanishi, M.; Hamano, H.; Izawa-Ishizawa, Y.; Zamami, Y.; Takechi, K.; Miyamoto, L.; Fujino, H.; et al. Renoprotective effects of a factor Xa inhibitor: Fusion of basic research and a database analysis. Sci. Rep. 2018, 8, 10858. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Tian, L.; Ma, F.; Tesch, G.; Vesey, D.A.; Gobe, G.C.; Lohman, R.J.; Morais, C.; Suen, J.Y.; Fairlie, D.P.; et al. Pharmacological inhibition of protease-activated receptor-2 reduces crescent formation in rat nephrotoxic serum nephritis. Clin. Exp. Pharmacol. Physiol. 2019, 46, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Ferrell, W.R.; Lockhart, J.C.; Kelso, E.B.; Dunning, L.; Plevin, R.; Meek, S.E.; Smith, A.J.; Hunter, G.D.; McLean, J.S.; McGarry, F.; et al. Essential role for proteinase-activated receptor-2 in arthritis. J. Clin. Investig. 2003, 111, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Kelso, E.B.; Ferrell, W.R.; Lockhart, J.C.; Elias-Jones, I.; Hembrough, T.; Dunning, L.; Gracie, J.A.; McInnes, I.B. Expression and proinflammatory role of proteinase-activated receptor 2 in rheumatoid synovium: Ex vivo studies using a novel proteinase-activated receptor 2 antagonist. Arthritis Rheum. 2007, 56, 765–771. [Google Scholar] [CrossRef]
- Russell, F.A.; Schuelert, N.; Veldhoen, V.E.; Hollenberg, M.D.; McDougall, J.J. Activation of PAR(2) receptors sensitizes primary afferents and causes leukocyte rolling and adherence in the rat knee joint. Br. J. Pharmacol. 2012, 167, 1665–1678. [Google Scholar] [CrossRef] [PubMed]
- Nakano, S.; Mishiro, T.; Takahara, S.; Yokoi, H.; Hamada, D.; Yukata, K.; Takata, Y.; Goto, T.; Egawa, H.; Yasuoka, S.; et al. Distinct expression of mast cell tryptase and protease activated receptor-2 in synovia of rheumatoid arthritis and osteoarthritis. Clin. Rheumatol. 2007, 26, 1284–1292. [Google Scholar] [CrossRef] [PubMed]
- Palmer, H.S.; Kelso, E.B.; Lockhart, J.C.; Sommerhoff, C.P.; Plevin, R.; Goh, F.G.; Ferrell, W.R. Protease-activated receptor 2 mediates the proinflammatory effects of synovial mast cells. Arthritis Rheum. 2007, 56, 3532–3540. [Google Scholar] [CrossRef]
- Crilly, A.; Burns, E.; Nickdel, M.B.; Lockhart, J.C.; Perry, M.E.; Ferrell, P.W.; Baxter, D.; Dale, J.; Dunning, L.; Wilson, H.; et al. PAR(2) expression in peripheral blood monocytes of patients with rheumatoid arthritis. Ann. Rheum. Dis. 2012, 71, 1049–1054. [Google Scholar] [CrossRef] [PubMed]
- Kelso, E.B.; Lockhart, J.C.; Hembrough, T.; Dunning, L.; Plevin, R.; Hollenberg, M.D.; Sommerhoff, C.P.; McLean, J.S.; Ferrell, W.R. Therapeutic promise of proteinase-activated receptor-2 antagonism in joint inflammation. J. Pharmacol. Exp. Ther. 2006, 316, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
- Kanno, Y.; Ishisaki, A.; Kawashita, E.; Kuretake, H.; Ikeda, K.; Matsuo, O. uPA Attenuated LPS-induced Inflammatory Osteoclastogenesis through the Plasmin/PAR-1/Ca(2+)/CaMKK/AMPK Axis. Int. J. Biol. Sci. 2016, 12, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Y.; Chen, S.Y.; Tsai, H.C.; Hsu, H.C.; Tang, C.H. Thrombin induces epidermal growth factor receptor transactivation and CCL2 expression in human osteoblasts. Arthritis Rheum. 2012, 64, 3344–3354. [Google Scholar] [CrossRef] [PubMed]
- Hirano, F.; Kobayashi, A.; Hirano, Y.; Nomura, Y.; Fukawa, E.; Makino, I. Thrombin-induced expression of RANTES mRNA through protease activated receptor-1 in human synovial fibroblasts. Ann. Rheum. Dis. 2002, 61, 834–837. [Google Scholar] [CrossRef]
- Furuhashi, I.; Abe, K.; Sato, T.; Inoue, H. Thrombin-stimulated proliferation of cultured human synovial fibroblasts through proteolytic activation of proteinase-activated receptor-1. J. Pharmacol. Sci. 2008, 108, 104–111. [Google Scholar] [CrossRef]
- Xue, M.; Chan, Y.K.; Shen, K.; Dervish, S.; March, L.; Sambrook, P.N.; Jackson, C.J. Protease-activated receptor 2, rather than protease-activated receptor 1, contributes to the aggressive properties of synovial fibroblasts in rheumatoid arthritis. Arthritis Rheum. 2012, 64, 88–98. [Google Scholar] [PubMed]
- Patnaik, R.; Riaz, S.; Sivani, B.M.; Faisal, S.; Naidoo, N.; Rizzo, M.; Banerjee, Y. Evaluating the potential of Vitamin D and curcumin to alleviate inflammation and mitigate the progression of osteoarthritis through their effects on human chondrocytes: A proof-of-concept investigation. PLoS ONE 2023, 18, e0290739. [Google Scholar]
- Hijazi, Z.; Aulin, J.; Andersson, U.; Alexander, J.H.; Gersh, B.; Granger, C.B.; Hanna, M.; Horowitz, J.; Hylek, E.M.; Lopes, R.D.; et al. Biomarkers of inflammation and risk of cardiovascular events in anticoagulated patients with atrial fibrillation. Heart 2016, 102, 508–517. [Google Scholar] [CrossRef]
- Wallentin, L.; Hijazi, Z.; Andersson, U.; Alexander, J.H.; De Caterina, R.; Hanna, M.; Horowitz, J.D.; Hylek, E.M.; Lopes, R.D.; Asberg, S.; et al. Growth differentiation factor 15, a marker of oxidative stress and inflammation, for risk assessment in patients with atrial fibrillation: Insights from the Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation (ARISTOTLE) trial. Circulation 2014, 130, 1847–1858. [Google Scholar]
- Sandhu, R.K.; Ezekowitz, J.A.; Hijazi, Z.; Westerbergh, J.; Aulin, J.; Alexander, J.H.; Granger, C.B.; Halvorsen, S.; Hanna, M.S.; Lopes, R.D.; et al. Obesity paradox on outcome in atrial fibrillation maintained even considering the prognostic influence of biomarkers: Insights from the ARISTOTLE trial. Open Heart 2018, 5, e000908. [Google Scholar] [CrossRef] [PubMed]
- Golderman, V.; Gofrit, S.G.; Maggio, N.; Gera, O.; Gerasimov, A.; Laks, D.; Chapman, J.; Shavit-Stein, E. A Novel Highly Sensitive Method for Measuring Inflammatory Neural-Derived APC Activity in Glial Cell Lines, Mouse Brain and Human CSF. Int. J. Mol. Sci. 2020, 21, 2422. [Google Scholar] [CrossRef] [PubMed]
- Granja, T.; Hohenstein, K.; Schussel, P.; Fischer, C.; Prufer, T.; Schibilsky, D.; Wendel, H.P.; Jaschonek, K.; Serna-Higuita, L.; Schlensak, C.; et al. Multi-Modal Characterization of the Coagulopathy Associated with Extracorporeal Membrane Oxygenation. Crit. Care Med. 2020, 48, e400–e408. [Google Scholar] [CrossRef]
- Torramade-Moix, S.; Palomo, M.; Vera, M.; Jerez, D.; Moreno-Castano, A.B.; Zafar, M.U.; Rovira, J.; Diekmann, F.; Garcia-Pagan, J.C.; Escolar, G.; et al. Apixaban Downregulates Endothelial Inflammatory and Prothrombotic Phenotype in an In Vitro Model of Endothelial Dysfunction in Uremia. Cardiovasc. Drugs Ther. 2021, 35, 521–532. [Google Scholar] [CrossRef]
- Muthupalani, S.; Annamalai, D.; Feng, Y.; Ganesan, S.M.; Ge, Z.; Whary, M.T.; Nakagawa, H.; Rustgi, A.K.; Wang, T.C.; Fox, J.G. IL-1beta transgenic mouse model of inflammation driven esophageal and oral squamous cell carcinoma. Sci. Rep. 2023, 13, 12732. [Google Scholar] [CrossRef]
- Patnaik, R.; Jannati, S.; Sivani, B.M.; Rizzo, M.; Naidoo, N.; Banerjee, Y. Efficient Generation of Chondrocytes From Bone Marrow-Derived Mesenchymal Stem Cells in a 3D Culture System: Protocol for a Practical Model for Assessing Anti-Inflammatory Therapies. JMIR Res. Protoc. 2023, 12, e42964. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Martinez, E.; Suazo-Sanchez, I.; Celis-Romero, M.; Carnero, A. 3D and organoid culture in research: Physiology, hereditary genetic diseases and cancer. Cell Biosci. 2022, 12, 39. [Google Scholar] [CrossRef]
- Nzou, G.; Wicks, R.T.; VanOstrand, N.R.; Mekky, G.A.; Seale, S.A.; El-Taibany, A.; Wicks, E.E.; Nechtman, C.M.; Marrotte, E.J.; Makani, V.S.; et al. Author Correction: Multicellular 3D Neurovascular Unit Model for Assessing Hypoxia and Neuroinflammation Induced Blood-Brain Barrier Dysfunction. Sci. Rep. 2020, 10, 20384. [Google Scholar] [CrossRef]
- Mihai, S.; Codrici, E.; Popescu, I.D.; Enciu, A.M.; Albulescu, L.; Necula, L.G.; Mambet, C.; Anton, G.; Tanase, C. Inflammation-Related Mechanisms in Chronic Kidney Disease Prediction, Progression, and Outcome. J. Immunol. Res. 2018, 2018, 2180373. [Google Scholar] [CrossRef]
- Duan, L.; Rao, X.; Sigdel, K.R. Regulation of Inflammation in Autoimmune Disease. J. Immunol. Res. 2019, 2019, 7403796. [Google Scholar] [CrossRef]
- Zhu, Q.; Wu, Y.; Mai, J.; Guo, G.; Meng, J.; Fang, X.; Chen, X.; Liu, C.; Zhong, S. Comprehensive Metabolic Profiling of Inflammation Indicated Key Roles of Glycerophospholipid and Arginine Metabolism in Coronary Artery Disease. Front. Immunol. 2022, 13, 829425. [Google Scholar] [CrossRef] [PubMed]
- Oe, Y.; Hayashi, S.; Fushima, T.; Sato, E.; Kisu, K.; Sato, H.; Ito, S.; Takahashi, N. Coagulation Factor Xa and Protease-Activated Receptor 2 as Novel Therapeutic Targets for Diabetic Nephropathy. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 1525–1533. [Google Scholar] [CrossRef]
- Bieber, M.; Foerster, K.I.; Haefeli, W.E.; Pham, M.; Schuhmann, M.K.; Kraft, P. Treatment with Edoxaban Attenuates Acute Stroke Severity in Mice by Reducing Blood-Brain Barrier Damage and Inflammation. Int. J. Mol. Sci. 2021, 22, 9893. [Google Scholar] [CrossRef]
- Millenaar, D.; Bachmann, P.; Bohm, M.; Custodis, F.; Schirmer, S.H. Effects of edoxaban and warfarin on vascular remodeling: Atherosclerotic plaque progression and collateral artery growth. Vasc. Pharmacol. 2020, 127, 106661. [Google Scholar] [CrossRef] [PubMed]
- Morishima, Y.; Shibutani, T.; Noguchi, K.; Ito, Y.; Honda, Y. Edoxaban, a direct oral factor Xa inhibitor, ameliorates coagulation, microvascular thrombus formation, and acute liver injury in a lipopolysaccharide-induced coagulopathy model in rats. J. Thromb. Thrombolysis 2021, 52, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.V.; Wolfson, J.; Peterson, T.; Mooberry, M.; Gissel, M.; Mystakelis, H.; Henderson, M.W.; Garcia-Myers, K.; Rhame, F.S.; Schacker, T.W.; et al. Factor Xa Inhibition Reduces Coagulation Activity but Not Inflammation Among People with HIV: A Randomized Clinical Trial. Open Forum Infect. Dis. 2020, 7, ofaa026. [Google Scholar] [CrossRef]
- Goette, A.; Mollenhauer, M.; Rudolph, V.; Lamparter, M.; Meier, M.; Bohm, M. Pleiotropic effects of NOACs with focus on edoxaban: Scientific findings and potential clinical implications. Herzschrittmacherther. Elektrophysiol. 2023, 34, 142–152. [Google Scholar] [CrossRef]
- Narita, Y.; Hamamura, K.; Kashiyama, M.; Utsumi, S.; Kakizoe, Y.; Kondo, Y.; Ishitsuka, Y.; Jono, H.; Irie, T.; Mukoyama, M.; et al. Edoxaban Exerts Antioxidant Effects Through FXa Inhibition and Direct Radical-Scavenging Activity. Int. J. Mol. Sci. 2019, 20, 4140. [Google Scholar] [CrossRef]
- Fagundes, A., Jr.; Ruff, C.T.; Morrow, D.A.; Murphy, S.A.; Palazzolo, M.G.; Chen, C.Z.; Jarolim, P.; Antman, E.M.; Braunwald, E.; Giugliano, R.P. Neutrophil-lymphocyte ratio and clinical outcomes in 19,697 patients with atrial fibrillation: Analyses from ENGAGE AF- TIMI 48 trial. Int. J. Cardiol. 2023, 386, 118–124. [Google Scholar] [CrossRef]
- Romero-Guevara, R.; Ioannides, A.; Xinaris, C. Kidney Organoids as Disease Models: Strengths, Weaknesses and Perspectives. Front. Physiol. 2020, 11, 563981. [Google Scholar] [CrossRef]
- Chan, M.Y.; Lin, M.; Lucas, J.; Moseley, A.; Thompson, J.W.; Cyr, D.; Ueda, H.; Kajikawa, M.; Ortel, T.L.; Becker, R.C. Plasma proteomics of patients with non-valvular atrial fibrillation on chronic anti-coagulation with warfarin or a direct factor Xa inhibitor. Thromb. Haemost. 2012, 108, 1180–1191. [Google Scholar] [CrossRef] [PubMed]
- Monux, G.; Zamorano-Leon, J.J.; Marques, P.; Sopena, B.; Garcia-Garcia, J.M.; Laich de Koller, G.; Calvo-Rico, B.; Garcia-Fernandez, M.A.; Serrano, J.; Lopez-Farre, A. FXa inhibition by rivaroxaban modifies mechanisms associated with the pathogenesis of human abdominal aortic aneurysms. Br. J. Clin. Pharmacol. 2017, 83, 2661–2670. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, K.; Pastori, D.; Hammerstingl, C.; Cappato, R.; Meng, I.L.; Kramer, F.; Cohen, A.; Schulz, A.; Eickels, M.V.; Lip, G.Y.H.; et al. Left atrial thrombus resolution in non-valvular atrial fibrillation or flutter: Biomarker substudy results from a prospective study with rivaroxaban (X-TRA). Ann. Med. 2018, 50, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Martins, G.L.; Duarte, R.C.F.; Vieira, E.L.M.; Rocha, N.P.; Figueiredo, E.L.; Silveira, F.R.; Caiaffa, J.R.S.; Lanna, R.P.; Carvalho, M.D.G.; Palotas, A.; et al. Comparison of Inflammatory Mediators in Patients with Atrial Fibrillation Using Warfarin or Rivaroxaban. Front. Cardiovasc. Med. 2020, 7, 114. [Google Scholar] [CrossRef] [PubMed]
- Imam, F.; Al-Harbi, N.O.; Khan, M.R.; Qamar, W.; Alharbi, M.; Alshamrani, A.A.; Alhamami, H.N.; Alsaleh, N.B.; Alharbi, K.S. Protective Effect of RIVA Against Sunitinib-Induced Cardiotoxicity by Inhibiting Oxidative Stress-Mediated Inflammation: Probable Role of TGF-beta and Smad Signaling. Cardiovasc. Toxicol. 2020, 20, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Kirchhof, P.; Ezekowitz, M.D.; Purmah, Y.; Schiffer, S.; Meng, I.L.; Camm, A.J.; Hohnloser, S.H.; Schulz, A.; Wosnitza, M.; Cappato, R. Effects of Rivaroxaban on Biomarkers of Coagulation and Inflammation: A Post Hoc Analysis of the X-VeRT Trial. TH Open. 2020, 4, e20–e32. [Google Scholar] [CrossRef] [PubMed]
- Pistrosch, F.; Matschke, J.B.; Schipp, D.; Schipp, B.; Henkel, E.; Weigmann, I.; Sradnick, J.; Bornstein, S.R.; Birkenfeld, A.L.; Hanefeld, M. Rivaroxaban compared with low-dose aspirin in individuals with type 2 diabetes and high cardiovascular risk: A randomised trial to assess effects on endothelial function, platelet activation and vascular biomarkers. Diabetologia 2021, 64, 2701–2712. [Google Scholar] [CrossRef] [PubMed]
- Di Lullo, L.; Lavalle, C.; Magnocavallo, M.; Mariani, M.V.; Della Rocca, D.G.; Severino, P.; Di Iorio, B.R.; Russo, D.; Summaria, F.; Forleo, G.B.; et al. New evidence of direct oral anticoagulation therapy on cardiac valve calcifications, renal preservation and inflammatory modulation. Int. J. Cardiol. 2021, 345, 90–97. [Google Scholar] [CrossRef]
- Weiss, L.; Keaney, J.; Szklanna, P.B.; Prendiville, T.; Uhrig, W.; Wynne, K.; Kelliher, S.; Ewins, K.; Comer, S.P.; Egan, K.; et al. Nonvalvular atrial fibrillation patients anticoagulated with rivaroxaban compared with warfarin exhibit reduced circulating extracellular vesicles with attenuated pro-inflammatory protein signatures. J. Thromb. Haemost. 2021, 19, 2583–2595. [Google Scholar] [CrossRef]
- Alirezaei, T.; Sattari, H.; Irilouzadian, R. Significant decrease in plasmad-dimer levels and mean platelet volume after a 3-month treatment with rosuvastatin in patients with venous thromboembolism. Clin. Cardiol. 2022, 45, 717–722. [Google Scholar] [CrossRef]
- Russo, V.; Fabiani, D.; Leonardi, S.; Attena, E.; D’Alterio, G.; Cotticelli, C.; Rago, A.; Sarpa, S.; Maione, B.; D’Onofrio, A.; et al. Dual Pathway Inhibition with Rivaroxaban and Aspirin Reduces Inflammatory Biomarkers in Atherosclerosis. J. Cardiovasc. Pharmacol. 2023, 81, 129–133. [Google Scholar] [CrossRef]
- Iba, T.; Aihara, K.; Yamada, A.; Nagayama, M.; Tabe, Y.; Ohsaka, A. Rivaroxaban attenuates leukocyte adhesion in the microvasculature and thrombus formation in an experimental mouse model of type 2 diabetes mellitus. Thromb. Res. 2014, 133, 276–280. [Google Scholar] [CrossRef]
- Laurent, M.; Joimel, U.; Varin, R.; Cazin, L.; Gest, C.; Le-Cam-Duchez, V.; Jin, J.; Liu, J.; Vannier, J.-P.; Lu, H.; et al. Comparative study of the effect of rivaroxaban and fondaparinux on monocyte’s coagulant activity and cytokine release. Exp. Hematol. Oncol. 2014, 3, 30. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.; Fukuda, D.; Tanaka, K.; Higashikuni, Y.; Hirata, Y.; Nishimoto, S. Rivaroxaban, a novel oral anticoagulant, attenuates atherosclerotic plaque progression and destabilization in ApoE-deficient mice. Atherosclerosis 2015, 242, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Sanada, F.; Taniyama, Y.; Muratsu, J.; Otsu, R.; Iwabayashi, M.; Carracedo, M. Activated Factor X Induces Endothelial Cell Senescence Through IGFBP-5. Sci Rep. 2016, 6, 35580. [Google Scholar] [CrossRef]
- Terry, C.M.; He, Y.; Cheung, A.K. Rivaroxaban improves patency and decreases inflammation in a mouse model of catheter thrombosis. Thromb. Res. 2016, 144, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Dittmeier, M.; Kraft, P.; Schuhmann, M.K.; Fluri, F.; Kleinschnitz, C. Pretreatment with rivaroxaban attenuates stroke severity in rats by a dual antithrombotic and anti-inflammatory mechanism. Thromb. Haemost. 2016, 115, 835–843. [Google Scholar]
- Stolz, L.; Derouiche, A.; Devraj, K.; Weber, F.; Brunkhorst, R.; Foerch, C. Anticoagulation with warfarin and rivaroxaban ameliorates experimental autoimmune encephalomyelitis. J. Neuroinflammation 2017, 14, 152. [Google Scholar] [CrossRef] [PubMed]
- Seki, K.; Mizuno, Y.; Sakashita, T.; Nakano, S.; Tanno, J.; Okazaki, Y. Demeanor of rivaroxaban in activated/inactivated FXa. J. Pharmacol. Sci. 2017, 133, 156–161. [Google Scholar] [CrossRef]
- Sanada, F.; Muratsu, J.; Otsu, R.; Shimizu, H.; Koibuchi, N.; Uchida, K. Local Production of Activated Factor X in Atherosclerotic Plaque Induced Vascular Smooth Muscle Cell Senescence. Sci. Rep. 2017, 7, 17172. [Google Scholar] [CrossRef]
- Shi, M.; Wang, L.; Zhou, J.; Ji, S.; Wang, N.; Tong, L. Direct factor Xa inhibition attenuates acute lung injury progression via modulation of the PAR-2/NF-kappaB signaling pathway. Am. J. Transl. Res. 2018, 10, 2335–2349. [Google Scholar] [PubMed]
- Hara, T.; Fukuda, D.; Tanaka, K.; Higashikuni, Y.; Hirata, Y.; Yagi, S. Inhibition of activated factor X by rivaroxaban attenuates neointima formation after wire-mediated vascular injury. Eur. J. Pharmacol. 2018, 820, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Kondo, H.; Abe, I.; Fukui, A.; Saito, S.; Miyoshi, M.; Aoki, K. Possible role of rivaroxaban in attenuating pressure-overload-induced atrial fibrosis and fibrillation. J. Cardiol. 2018, 71, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Bode, M.F.; Auriemma, A.C.; Grover, S.P.; Hisada, Y.; Rennie, A.; Bode, W.D. The factor Xa inhibitor rivaroxaban reduces cardiac dysfunction in a mouse model of myocardial infarction. Thromb. Res. 2018, 167, 128–134. [Google Scholar] [CrossRef]
- Mahmoud, N.I.; Messiha, B.A.S.; Abo-Saif, A.A.; Abdel-Bakky, M.S. Inhibition of activated factor X; a new pathway in ameliorating carbon tetrachloride-induced liver fibrosis in rats. J Biochem. Mol. Toxicol. 2019, 33, e22287. [Google Scholar] [CrossRef]
- Liu, J.; Nishida, M.; Inui, H.; Chang, J.; Zhu, Y.; Kanno, K.; Matsuda, H.; Sairyo, M.; Okada, T.; Nakaoka, H.; et al. Rivaroxaban Suppresses the Progression of Ischemic Cardiomyopathy in a Murine Model of Diet-Induced Myocardial Infarction. J. Atheroscler. Thromb. 2019, 26, 915–930. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, N.; Kaikita, K.; Ishii, M.; Oimatsu, Y.; Mitsuse, T.; Ito, M. Cardioprotective Effects of Rivaroxaban on Cardiac Remodeling After Experimental Myocardial Infarction in Mice. Circ. Rep. 2020, 2, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Al-Harbi, N.O.; Imam, F.; Alharbi, M.M.; Khan, M.R.; Qamar, W.; Afzal, M.; Algahtani, M.; Alobaid, S.; Alfardan, A.S.; Alshammari, A.; et al. Role of rivaroxaban in sunitinib-induced renal injuries via inhibition of oxidative stress-induced apoptosis and inflammation through the tissue nacrosis factor-alpha induced nuclear factor-kappaappa B signaling pathway in rats. J. Thromb. Thrombolysis 2020, 50, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Daci, A.; Da Dalt, L.; Alaj, R.; Shurdhiqi, S.; Neziri, B.; Ferizi, R.; Norata, G.D.; Krasniqi, S. Rivaroxaban improves vascular response in LPS-induced acute inflammation in experimental models. PLoS ONE 2020, 15, e0240669. [Google Scholar] [CrossRef]
- Voigtlaender, M.; Beckmann, L.; Schulenkorf, A.; Sievers, B.; Rolling, C.; Bokemeyer, C.; Langer, F. Effect of myeloperoxidase on the anticoagulant activity of low molecular weight heparin and rivaroxaban in an in vitro tumor model. J. Thromb. Haemost. 2020, 18, 3267–3279. [Google Scholar] [CrossRef]
- Ding, Y.; Li, X.; Zhou, M.; Cai, L.; Tang, H.; Xie, T. Factor Xa inhibitor rivaroxaban suppresses experimental abdominal aortic aneurysm progression via attenuating aortic inflammation. Vascul. Pharmacol. 2021, 136, 106818. [Google Scholar] [CrossRef] [PubMed]
- Altun, S.; Sahin, M.S.; Cakmak, G.; Gokkus, K.; Terzi, A. Effects of Routine Antithrombotic-Adjusted Dose of Rivaroxaban and Nadroparin Calcium on Tendon Healing of Rats: An Experimental Study. J. Hand Microsurg. 2023, 15, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, T.; Soeki, T.; Fukuda, D.; Uematsu, E.; Tobiume, T.; Hara, T. Activated Factor X Signaling Pathway via Protease-Activated Receptor 2 Is a Novel Therapeutic Target for Preventing Atrial Fibrillation. Circ. J. 2021, 85, 1383–1391. [Google Scholar] [CrossRef] [PubMed]
- Ataga, K.I.; Elsherif, L.; Wichlan, D.; Wogu, A.F.; Matsui, N.; Pawlinski, R. A pilot study of the effect of rivaroxaban in sickle cell anemia. Transfusion 2021, 61, 1694–1698. [Google Scholar] [CrossRef] [PubMed]
- Grover, S.P.; Coughlin, T.; Fleifil, S.M.; Posma, J.J.N.; Spronk, H.H.M.; Heitmeier, S.; Owens, A.P., 3rd; Mackman, N. Effect of combining aspirin and rivaroxaban on atherosclerosis in mice. Atherosclerosis 2022, 345, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, L.; Mader, J.; Voigtlaender, M.; Klingler, F.; Schulenkorf, A.; Lehr, C.; Bokemeyer, C.; Ruf, W.; Rolling, C.; Langer, F. Inhibition of protein disulfide isomerase with PACMA-31 regulates monocyte tissue factor through transcriptional and posttranscriptional mechanisms. Thromb. Res. 2022, 220, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Yang, X.T.; Wei, W.; Hu, X.P.; Li, X.X.; Xu, M. Favorable effect of rivaroxaban against vascular dysfunction in diabetic mice by inhibiting NLRP3 inflammasome activation. J. Cell. Physiol. 2022, 237, 3369–3380. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Oviedo, M.; Marta-Enguita, J.; Roncal, C.; Rodriguez, J.A.; Zandio, B.; Lecumberri, R.; Hermida, J.; Oyarzabal, J.; Pineda-Lucena, A.; Páramo, J.A.; et al. CM-352 Efficacy in a Mouse Model of Anticoagulant-Associated Intracranial Hemorrhage. Thromb. Haemost. 2022, 122, 1314–1325. [Google Scholar] [CrossRef] [PubMed]
- Mrozik, D.; Jackiewicz, A.; Krzeminski, M. Dabigatran vs. low molecular weight heparin in preventing venous thromboembolism after elective hip and knee arthroplasty: Evaluation of selected clinical parameters. Pol. Orthop. Traumatol. 2012, 77, 111–114. [Google Scholar]
- Paar, V.; Jirak, P.; Gruber, S.; Prodinger, C.; Cadamuro, J.; Wernly, B.; Motloch, L.J.; Haschke-Becher, E.; Hoppe, U.C.; Lichtenauer, M. Influence of dabigatran on pro-inflammatory cytokines, growth factors and chemokines—Slowing the vicious circle of coagulation and inflammation. Life Sci. 2020, 262, 118474. [Google Scholar] [CrossRef]
- Bogatkevich, G.S.; Ludwicka-Bradley, A.; Nietert, P.J.; Akter, T.; van Ryn, J.; Silver, R.M. Antiinflammatory and antifibrotic effects of the oral direct thrombin inhibitor dabigatran etexilate in a murine model of interstitial lung disease. Arthritis Rheum. 2011, 63, 1416–1425. [Google Scholar] [CrossRef] [PubMed]
- Kopec, A.K.; Joshi, N.; Towery, K.L.; Kassel, K.M.; Sullivan, B.P.; Flick, M.J.; Luyendyk, J.P. Thrombin inhibition with dabigatran protects against high-fat diet-induced fatty liver disease in mice. J. Pharmacol. Exp. Ther. 2014, 351, 288–297. [Google Scholar] [CrossRef]
- Singh, R.; Singh, V.; Ahmad, M.A.; Pasricha, C.; Kumari, P.; Singh, T.G.; Kaur, R.; Mujwar, S.; Wani, T.A.; Zargar, S. Unveiling the Role of PAR 1: A Crucial Link with Inflammation in Diabetic Subjects with COVID-19. Pharmaceuticals 2024, 17, 454. [Google Scholar] [CrossRef]
- Subramaniam, S.; Ruf, W.; Bosmann, M. Advocacy of targeting protease-activated receptors in severe coronavirus disease 2019. Br. J. Pharmacol. 2022, 179, 2086–2099. [Google Scholar] [CrossRef] [PubMed]
- Tran, F.; Harris, D.M.M.; Scharmacher, A.; Grasshoff, H.; Sterner, K.; Schinke, S.; Kading, N.; Humrich, J.Y.; Cabral-Marques, O.; Bernardes, J.P.; et al. Increased protease-activated receptor 1 autoantibodies are associated with severe COVID-19. ERJ Open Res. 2022, 8, 00379–2022. [Google Scholar] [CrossRef] [PubMed]
- Rovai, E.S.; Alves, T.; Holzhausen, M. Protease-activated receptor 1 as a potential therapeutic target for COVID-19. Exp. Biol. Med. 2021, 246, 688–694. [Google Scholar] [CrossRef]
- Borissoff, J.I.; Otten, J.J.; Heeneman, S.; Leenders, P.; van Oerle, R.; Soehnlein, O. Genetic and pharmacological modifications of thrombin formation in apolipoprotein e-deficient mice determine atherosclerosis severity and atherothrombosis onset in a neutrophil-dependent manner. PLoS ONE 2013, 8, e55784. [Google Scholar] [CrossRef]
- Tripathy, D.; Sanchez, A.; Yin, X.; Luo, J.; Martinez, J.; Grammas, P. Thrombin, a mediator of cerebrovascular inflammation in AD and hypoxia. Front. Aging Neurosci. 2013, 5, 19. [Google Scholar] [CrossRef]
- Pingel, S.; Tiyerili, V.; Mueller, J.; Werner, N.; Nickenig, G.; Mueller, C. Thrombin inhibition by dabigatran attenuates atherosclerosis in ApoE deficient mice. Arch. Med. Sci. 2014, 10, 154–160. [Google Scholar] [CrossRef]
- Preusch, M.R.; Ieronimakis, N.; Wijelath, E.S.; Cabbage, S.; Ricks, J.; Bea, F.; Reyes, M.; van Ryn, J.; Rosenfeld, M.E. Dabigatran etexilate retards the initiation and progression of atherosclerotic lesions and inhibits the expression of oncostatin M in apolipoprotein E-deficient mice. Drug Des. Devel Ther. 2015, 9, 5203–5211. [Google Scholar] [CrossRef]
- de Boer, J.D.; Berkhout, L.C.; de Stoppelaar, S.F.; Yang, J.; Ottenhoff, R.; Meijers, J.C.; Roelofs, J.J.T.H.; van’t Veer, C.; van der Poll, T. Effect of the oral thrombin inhibitor dabigatran on allergic lung inflammation induced by repeated house dust mite administration in mice. Am. J. Physiol. Lung Cell Mol. Physiol. 2015, 309, L768–L775. [Google Scholar] [CrossRef] [PubMed]
- Marangoni, M.N.; Braun, D.; Situ, A.; Moyano, A.L.; Kalinin, S.; Polak, P. Differential effects on glial activation by a direct versus an indirect thrombin inhibitor. J. Neuroimmunol. 2016, 297, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Dittmeier, M.; Wassmuth, K.; Schuhmann, M.K.; Kraft, P.; Kleinschnitz, C.; Fluri, F. Dabigatran Etexilate Reduces Thrombin-Induced Inflammation and Thrombus Formation in Experimental Ischemic Stroke. Curr. Neurovasc. Res. 2016, 13, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Shea, B.S.; Probst, C.K.; Brazee, P.L.; Rotile, N.J.; Blasi, F.; Weinreb, P.H.; Black, K.E.; Sosnovik, D.E.; Van Cott, E.M.; Violette, S.M.; et al. Uncoupling of the profibrotic and hemostatic effects of thrombin in lung fibrosis. JCI Insight 2017, 2. [Google Scholar] [CrossRef] [PubMed]
- Kopec, A.K.; Abrahams, S.R.; Thornton, S.; Palumbo, J.S.; Mullins, E.S.; Divanovic, S. Thrombin promotes diet-induced obesity through fibrin-driven inflammation. J. Clin. Investig. 2017, 127, 3152–3166. [Google Scholar] [CrossRef] [PubMed]
- Mehta, H.; Mashiko, S.; Goulet, P.O.; Desjardins, J.; Perez, G.; Koenig, M.; Senécal, J.-L.; Sarfati, M. Dabigatran aggravates topoisomerase I peptide-loaded dendritic cells-induced lung and skin fibrosis. Clin. Exp. Rheumatol. 2017, 35, 35–39. [Google Scholar] [PubMed]
- Bastiaans, J.; Mulder, V.C.; van Meurs, J.C.; Smits-Te Nijenhuis, M.; van Holten-Neelen, C.; van Hagen, P.M.; Dik, W.A. Dabigatran inhibits intravitreal thrombin activity. Acta Ophthalmol. 2018, 96, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Aydin Ozturk, P.; Yilmaz, T.; Ozturk, U. Effects of Bemiparin Sodium Versus Dabigatran Etexilate After Anastomosis in Rat Carotid Arteries on the Development of Neointima and Thrombolytic Efficacy. World Neurosurg. 2019, 126, e731–e735. [Google Scholar] [CrossRef]
- Feldmann, K.; Grandoch, M.; Kohlmorgen, C.; Valentin, B.; Gerfer, S.; Nagy, N. Decreased M1 macrophage polarization in dabigatran-treated Ldlr-deficient mice: Implications for atherosclerosis and adipose tissue inflammation. Atherosclerosis 2019, 287, 81–88. [Google Scholar] [CrossRef]
- Lerche, C.J.; Christophersen, L.J.; Goetze, J.P.; Nielsen, P.R.; Thomsen, K.; Enevold, C.; Høiby, N.; Jensen, P.Ø.; Bundgaard, H.; Moser, C. Adjunctive dabigatran therapy improves outcome of experimental left-sided Staphylococcus aureus endocarditis. PLoS ONE 2019, 14, e0215333. [Google Scholar] [CrossRef]
- Scridon, A.; Marginean, A.; Hutanu, A.; Chinezu, L.; Gheban, D.; Perian, M.; Vântu, A.; Gherțescu, D.; Fișcă, P.C.; Șerban, R.C.; et al. Vascular protease-activated receptor 4 upregulation, increased platelet aggregation, and coronary lipid deposits induced by long-term dabigatran administration—Results from a diabetes animal model. J. Thromb. Haemost. 2019, 17, 538–550. [Google Scholar] [CrossRef] [PubMed]
- Iannucci, J.; Johnson, S.L.; Majchrzak, M.; Barlock, B.J.; Akhlaghi, F.; Seeram, N.P. Short-term treatment with dabigatran alters protein expression patterns in a late-stage tau-based Alzheimer’s disease mouse model. Biochem. Biophys. Rep. 2020, 24, 100862. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Cao, X.; Luo, W.; Yang, H.; Luo, X.; Yu, J. Dabigatran Suppresses PAR-1/SphK/S1P Activation of Astrocytes in Experimental Autoimmune Encephalomyelitis Model. Front. Mol. Neurosci. 2020, 13, 114. [Google Scholar] [CrossRef] [PubMed]
- Rahadian, A.; Fukuda, D.; Salim, H.M.; Yagi, S.; Kusunose, K.; Yamada, H.; Soeki, T.; Shimabukuro, M.; Sata, M. Thrombin inhibition by dabigatran attenuates endothelial dysfunction in diabetic mice. Vascul Pharmacol. 2020, 124, 106632. [Google Scholar] [CrossRef] [PubMed]
- Saifi, M.A.; Annaldas, S.; Godugu, C. A direct thrombin inhibitor, dabigatran etexilate protects from renal fibrosis by inhibiting protease activated receptor-1. Eur. J. Pharmacol. 2021, 893, 173838. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, D.; Kuriyama, N.; Hibi, T.; Maeda, K.; Shinkai, T.; Gyoten, K. The Impact of Dabigatran Treatment on Sinusoidal Protection Against Hepatic Ischemia/Reperfusion Injury in Mice. Liver Transpl. 2021, 27, 363–384. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Zhou, Y.; Zhao, H.; Chen, Y.; Yan, G.; Wu, L.; Xu, Y.; Zhang, J.; Zhang, X.; Wang, J.; et al. Dabigatran activates inflammation resolution by promoting fibrinogen-like protein 2 shedding and RvD5(n-3 DPA) production. Theranostics 2021, 11, 4251–4261. [Google Scholar] [CrossRef] [PubMed]
- Bihaqi, S.W.; Rao, H.V.; Sen, A.; Grammas, P. Dabigatran reduces thrombin-induced neuroinflammation and AD markers in vitro: Therapeutic relevance for Alzheimer’s disease. Cereb. Circ. Cogn. Behav. 2021, 2, 100014. [Google Scholar] [CrossRef] [PubMed]
- Motta, J.P.; Palese, S.; Giorgio, C.; Chapman, K.; Denadai-Souza, A.; Rousset, P. Increased Mucosal Thrombin is Associated with Crohn’s Disease and Causes Inflammatory Damage through Protease-activated Receptors Activation. J. Crohns. Colitis. 2021, 15, 787–799. [Google Scholar] [CrossRef]
- Hemetsberger, R.; Farhan, S.; Lukovic, D.; Zlabinger, K.; Hajagos-Toth, J.; Bota, J.; Garcia-Garcia, H.M.; Ay, C.; Samaha, E.; Gaspar, R.; et al. Peri-interventional Triple Therapy With Dabigatran Improves Vasomotion and Promotes Endothelialization in Porcine Coronary Stenting Model. Front. Cardiovasc. Med. 2021, 8, 690476. [Google Scholar] [CrossRef]
- Smeda, M.; Stojak, M.; Przyborowski, K.; Sternak, M.; Suraj-Prazmowska, J.; Kus, K. Direct Thrombin Inhibitor Dabigatran Compromises Pulmonary Endothelial Integrity in a Murine Model of Breast Cancer Metastasis to the Lungs; the Role of Platelets and Inflammation-Associated Haemostasis. Front. Pharmacol. 2022, 13, 834472. [Google Scholar] [CrossRef] [PubMed]
- Youssef, M.E.; Abdel-Reheim, M.A.; Morsy, M.A.; El-Daly, M.; Atwa, G.M.K.; Yahya, G.; Cavalu, S.; Saber, S.; Gaafar, A.G.A. Ameliorative Effect of Dabigatran on CFA-Induced Rheumatoid Arthritis via Modulating Kallikrein-Kinin System in Rats. Int. J. Mol. Sci. 2022, 23, 18. [Google Scholar] [CrossRef]
- Pesei, Z.G.; Jancso, Z.; Demcsak, A.; Nemeth, B.C.; Vajda, S.; Sahin-Toth, M. Preclinical testing of dabigatran in trypsin-dependent pancreatitis. JCI Insight 2022, 7, 21. [Google Scholar] [CrossRef]
- Hemetsberger, R.; Farhan, S.; Lukovic, D.; Zlabinger, K.; Hajagos-Toth, J.; Bota, J. Peri-Interventional Triple Therapy with Dabigatran Modifies Vasomotion after Bare-Metal Stent Implantation in a Pig Coronary Artery Model. J. Pers. Med. 2023, 13, 2. [Google Scholar] [CrossRef] [PubMed]
- Sparkenbaugh, E.M.; Chantrathammachart, P.; Mickelson, J.; van Ryn, J.; Hebbel, R.P.; Monroe, D.M.; Mackman, N.; Key, N.S.; Pawlinski, R. Differential contribution of FXa and thrombin to vascular inflammation in a mouse model of sickle cell disease. Blood 2014, 123, 1747–1756. [Google Scholar] [CrossRef] [PubMed]
- Ellinghaus, P.; Perzborn, E.; Hauenschild, P.; Gerdes, C.; Heitmeier, S.; Visser, M.; Summer, H.; Laux, V. Expression of pro-inflammatory genes in human endothelial cells: Comparison of rivaroxaban and dabigatran. Thromb. Res. 2016, 142, 44–51. [Google Scholar] [CrossRef]
- Nakase, T.; Moroi, J.; Ishikawa, T. Anti-inflammatory and antiplatelet effects of non-vitamin K antagonist oral anticoagulants in acute phase of ischemic stroke patients. Clin. Transl. Med. 2018, 7, 2. [Google Scholar] [CrossRef] [PubMed]
- Durmaz, S.; Kurtoglu, T.; Rahman, O.F.; Tataroglu, C.; Yilmaz, M.; Barbarus, E.; Erkan, M.H. Direct oral anticoagulant agents attenuate temporary aortic occlusion-induced renal oxidative and inflammatory responses in rats. Turk. J. Thorac. Cardiovasc. Surg. 2022, 30, 184–191. [Google Scholar] [CrossRef]
- Hiramoto, K.; Akita, N.; Nishioka, J.; Suzuki, K. Edoxaban, a Factor Xa-Specific Direct Oral Anticoagulant, Significantly Suppresses Tumor Growth in Colorectal Cancer Colon26-Inoculated BALB/c Mice. TH Open 2023, 7, e1–e13. [Google Scholar] [CrossRef]
- Richards, G.A.; Theron, A.; Tintinger, G.; Anderson, R. The Effects of Dabigatran and Rivaroxaban on Markers of Polymorphonuclear Leukocyte Activation. Pharmaceuticals 2018, 11, 46. [Google Scholar] [CrossRef]
- Kikuchi, S.; Tsukahara, K.; Sakamaki, K.; Morita, Y.; Takamura, T.; Fukui, K.; Endo, T.; Shimizu, M.; Sawada, R.; Sugano, T.; et al. Comparison of anti-inflammatory effects of rivaroxaban vs. dabigatran in patients with non-valvular atrial fibrillation (RIVAL-AF study): Multicenter randomized study. Heart Vessel. 2019, 34, 1002–1013. [Google Scholar] [CrossRef]
- Gorzelak-Pabis, P.; Pawlos, A.; Broncel, M.; Wojdan, K.; Wozniak, E. Expression of anti and pro-inflammatory genes in human endothelial cells activated by 25-hydroxycholesterol: A comparison of rivaroxaban and dabigatran. Clin. Exp. Pharmacol. Physiol. 2022, 49, 805–812. [Google Scholar] [CrossRef]
- Yang, C.; Wang, X.; Guo, Y.; Meng, X.; Li, Y.; Xia, C.; Meng, L.; Dong, M.; Wang, F. Beneficial Effect of Edoxaban on Preventing Atrial Fibrillation and Coagulation by Reducing Inflammation via HBG1/HBD Biomarkers. Front. Pharmacol. 2022, 13, 904317. [Google Scholar] [CrossRef]
- Beurskens, D.M.H.; Huckriede, J.P.; Schrijver, R.; Hemker, H.C.; Reutelingsperger, C.P.; Nicolaes, G.A.F. The Anticoagulant and Nonanticoagulant Properties of Heparin. Thromb. Haemost. 2020, 120, 1371–1383. [Google Scholar] [CrossRef]
- Hogwood, J.; Pitchford, S.; Mulloy, B.; Page, C.; Gray, E. Heparin and non-anticoagulant heparin attenuate histone-induced inflammatory responses in whole blood. PLoS ONE 2020, 15, e0233644. [Google Scholar] [CrossRef]
- Shi, C.; Tingting, W.; Li, J.P.; Sullivan, M.A.; Wang, C.; Wang, H.; Deng, B.; Zhang, Y. Comprehensive Landscape of Heparin Therapy for COVID-19. Carbohydr. Polym. 2021, 254, 117232. [Google Scholar] [CrossRef]
- Poterucha, T.J.; Libby, P.; Goldhaber, S.Z. More than an anticoagulant: Do heparins have direct anti-inflammatory effects? Thromb. Haemost. 2017, 117, 437–444. [Google Scholar] [CrossRef]
- Nelson, R.M.; Cecconi, O.; Roberts, W.G.; Aruffo, A.; Linhardt, R.J.; Bevilacqua, M.P. Heparin oligosaccharides bind L- and P-selectin and inhibit acute inflammation. Blood 1993, 82, 3253–3258. [Google Scholar] [CrossRef]
- Young, E. The anti-inflammatory effects of heparin and related compounds. Thromb. Res. 2008, 122, 743–752. [Google Scholar] [CrossRef]
- Litov, L.; Petkov, P.; Rangelov, M.; Ilieva, N.; Lilkova, E.; Todorova, N.; Krachmarova, E.; Malinova, K.; Gospodinov, A.; Hristova, R.; et al. Molecular Mechanism of the Anti-Inflammatory Action of Heparin. Int. J. Mol. Sci. 2021, 22, 10730. [Google Scholar] [CrossRef]
- Cardillo, G.; Viggiano, G.V.; Russo, V.; Mangiacapra, S.; Cavalli, A.; Castaldo, G.; Agrusta, F.; Bellizzi, A.; Amitrano, M.; Iannuzzo, M.; et al. Antithrombotic and Anti-Inflammatory Effects of Fondaparinux and Enoxaparin in Hospitalized COVID-19 Patients: The FONDENOXAVID Study. J. Blood Med. 2021, 12, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Nadar, S.K.; Goyal, D.; Shantsila, E.; Banerjee, P.; Lip, G.Y. Fondaparinux: An overview. Expert Rev. Cardiovasc. Ther. 2009, 7, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Amara, U.; Flierl, M.A.; Rittirsch, D.; Klos, A.; Chen, H.; Acker, B.; Bruckner, U.B.; Nilsson, B.; Gebhard, F.; Lambris, J.D.; et al. Molecular intercommunication between the complement and coagulation systems. J. Immunol. 2010, 185, 5628–5636. [Google Scholar] [CrossRef] [PubMed]
- Iba, T.; Aihara, K.; Watanabe, S.; Yanagawa, Y.; Yamada, A.; Koichiro, N.; Ohsaka, A. Factor Xa inhibitor attenuates leukocyte adhesion and thrombus formation in an experimental mouse model of the metabolic syndrome. Cardiovasc. Ther. 2013, 31, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Christopoulou, E.C.; Filippatos, T.D.; Elisaf, M.S. Non-hemorrhage-related adverse effects of rivaroxaban. Arch. Med. Sci. Atheroscler. Dis. 2017, 2, e108–e112. [Google Scholar] [CrossRef] [PubMed]
- El-Ghafar, O.A.M.A.; Helal, G.K.; Abo-Youssef, A.M. Apixaban exhibits anti-arthritic effects by inhibiting activated factor X-mediated JAK2/STAT3 and MAPK phosphorylation pathways. Inflammopharmacology 2020, 28, 1253–1267. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Akin, H.; Rao, R.; Hie, B.; Zhu, Z.; Lu, W.; Smetanin, N.; Verkuil, R.; Kabeli, O.; Shmueli, Y.; et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 2023, 379, 1123–1130. [Google Scholar] [CrossRef]
- Dauparas, J.; Anishchenko, I.; Bennett, N.; Bai, H.; Ragotte, R.J.; Milles, L.F.; Wicky, B.I.M.; Courbet, A.; de Haas, R.J.; Bethel, N.; et al. Robust deep learning-based protein sequence design using ProteinMPNN. Science 2022, 378, 49–56. [Google Scholar] [CrossRef]
- Johnson, S.R.; Fu, X.; Viknander, S.; Goldin, C.; Monaco, S.; Zelezniak, A.; Yang, K.K. Computational scoring and experimental evaluation of enzymes generated by neural networks. Nat. Biotechnol. 2024. [Google Scholar] [CrossRef]
- Martin, L.; Stricher, F.; Misse, D.; Sironi, F.; Pugniere, M.; Barthe, P.; Prado-Gotor, R.; Freulon, I.; Magne, X.; Roumestand, C.; et al. Rational design of a CD4 mimic that inhibits HIV-1 entry and exposes cryptic neutralization epitopes. Nat. Biotechnol. 2003, 21, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Petruzzella, A.; Bruand, M.; Santamaria-Martinez, A.; Katanayeva, N.; Reymond, L.; Wehrle, S.; Georgeon, S.; Inel, D.; van Dalen, F.J.; Viertl, D.; et al. Antibody-peptide conjugates deliver covalent inhibitors blocking oncogenic cathepsins. Nat. Chem. Biol. 2024. [Google Scholar] [CrossRef]
- Nimjee, S.M.; White, R.R.; Becker, R.C.; Sullenger, B.A. Aptamers as Therapeutics. Annu. Rev. Pharmacol. Toxicol. 2017, 57, 61–79. [Google Scholar] [CrossRef]
- Yu, H.; Kumar, S.; Frederiksen, J.W.; Kolyadko, V.N.; Pitoc, G.; Layzer, J.; Yan, A.; Rempel, R.; Francis, S.; Krishnaswamy, S.; et al. Aptameric hirudins as selective and reversible EXosite-ACTive site (EXACT) inhibitors. Nat. Commun. 2024, 15, 3977. [Google Scholar] [CrossRef] [PubMed]
Anticoagulant | Apixaban | Edoxaban | Rivaroxaban | Dabigatran |
---|---|---|---|---|
Mechanism | Direct FXa Inhibitor | Direct FXa Inhibitor | Direct FXa Inhibitor | Direct Thrombin Inhibitor |
Prodrug/absorption | No/3–4 h | No/Rapid | No/Rapid | Yes/Rapid |
Bioavailability/half-life | 50%/12 h | 62%/9–11 h | 66% w/o food up to 100% with food/5–9 h (young) 11–13 h (elderly) | 6%/12–17 h |
Vd | 21 L | 107 L | 50 L | 50–70 L |
Time to reach max. Plasma conc./protein binding | 1–4 h/87% | 1–2 h/55% | 2–4 h/92–95% | 0.5–2 h/35% |
Liver metabolism | Yes | Minimal | Yes | No |
Renal excretion | 25% | 50% | 35% | 80% |
Effect of diet | No effect on exposure | No effect on exposure | Peak levels reached at 3 h on fasting and 4 h with food. | Delayed absorption |
Effect of age | Exposure is 32% greater in patients above 65 years | Exposure is 32% greater in patients above 65 years | Bioavailability greater in elderly with no difference in concentration | 2 times higher bioavailability in elders |
Effect of body weight | Weight < 50 kg have 20–30% increased exposure and weight > 120 kg has 20–30% reduced exposure | Weight < 50 kg have 20–30% increased exposure and weight > 120 kg has 20–30% reduced exposure | Weight < 50 kg have 20–30% increased exposure and weight > 120 kg has 20–30% reduced exposure | None |
Effect of renal impairment | Peak concentration unaffected. However, there is a rise in exposure by 16%, 29%, and 44% corresponding to creatinine clearances of 51–80, 30–50, and 15–29 mL/min, respectively. | Peak concentration unaffected. However, there is a rise in exposure by 16%, 29%, and 44% corresponding to creatinine clearances of 51–80, 30–50, and 15–29 mL/min, respectively. | Rise in exposure with moderate or severe renal impairment | 6 times higher exposure with severe renal impairment, half-life extended to 28 h |
Effect of hepatic impairment | No change in exposure with Child–Pugh classification A/B | No change in exposure with Child–Pugh classification A/B | Increased on exposure with Child–Pugh classification B | No change in exposure with Child–Pugh classification B |
Doses | 2.5 mg, 5 mg | 15 mg, 30 mg, 60 mg | 2.5 mg, 10 mg, 15 mg, 20 mg | 75 mg, 110 mg, 150 mg |
Dosing/dosing form | Two times a day/Tablet | One time a day/Tablet | One time a day/Tablet | Two time a day/Capsule |
ADR | >10% hematologic and oncologic hemorrhage; <10% hematuria, epistaxis; <1% hyper-sensitivity reactions | >10% hematologic and oncologic hemorrhage; <10% skin rash, anemia; <1% intra cranial hemorrhage, interstitial pulmonary disease | >10% hematologic and oncologic hemorrhage; <10% pruritus, abdominal pain; <1% angioedema cholestasis | >10% gastro-intestinal symptoms; <10% gastritis, esophagitis; <1% allergic oedema, thrombocytopenia |
Pre- and post-operative care for minor surgical procedures | Suspend treatment for 2 days before the surgical procedure (meaning, skip 1 dose), and recommence 24 h after the surgery | Suspend treatment for 2 days before the surgical procedure (meaning, skip 1 dose), and recommence 24 h after the surgery | Suspend treatment for 2 days before the surgical procedure (meaning, skip 1 dose), and recommence 24 h after the surgery | Creatine clearance greater than 50 mL/min suspend treatment for 2 days before the surgical procedure (meaning, skip 1 dose), and recommence 24 h after the surgery |
Pre- and post-operative care for major surgical procedures | Suspend treatment for 3 days before the surgical procedure (meaning, skip 4 doses), and recommence 48 h after the surgery | Suspend treatment for 3 days before the surgical procedure (meaning, skip 4 doses), and recommence 48 h after the surgery | Suspend treatment for 3 days before the surgical procedure (meaning, skip 2 doses), and recommence 48 h after the surgery | Creatine clearance greater than 50 mL/min suspend treatment for 3 days before the surgical procedure (meaning, skip 4 doses), and recommence 48 h after the surgery |
Laboratory monitoring (optimal method) | Anti-FXa assay | Anti-FXa assay | Anti-FXa assay | Ecarin clotting time; dilute thrombin time |
Laboratory monitoring (emergency) | Dilute prothrombin time | Limited substantial data | Prothrombin time (preferably with specific calibrated reagents) | Activated partial thromboplastin time (preferably with specific calibrated reagents) |
ARISTOTLE | ENGAGE AF-TIMI 48 | ROCKET-AF | RE-LY | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Apixaban | Warfarin | Edoxaban 60 mg | Edoxaban 30 mg | Warfarin | Rivaroxaban | Warfarin | Dabigatran 150 mg | Dabigatran 110 mg | Warfarin | |
Population | 9120 | 9081 | 7035 | 7034 | 7036 | 7131 | 7133 | 6076 | 6015 | 6022 |
Age (years) >75 years | 70 31% | 70 31% | 72 41% | 72 40% | 72 40% | 73 43% | 73 43% | 71.5 40% | 71.4 38% | 71.6 39% |
Women | 36% | 35% | 39% | 39% | 38% | 40% | 40% | 37% | 38% | 39% |
Persistent AF | 85% | 84% | 75% | 74% | 75% | 81% | 81% | 67% | 68% | 66% |
Previous stroke/TIA | 19% | 18% | 28% | 29% | 28% | 55% | 55% | 20% | 20% | 20% |
Previous VKA use | 57% | 57% | 59% | 59% | 59% | 62% | 63% | 50% | 50% | 49% |
Previous aspirin use | 31% | 31% | 29% | 29% | 30% | 36% | 37% | 39% | 40% | 41% |
Median follow-up (years) | 1.8 | 1.8 | 2.8 | 2.8 | 2.8 | 1.9 | 1.9 | 2.0 | 2.0 | 2.0 |
Receptor | Amino Acids | Tethered Ligands | Cleavage Type | Classical Proteases | Cleavage Site | Activating Synthetic Ligands |
---|---|---|---|---|---|---|
PAR1 | 425 | h: SFFLR m:SFLLR | Canonical | Thrombin | ||
Factor Xa | 38LDPR*SFLL45 | SFLLRN-NH2 | ||||
Plasmin | ||||||
MMP1 | 36ATLD*PRSF43 | PRSFLLRN-NH2 | ||||
MMP13 | 39DPRS*FLLR46 | |||||
Non-canonical | Elastase | 42SFLL*RNPN49 | RNPNDKYEPF-NH2 | |||
Proteinase-3 | 33ATNA*TLDp40 | TLDPRSF-NH2 | ||||
Activated Protein C | 43FLLR*NPND50 | NPNDKYEPF-NH2 | ||||
PAR2 | 395 | h: SLIGKV m: SLIGRL | Canonical | Trypsin | Isox-Cha-Chg-AR-NH2 | |
Mast cell Tryptase | 33SKGR*SLIG40 | SLIGKV-NH2 | ||||
Factor Xa | ||||||
Thrombin | SLIGRL-NH2 | |||||
Elastase | 64FSAS*VLTG71 | |||||
Non-Canonical | Proteinase-3 | 57VFSV*DEFS64 | ||||
Cathepsin G | 61VDEF*SASV68 | |||||
Cathepsin S | 53VTVE*TVFS60 | TVFSVDEFSA-NH2 | ||||
PAR3 | 483 | h: TFRGAP m: SFNGGP | Canonical | Thrombin | 35LPIK*TFRG42 | TFRGAP-NH2 |
Non-Canonical | Activated protein C | 38KTFR*GAPp45 | SFNGGP-NH2 | |||
PAR4 | 385 | h: GYPGQV m: GYPGKF | Canonical | Thrombin | ||
Trypsin | 44PAPRIGYPG51 | GYPGQV-NH2 | ||||
Cathepsin G |
Inflammatory Condition | Anti-Inflammatory Properties | Pro-Inflammatory Properties |
---|---|---|
Neuroinflammation |
|
|
Pruritus and pain |
|
|
Inflammatory bowel disease (IBS) |
|
|
Asthma |
|
|
Pneumonia |
|
|
Myocarditis |
|
|
Cystitis |
| |
Nephritis |
| |
Arthritis |
|
|
Human Model or Population | Mono/Combination Therapy | Condition Investigated | Inflammatory Markers Examined | Effect Observed | Reference |
---|---|---|---|---|---|
Japanese subjects with non-valvular chronic AF undergoing anti-coagulation therapy, analyzed using unbiased liquid chromatography/tandem mass spectroscopy and candidate multiplexed protein immunoassays. | Monotherapy either with rivaroxaban or warfarin. | Modulation of biologically-relevant plasma proteins in AF |
| Compared with warfarin, rivaroxaban was associated with a greater increase in thrombomodulin and a trend towards a reduction in MMP-9 over 24 weeks. | Thromb Haemost. 2012;108(6):1180–1191. [203] |
Ex vivo samples of abdominal aortic aneurysms (AAA) with intraluminal thrombus from six patients. These samples were treated with and without rivaroxaban to assess its effects on inflammation and oxidative stress. Abdominal aortic samples from six organ donors were used as controls. | Monotherapy | AAA with intraluminal thrombus | IL-6, IL-10, MMP-9, nitric oxide synthase 2 and NADPH oxidase subunits (gp67-phox, gp91-phox, and gp47-phox) | Rivaroxaban reduced key inflammatory and oxidative stress markers in human AAA sites. | Br J Clin Pharmacol. 2017;83(12):2661–2670. [204] |
Ancillary analysis of the X-TRA study with AF patients having left atrial/left atrial appendage (LA/LAA) thrombus. | Monotherapy | Relationship between plasma biomarkers and left atrial thrombus resolution in AF patients using rivaroxaban. |
|
| Ann Med. 2018 Sep;50(6):511–518 [205] |
127 patients with NVAF | Monotherapy (in comparison with warfarin) | AF and its association with inflammation | IL-2, IL-4, IL-10, TNF-α, IFN-γ, CCL5 (also known as RANTES), CXCL9 (also known as MIG), CCL2 (also known as MCP-1), CXCL10 (also known as IP-10), TGF-β1, ADAMTS13 GDF-15, sICAM-1, p-selectin lipocalin-2 (also known as NGAL), sVCAM-1 |
| Front Cardiovasc Med. 2020;7:114. [206] |
Male Wistar rats | Combination therapy of Sunitinib and Rivaroxaban. | Cardiotoxicity induced by Sunitinib. | Serum levels of Ca2+, Mg2+, Fe3+/Fe2+, lipid profiles, and cardiac enzymes. Additionally, measurements of oxidant/antioxidant balance gene and protein expressions in cardiac tissues. |
| Cardiovasc Toxicol. 2020;20(3):281–290. [207] |
Patients with AF scheduled for cardioversion without adequate anticoagulation at baseline. | Rivaroxaban (monotherapy) vs. VKA (monotherapy). | Effects of anticoagulation in patients with AF scheduled for cardioversion. |
|
| TH Open. 2020 Jan 23;4(1):e20-e32. [208] |
Multi-center, prospective, randomized, open-label trial involving 179 participants with type 2 diabetes and subclinical inflammation. | Monotherapy | Type 2 diabetes mellitus patients who had subclinical inflammation and were exhibiting stimulated coagulation, activated platelets, and endothelial dysfunction | hsCRP, IL-6, MCP-1, MMP-9 and sCD40L | Rivaroxaban displayed anti-inflammatory effect and improvement of endothelial function. | Diabetologia. 2021;64(12):2701–2712. [209] |
Observational, multi-center, prospective study involving newly diagnosed AF patients with CKD stages 3b–4. | Monotherapy comparison of Rivaroxaban and Warfarin. | Effects on inflammation, progression of heart valve calcification, and kidney function in AF patients with CKD stages 3b–4. | Plasma inflammatory mediators (measured via ELISA) and cytokine (IL-1b, IL-6, TGF-b, TNF-a) levels. |
| Int J Cardiol. 2021 Dec 15;345:90–97. [210] |
NVAF patients treated with rivaroxaban or warfarin. | Monotherapy (rivaroxaban vs. warfarin). | Inflammation and endothelial activation in patients with AF. | Circulating pro-inflammatory extracellular vesicles (EVs) profiles, proteomics of enriched plasma Evs, and levels of soluble P-selectin. |
| J Thromb Haemost. 2021;19(10):2583–2595. [211] |
Prospective, randomized study on 228 patients with VTE | Combination therapy. Control group received conventional treatment (warfarin or rivaroxaban), whereas the rosuvastatin-intervention group received rosuvastatin 10 mg daily in addition to their conventional treatment. | The impact of rosuvastatin on D-dimer and other inflammatory serum markers in VTE patients. | D-dimer, mean platelet volume (MPV), neutrophil-to-lymphocyte ratio, and platelet-to-lymphocyte ratio. |
| Clin Cardiol. 2022;45(7):717–722 [212]. |
Real-world patients with coronary artery disease (CAD) and/or peripheral artery disease (PAD). | Dual pathway inhibition (DPI) using low-dose rivaroxaban and aspirin. | Effect of DPI on plasma inflammation and coagulation markers among patients with CAD and/or PAD. | IL-6, CRP, lipoprotein-associated phospholipase A2, copeptin, and GDF-15. | At the 24-week follow-up, there was a significant reduction in IL-6 and fibrinogen levels and a significant increase in GDF-15. | J Cardiovasc Pharmacol. 2023 Feb 1;81(2):129–133. [213] |
Cell, Mice or Combined Models | Mono/Combination therapy | Condition Investigated | Inflammatory Markers Examined | Effect Observed | Reference |
KK-A(y) mouse model of type 2 diabetes mellitus. | Monotherapy (Rivaroxaban at doses of 5 or 10 mg/kg) | Leukocyte-endothelial interaction and microthrombus formation in the context of type 2 diabetes mellitus. | Leukocyte-endothelial interaction and microthrombus formation in the context of type 2 diabetes mellitus. |
| Thromb Res. 2014 Feb;133(2):276–80 [214] |
LPS-activated monocytes and THP-1 cells (a human monocytic cell line). | Monotherapy (either rivaroxaban or fondaparinux) | Tissue factor (TF) exposure on activated monocytes and macrophages involved in thrombosis through activation of factor X and cytokine release. | TF expression, prothrombinase activity, cytokine release in cell supernatants (with specific focus on IL-8 and TNFα). |
| Exp Hematol Oncol. 2014 Dec 17;3(1):30. [215] |
Apolipoprotein E-deficient (ApoE-/-) mice | Monotherapy | Atherogenesis | PAR-1 and PAR-2 receptors, MMP-9, MMP-13, COX-2, TNF-a, and in vitro experiments that evaluated mRNA expression of IL-1b and TNF-a in mouse macrophages. |
| Atherosclerosis. 2015;242(2):639–646. [216] |
| Monotherapy | The role of FXa in inducing cell senescence and its effect on tissue inflammation and regeneration. | Senescence-associated β-galactosidase, Insulin-like Growth Factor Binding Protein (IGFBP)-5, Early Growth Response Protein (EGR)-1, p53, and Cyclin-dependent kinase Inhibitor 2A (p16INK4a) (via RT-qPCR array) and expression of cytokines ((IL-1b, IL-6, MCP-1 and ICAM-1) |
| Sci Rep. 2016 Oct 18;6:35580. [217] |
Mouse model with polyurethane catheters placed unilaterally into the external jugular vein (EJV). | Monotherapy (either rivaroxaban or vehicle). | Dysfunction of indwelling central venous catheters (CVC) due to tissue ingrowth or clotting. | Plasma MCP-1 levels, External Jugular Vein(EJV) MMP-9 levels, cell proliferation (anti-Ki67), macrophage infiltration (anti-MAC387). |
| Thromb Res. 2016 Aug;144:106–12 [218] |
Rat model of brain ischemia/reperfusion injury using male Wistar rats. | Monotherapy (prestroke anticoagulation with rivaroxaban). | Influence of prestroke anticoagulation with rivaroxaban on stroke severity and associated effects on thrombo-inflammation. | Thrombin/antithrombin complex, intracerebral thrombus formation, CD68-immunoreactivity, expression of cytokines (IL-1b, TNF-α, INF-γ), and adhesion molecules (specifically ICAM-1 and VCAM-1). |
| Thromb Haemost. 2016 Apr;115(4):835–43. [219] |
Female SJL/J mice immunized with PLP139-151 to induce autoimmune experimental encephalomyelitis (EAE). | Monotherapy (either warfarin or rivaroxaban). | Effects of anticoagulants (warfarin and rivaroxaban) on autoimmune experimental encephalomyelitis (EAE) as a model for multiple sclerosis. | Neurological deficit scores, histopathological analyses of inflammatory lesions in the spinal cord. |
| J Neuroinflammation. 2017 Jul 28;14(1):152. [220] |
Human umbilical vein endothelial cells that natively express protease-activated receptor-1 and -2 | Monotherapy | Function of rivaroxaban in the inactivated coagulation cascade and its role in altering gene transcripts, especially those of pro-inflammatory genes, upon FXa stimulation. |
|
| J Pharmacol Sci. 2017;133(3):156–161. [221] |
In vitro study using human atherosclerotic plaques from carotid endarterectomy and vascular smooth muscle cells (VSMC) for experimentation. | Monotherapy | Progression and mechanisms of atherosclerotic plaques, specifically the role of coagulation FXa in inducing endothelial cell senescence. | PARs, IGFBP-5, p53, and other inflammatory cytokines (IL-1b, IL-6, MCP-1, IGFBP-5). |
| Sci Rep. 2017 Dec 7;7(1):17172 [222] |
| Monotherapy | Role of coagulation in acute lung injury (ALI) and the effect of rivaroxaban on it. |
|
| Am J Transl Res. 2018;10(8):2335–2349. [223] |
Transluminal femoral artery injury in C57BL/6 mice induced by a straight wire. | Monotherapy | The role of pharmacological blockade of FXa in attenuating neointima formation following wire-mediated vascular injury. | IL-1β, IL-6, TNF-α, stromal cell-derived factor (SDF)-1, TGF-β1, granulocyte-macrophage colony stimulating factor (GM-CSF) |
| Eur J Pharmacol. 2018;820:222–228. [224] |
Ten-week-old male CL57/B6 mice subjected to transverse aortic constriction (TAC) surgery | Monotherapy | Atrial fibrillation and inflammatory atrial fibrosis | mRNA levels of TNF-α, IL-6, IL-1β, MCP-1, cardiac PAR-2 expression |
| J Cardiol. 2018;71(3):310–319. [225] |
Wild-type (WT) and PAR-2-/- mice subjected to left anterior descending artery (LAD) ligation. | Monotherapy | Cardiac injury and heart failure post-LAD ligation. | IL-6, IL-1β, and MPO (marker for neutrophil infiltration) |
| Thromb Res. 2018;167:128–134. (***) [226] |
Male Albino rats | Monotherapy | Liver fibrosis induced by carbon tetrachloride | TNF-α, IL-1β and hydroxyproline | Rivaroxaban restored the inflammatory markers associated with liver fibrosis. | J Biochem Mol Toxicol. 2019;33(5):e22287. [227] |
Murine model of ischemic cardiomyopathy (ICM) using SR-BI KO/ApoeR61h/h mice (Hypo E mice). | Monotherapy | Effects of FXa inhibitors on atherosclerosis and cardiac remodeling post-MI in Hypo E mice. |
|
| J Atheroscler Thromb. 2019;26(10):915–930. [228] |
MI (myocardial infarction) induced in wild-type mice through permanent ligation of the left anterior descending coronary artery. | Monotherapy (rivaroxaban added to regular chow diet). | Protective effects of rivaroxaban against cardiac remodeling after MI. | mRNA expression levels of TNF-α, TGF-β, PAR-1, IL-1 β, IL-6, MCP-1, MMP-2 MMP-9, PAR-2, A-type natriuretic peptides, B-type natriuretic peptides, and phosphorylation of extracellular signal-regulated kinase. |
| Circ Rep. 2020 Mar 4;2(3):158–166. [229] |
Wistar rats weighing 200–250 g. | Combination therapy (Rivaroxaban with Sunitinib). | Nephrotoxicity induced by Sunitinib. | TNF-α/NF-kB signaling pathways, Malondialdehyde, Catalase, Glutathione, Glutathione reductase, Caspase-3, IL-17, MCP-1, Inhibitor of KBα. | Rivaroxaban treatment restored altered levels of inflammatory markers and exhibited nephroprotective effects against Sunitinib-induced nephrotoxicity by inhibiting oxidative stress-induced apoptosis and inflammation. | J Thromb Thrombolysis. 2020 Aug;50(2):361–370. [230] |
Male rats where inflammation was induced post-rivaroxaban therapy using LPS. | Monotherapy | LPS-induced acute vascular inflammatory response. |
|
| PloS One. 2020;15(12):e0240669 [231]. |
In vitro study using the tissue factor-expressing prostate carcinoma cell line, 22Rv1. Whole blood was also stimulated with LPS or phorbol-myristate-acetate (PMA). | Monotherapy comparisons of rivaroxaban, dalteparin, and tinzaparin. | Cancer-associated thrombosis (CAT) and the influence of myeloperoxidase (MPO) on anticoagulant activity. | Tumor cell-induced procoagulant activity, platelet aggregation, and the impact of the cationic leukocyte-derived enzyme, MPO. Thrombin generation in plasma supernatants from LPS- or PMA-stimulated whole blood was also measured. |
| J Thromb Haemost. 2020 Dec;18(12):3267–3279. [232] |
Ang II-infused ApoE-/- mice and calcium chloride-induced AAA models, as well as human aortic endothelial cells. | Monotherapy | AAA | IL-6, IL-8, IL-1β, MCP-1, MMP-2 as well as adhesive molecules were examined in relation to FXa stimulation and rivaroxaban treatment. |
| Vascul Pharmacol. 2021;136:106818. [233] |
Young adult male Wistar Albino type rats with surgically induced Achilles tendon injury followed by primary repair. | Monotherapy (rivaroxaban vs. nadroparin calcium vs. no medication) | Effects of antithrombotic-adjusted prophylactic doses on Achilles tendon healing | Inflammatory cells, capillary vessels, fibroblasts, degrees of inflammation, neovascularization, fibroblastic activity, and collagen fiber sequencing for histopathological evaluation. |
| J Hand Microsurg. 2021;15(2):133–140. [234] |
The investigation consisted of two studies: Study 1: PAR2 deficient (PAR2-/-) and wild-type mice infused with angiotensin II (Ang II) or a vehicle. Study 2: Spontaneously hypertensive rats (SHRs) treated after 8 h of right atrial rapid pacing. | Monotherapy (either rivaroxaban, warfarin, or vehicle). | Role of PAR2 signaling in AF arrhythmogenesis and the potential ameliorating effect of rivaroxaban on atrial inflammation and AF prevention. | mRNA expression of collagen1 and collagen3, gene expression of inflammatory (TNF-α, MCP-1, TGF-β, Col1a1, Col31, F2R and F2l1) and fibrosis-related biomarkers in the atrium. |
| Circ J. 2021;85(8):1383–1391. [235] |
Pilot, single-center, randomized, double-blind, placebo-controlled, crossover study with subjects having sickle cell anemia. | Monotherapy (either rivaroxaban or placebo). | Sickle cell disease (SCD) and its association with coagulation activation. | Thrombin-antithrombin complex, D-dimer, inflammatory (hs-CRP, IL-6, IL-2 and IL-8) and endothelial activation markers, measures of microvascular blood flow. |
| Transfusion. 2021 Jun;61(6):1694–1698. (***) [236] |
Male Ldlr-/- mice fed a western-type diet to induce atherosclerosis. | Combination of aspirin (given in water) and rivaroxaban (given in the diet) compared to each agent alone. | Atherosclerosis in Ldlr-/- mice. | Expression of 55 proteins in the aorta and plasma (specific proteins not listed in provided information). |
| Atherosclerosis. 2022 Mar;345:7–14 [237] |
LPS stimulation of PBMCs or citrate-anticoagulated whole blood. | Monotherapy with Protein Disulfide Isomerase Inhibitor III (PACMA-31) or DMSO vehicle. | Regulation of TF in monocytes by protein disulfide isomerase (PDI) and the effect of PACMA-31, a specific PDI inhibitor. | TF expression (antigen, procoagulant activity, mRNA), release of IL-6 and TNFα, and LPS-induced signaling pathways. |
| Thromb Res. 2022;220:48–59. (***) [238] |
In vivo: Various strains of mice (wild-type and NLRP3 knockout) fed with standard chow or a high-fat diet. In vitro: examination with mice aortic endothelial cells (MAECs) and smooth muscle cells (MOVASs). | Monotherapy | Therapeutic role of rivaroxaban in attenuating vascular lesions and dysfunction in type 2 diabetes mellitus (T2DM) mice | NLR family pyrin domain containing 3 (NLRP3) inflammasome activation, vascular tension, intima-media thickness, collagen deposition, PAR-1, PAR-2, mitogen-activated protein kinase (MAPK), NF-κB. |
| J Cell Physiol. 2022 Aug;237(8):3369–3380. [239] |
ICH induced by collagenase injection into the striatum of wild-type (C57BL/6J) anticoagulated mice (warfarin or rivaroxaban) and Mmp10 -/- mice. | Monotherapy using either prothrombin complex concentrate (PCC) or CM-352 (MMP-fibrinolysis inhibitor). | Intracranial hemorrhage (ICH) associated with oral anticoagulants (specifically rivaroxaban). | PAI-1, IL-6, neutrophil infiltration, thrombin-activatable fibrinolysis inhibitor (TAFI) activation. |
| Thromb Haemost. 2022 Aug;122(8):1314–1325 [240] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jannati, S.; Patnaik, R.; Banerjee, Y. Beyond Anticoagulation: A Comprehensive Review of Non-Vitamin K Oral Anticoagulants (NOACs) in Inflammation and Protease-Activated Receptor Signaling. Int. J. Mol. Sci. 2024, 25, 8727. https://doi.org/10.3390/ijms25168727
Jannati S, Patnaik R, Banerjee Y. Beyond Anticoagulation: A Comprehensive Review of Non-Vitamin K Oral Anticoagulants (NOACs) in Inflammation and Protease-Activated Receptor Signaling. International Journal of Molecular Sciences. 2024; 25(16):8727. https://doi.org/10.3390/ijms25168727
Chicago/Turabian StyleJannati, Shirin, Rajashree Patnaik, and Yajnavalka Banerjee. 2024. "Beyond Anticoagulation: A Comprehensive Review of Non-Vitamin K Oral Anticoagulants (NOACs) in Inflammation and Protease-Activated Receptor Signaling" International Journal of Molecular Sciences 25, no. 16: 8727. https://doi.org/10.3390/ijms25168727
APA StyleJannati, S., Patnaik, R., & Banerjee, Y. (2024). Beyond Anticoagulation: A Comprehensive Review of Non-Vitamin K Oral Anticoagulants (NOACs) in Inflammation and Protease-Activated Receptor Signaling. International Journal of Molecular Sciences, 25(16), 8727. https://doi.org/10.3390/ijms25168727