Molecular Basis of Hydatidiform Moles—A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.2.1. Inclusion Criteria
- Articles written in the English language or an English translation is available;
- Full-text articles reporting on human genes, genome, genetics, or molecular bases;
- Articles containing information on gestational trophoblastic disease, hydatidiform mole, or molar pregnancy.
2.2.2. Exclusion Criteria
2.3. Study Selection
2.4. Data Collection
3. Results and Discussion
3.1. Genomic Imprinting
3.2. Recurrent Hydatidiform Mole
3.3. Molecular Dysregulations in GTD
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lurain, J.R. Gestational trophoblastic disease I: Epidemiology, pathology, clinical presentation and diagnosis of gestational trophoblastic disease, and management of hydatidiform mole. Am. J. Obstet. Gynecol. 2010, 203, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Bruce, S.; Sorosky, J. Gestational Trophoblastic Disease; StatPearls: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470267/ (accessed on 26 June 2024).
- Ning, F.; Hou, H.; Morse, A.N.; Lash, G.E. Understanding and management of gestational trophoblastic disease. F1000Research 2019, 8, 428. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Moss, J.; Sebire, N.; Cui, Q.; Seckl, M.; Xiang, Y.; Fisher, R. Analysis of the chromosomal region 19q13.4 in two Chinese families with recurrent hydatidiform mole. Hum. Reprod. 2006, 21, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Kalogiannidis, I.; Kalinderi, K.; Kalinderis, M.; Miliaras, D.; Tarlatzis, B.; Athanasiadis, A. Recurrent complete hydatidiform mole: Where we are, is there a safe gestational horizon? Opinion and mini-review. J. Assist. Reprod. Genet. 2018, 35, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Capozzi, V.A.; Butera, D.; Armano, G.; Monfardini, L.; Gaiano, M.; Gambino, G.; Sozzi, G.; Merisio, C.; Berretta, R. Obstetrics outcomes after complete and partial molar pregnancy: Review of the literature and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 259, 18–25. [Google Scholar] [CrossRef]
- Tantengco, O.A.G.; De Jesus, F.C.C.; Gampoy, E.F.S.; Ornos, E.D.B.; Vidal, M.S.; Cagayan, M.S.F.S. Molar pregnancy in the last 50 years: A bibliometric analysis of global research output. Placenta 2021, 112, 54–61. [Google Scholar] [CrossRef]
- Ngan, H.Y.; Seckl, M.J.; Berkowitz, R.S.; Xiang, Y.; Golfier, F.; Sekharan, P.K.; Lurain, J.R.; Massuger, L. Diagnosis and management of gestational trophoblastic disease: 2021 update. Int. J. Gynecol. Obstet. 2021, 155, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Albright, B.B.; Shorter, J.M.; Mastroyannis, S.A.; Ko, E.M.M.; Schreiber, C.A.; Sonalkar, S. Gestational Trophoblastic Neoplasia after Human Chorionic Gonadotropin Normalization Following Molar Pregnancy: A Systematic Review and Meta-analysis. Obstet. Gynecol. 2020, 135, 12–23. [Google Scholar] [CrossRef]
- Sebire, N.J.; Fisher, R.A.; Rees, H.C. Histopathological diagnosis of partial and complete hydatidiform mole in the first trimester of pregnancy. Pediatr. Dev. Pathol. Off. J. Soc. Pediatr. Pathol. Paediatr. Pathol. Soc. 2003, 6, 69–77. [Google Scholar] [CrossRef]
- Ronnett, B.M. Hydatidiform Moles: Ancillary Techniques to Refine Diagnosis. Arch. Pathol. Lab. Med. 2018, 142, 1485–1502. [Google Scholar] [CrossRef]
- Khawajkie, Y.; Mechtouf, N.; Nguyen, N.M.P.; Rahimi, K.; Breguet, M.; Arseneau, J.; Ronnett, B.M.; Hoffner, L.; Lazure, F.; Arnaud, M.; et al. Comprehensive analysis of 204 sporadic hydatidiform moles: Revisiting risk factors and their correlations with the molar genotypes. Mod. Pathol. 2020, 33, 880–892. [Google Scholar] [CrossRef] [PubMed]
- Joyce, C.M.; Fitzgerald, B.; McCarthy, T.V.; Coulter, J.; O’Donoghue, K. Advances in the diagnosis and early management of gestational trophoblastic disease. BMJ Med. 2022, 1, e000321. [Google Scholar] [CrossRef] [PubMed]
- Erol, O.; Süren, D.; Tutuş, B.; Toptaş, T.; Gökay, A.A.; Derbent, A.U.; Özel, M.K.; Sezer, C. Immunohistochemical Analysis of E-Cadherin, p53 and Inhibin-α Expression in Hydatidiform Mole and Hydropic Abortion. Pathol. Oncol. Res. POR 2016, 22, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.-R.; Cheng, W.-W.; Wang, Y.-X.; Cai, M.; Wu, W.-B.; Zhang, H.-J. Identification of microRNA signature in the progression of gestational trophoblastic disease. Cell Death Dis. 2018, 9, 94. [Google Scholar] [CrossRef]
- Zheng, X.-Z.; Qin, X.-Y.; Chen, S.-W.; Wang, P.; Zhan, Y.; Zhong, P.-P.; Buza, N.; Jin, Y.-L.; Wu, B.-Q.; Hui, P. Heterozygous/dispermic complete mole confers a significantly higher risk for post-molar gestational trophoblastic disease. Mod. Pathol. 2020, 33, 1979–1988. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, Z.; Jia, C.; Li, J.; Yin, L.; Jiang, S. The relationship between expression of c-ras, c-erbB-2, nm23, and p53 gene products and development of trophoblastic tumor and their predictive significance for the malignant transformation of complete hydatidiform mole. Gynecol. Oncol. 2002, 85, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Yazaki-Sun, S.; Daher, S.; Ishigai, M.M.D.S.; Alves, M.T.S.; Mantovani, T.M.; Mattar, R. Correlation of c-erbB-2 oncogene and p53 tumor suppressor gene with malignant transformation of hydatidiform mole. J. Obstet. Gynaecol. Res. 2006, 32, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, E.H.; Shibata, S.; Oike, A.; Kobayashi, N.; Hamada, H.; Okae, H.; Arima, T. Genomic imprinting in human placentation. Reprod. Med. Biol. 2022, 21, e12490. [Google Scholar] [CrossRef] [PubMed]
- Pasdar, F.A.; Khooei, A.; Fazel, A.; Rastin, M.; Tabasi, N.; Peirouvi, T.; Mahmoudi, M. DNA flow cytometric analysis in variable types of hydropic placentas. Iran. J. Reprod. Med. 2015, 13, 269–274. [Google Scholar]
- Ndukwe, C.O.; Ukah, C.O. Epidemiological Aspects and Diagnostic Accuracy of Morphological Diagnosis of Hydatidiform Mole Using p57kip2 Immunostain in Nnewi, South-East Nigeria—A Multicenter Study. J. Nat. Sci. Med. 2021, 4, 281–287. [Google Scholar]
- Khashaba, M.; Arafa, M.; Elsalkh, E.; Hemida, R.; Kandil, W. Morphological Features and Immunohistochemical Expression of p57Kip2 in Early Molar Pregnancies and Their Relations to the Progression to Persistent Trophoblastic Disease. J. Pathol. Transl. Med. 2017, 51, 381–387. [Google Scholar] [CrossRef]
- Lelic, M.; Fatusic, Z.; Iljazovic, E.; Ramic, S.; Markovic, S.; Alicelebic, S. Challenges in the Routine Praxis Diagnosis of Hydatidiform Mole: A Tertiary Health Center Experience. Med. Arch. 2017, 71, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, S.; Sasaki, Y.; Kunimura, T.; Sekizawa, A.; Kojima, Y.; Iino, K. Clinical Usefulness of Immunohistochemical Staining of p57 kip2 for the Differential Diagnosis of Complete Mole. BioMed Res. Int. 2015, 2015, 905648. [Google Scholar] [CrossRef] [PubMed]
- Xing, D.; Adams, E.; Huang, J.; Ronnett, B.M. Refined diagnosis of hydatidiform moles with p57 immunohistochemistry and molecular genotyping: Updated analysis of a prospective series of 2217 cases. Mod. Pathol. 2021, 34, 961–982. [Google Scholar] [CrossRef]
- Chen, K.H.; Hsu, S.C.; Chen, H.Y.; Ng, K.F.; Chen, T.C. Utility of fluorescence in situ hybridization for ploidy and p57 immunostaining in discriminating hydatidiform moles. Biochem. Biophys. Res. Commun. 2014, 446, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Xing, D.; Adams, E.; Zou, Y.S.; Morsberger, L.; Scanga, L.R.; Gao, F.F.; Barker, N.; Vang, R.; Ronnett, B.M. Twin/Multiple Gestations with a Hydatidiform Mole: Clinicopathologic Analysis of 21 Cases with Emphasis on Molecular Genotyping and Parental Contribution. Am. J. Surg. Pathol. 2022, 46, 1180–1195. [Google Scholar] [CrossRef] [PubMed]
- Zainal, N.; Kampan, N.C.; Rose, I.M.; Ghazali, R.; Shafiee, M.N.; Yussoff, N.H.; Tamil, A.; Jamil, M.A.; Hussin, N.H. Complementary role of p57kip2 immunostaining in diagnosing hydatidiform mole subtypes. Horm. Mol. Biol. Clin. Investig. 2021, 42, 311–316. [Google Scholar] [CrossRef]
- Takahashi, S.; Okae, H.; Kobayashi, N.; Kitamura, A.; Kumada, K.; Yaegashi, N.; Arima, T. Loss of p57KIP2 expression confers resistance to contact inhibition in human androgenetic trophoblast stem cells. Proc. Natl. Acad. Sci. USA 2019, 116, 26606–26613. [Google Scholar] [CrossRef]
- Zheng, X.-Z.; Hui, P.; Chang, B.; Gao, Z.-B.; Li, Y.; Wu, B.-Q.; Zhang, B. STR DNA genotyping of hydatidiform moles in South China. Int. J. Clin. Exp. Pathol. 2014, 7, 4704–4719. [Google Scholar]
- Banet, N.; DeScipio, C.; Murphy, K.M.; Beierl, K.; Adams, E.; Vang, R.; Ronnett, B.M. Characteristics of hydatidiform moles: Analysis of a prospective series with p57 immunohistochemistry and molecular genotyping. Mod. Pathol. 2014, 27, 238–254. [Google Scholar] [CrossRef]
- King, J.R.; Wilson, M.L.; Hetey, S.; Kiraly, P.; Matsuo, K.; Castaneda, A.V.; Toth, E.; Krenacs, T.; Hupuczi, P.; Mhawech-Fauceglia, P.; et al. Dysregulation of Placental Functions and Immune Pathways in Complete Hydatidiform Moles. Int. J. Mol. Sci. 2019, 20, 4999. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.F.; Chan, W.Y. The de novo DNA methyltransferase DNMT3A in development and cancer. Epigenetics 2014, 9, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Mahadevan, S.; Wen, S.; Wan, Y.-W.; Peng, H.-H.; Otta, S.; Liu, Z.; Iacovino, M.; Mahen, E.M.; Kyba, M.; Sadikovic, B.; et al. NLRP7 affects trophoblast lineage differentiation, binds to overexpressed YY1 and alters CpG methylation. Hum. Mol. Genet. 2014, 23, 706–716. [Google Scholar] [CrossRef]
- Sanchez-Delgado, M.; Martin-Trujillo, A.; Tayama, C.; Vidal, E.; Esteller, M.; Iglesias-Platas, I.; Deo, N.; Barney, O.; Maclean, K.; Hata, K.; et al. Absence of Maternal Methylation in Biparental Hydatidiform Moles from Women with NLRP7 Maternal-Effect Mutations Reveals Widespread Placenta-Specific Imprinting. PLoS Genet. 2015, 11, e1005644. [Google Scholar] [CrossRef]
- Bolze, P.-A.; Patrier, S.; Cheynet, V.; Oriol, G.; Massardier, J.; Hajri, T.; Guillotte, M.; Bossus, M.; Sanlaville, D.; Golfier, F.; et al. Expression patterns of ERVWE1/Syncytin-1 and other placentally expressed human endogenous retroviruses along the malignant transformation process of hydatidiform moles. Placenta 2016, 39, 116–124. [Google Scholar] [CrossRef]
- Langbein, M.; Strick, R.; Strissel, P.L.; Vogt, N.; Parsch, H.; Beckmann, M.W.; Schild, R.L. Impaired cytotrophoblast cell-cell fusion is associated with reduced Syncytin and increased apoptosis in patients with placental dysfunction. Mol. Reprod. Dev. 2008, 75, 175–183. [Google Scholar] [CrossRef]
- Lertkhachonsuk, R.; Paiwattananupant, K.; Tantbirojn, P.; Rattanatanyong, P.; Mutirangura, A. LINE-1 Methylation Patterns as a Predictor of Postmolar Gestational Trophoblastic Neoplasia. BioMed Res. Int. 2015, 421747, 2015. [Google Scholar] [CrossRef] [PubMed]
- Rahat, B.; Thakur, S.; Bagga, R.; Kaur, J. Epigenetic regulation of STAT5A and its role as fetal DNA epigenetic marker during placental development and dysfunction. Placenta 2016, 44, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Triratanachat, S.; Nakaporntham, P.; Tantbirojn, P.; Shuangshoti, S.; Lertkhachonsuk, R. Role of P57KIP2 Immunohistochemical Expression in Histological Diagnosis of Hydatidiform Moles. Asian Pac. J. Cancer Prev. 2016, 17, 2061–2066. [Google Scholar] [CrossRef]
- Samadder, A.; Kar, R. Utility of p57 immunohistochemistry in differentiating between complete mole, partial mole & non-molar or hydropic abortus. Indian J. Med. Res. 2017, 145, 133–137. [Google Scholar] [CrossRef]
- McConnell, T.G.; Murphy, K.M.; Hafez, M.; Vang, R.; Ronnett, B.M. Diagnosis and Subclassification of Hydatidiform Moles Using p57 Immunohistochemistry and Molecular Genotyping: Validation and Prospective Analysis in Routine and Consultation Practice Settings with Development of an Algorithmic Approach. Am. J. Surg. Pathol. 2009, 33, 805–817. [Google Scholar] [CrossRef] [PubMed]
- LeGallo, R.D.; Stelow, E.B.; Ramirez, N.C.; Atkins, K.A. Diagnosis of hydatidiform moles using p57 immunohistochemistry and HER2 fluorescent in situ hybridization. Am. J. Clin. Pathol. 2008, 129, 749–755. [Google Scholar] [CrossRef]
- Diwa, M.H.; Kim, M.A.; Avila, J.M.C.; Pedroza, D.G.; Encinas-Latoy, M.A.M. Utility of p57KIP2 and Her-2 Fluorescence in Situ Hybridization in Differentiating Partial from Complete Hydatidiform Mole. Acta Med. Philipp. 2016, 50, 318–325. [Google Scholar] [CrossRef]
- Frost, J.M.; Moore, G.E. The importance of imprinting in the human placenta. PLoS Genet. 2010, 6, e1001015. [Google Scholar] [CrossRef]
- Tycko, B.; Morison, I.M. Physiological functions of imprinted genes. J. Cell. Physiol. 2002, 192, 245–258. [Google Scholar] [CrossRef]
- Reddy, R.; Akoury, E.; Nguyen, N.M.P.; A Abdul-Rahman, O.; Dery, C.; Gupta, N.; Daley, W.P.; Ao, A.; Landolsi, H.; Fisher, R.A.; et al. Report of four new patients with protein-truncating mutations in C6orf221/KHDC3L and colocalization with NLRP7. Eur. J. Hum. Genet. 2013, 21, 957–964. [Google Scholar] [CrossRef]
- Ji, M.; Shi, X.; Xiang, Y.; Cui, Q.; Zhao, J. NLRP7 and KHDC3L variants in Chinese patients with recurrent hydatidiform moles. Jpn. J. Clin. Oncol. 2019, 49, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.M.P.; Slim, R. Genetics and Epigenetics of Recurrent Hydatidiform Moles: Basic Science and Genetic Counselling. Curr. Obs. Gynecol. Rep. 2014, 3, 55. [Google Scholar] [CrossRef]
- Nguyen, N.M.P.; Khawajkie, Y.; Mechtouf, N.; Rezaei, M.; Breguet, M.; Kurvinen, E.; Jagadeesh, S.; Solmaz, A.E.; Aguinaga, M.; Hemida, R.; et al. The genetics of recurrent hydatidiform moles: New insights and lessons from a comprehensive analysis of 113 patients. Mod. Pathol. 2018, 31, 1116–1130. [Google Scholar] [CrossRef] [PubMed]
- Fallahi, J.; Anvar, Z.; Razban, V.; Momtahan, M.; Namavar-Jahromi, B.; Fardaei, M. Founder Effect of KHDC3L, p.M1V Mutation, on Iranian Patients with Recurrent Hydatidiform Moles. Iran. J. Med. Sci. 2020, 45, 118. [Google Scholar] [CrossRef]
- Fallahi, J.; Alashti, S.K.; Aliabadi, B.E.; Mohammadi, S.; Fardaei, M. Recurrent pregnancy loss in the female with a heterozygous mutation in KHDC3L gene. Gene Rep. 2020, 20, 100721. [Google Scholar] [CrossRef]
- Rezaei, M.; Nguyen, N.M.P.; Foroughinia, L.; Dash, P.; Ahmadpour, F.; Verma, I.C.; Slim, R.; Fardaei, M. Two novel mutations in the KHDC3L gene in Asian patients with recurrent hydatidiform mole. Hum. Genome Var. 2016, 3, 16027. [Google Scholar] [CrossRef] [PubMed]
- Shalabi, T.A.; Abdel-Hamid, M.S.; Shaker, M.M. Two Novel Variants in NLRP7 Gene in an Egyptian Female Patient with Consecutive Molar Pregnancies Complicated by Choriocarcinoma. Int. J. Infertil. Fetal Med. 2019, 10, 54–57. [Google Scholar] [CrossRef]
- Fallahi, J.; Razban, V.; Momtahan, M.; Akbarzadeh-Jahromi, M.; Namavar-Jahromi, B.; Anvar, Z. A novel mutation in NLRP7 related to recurrent hydatidiform mole and reproductive failure. Int. J. Fertil. Steril. 2019, 13, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Rath, A.; Sethi, P.; Jena, S.K.; Mitra, S. Familial recurrent molar pregnancy: Positive for KHDC3L gene mutation. BMJ Case Rep. 2023, 16, e254435. [Google Scholar] [CrossRef] [PubMed]
- Messaed, C.; Akoury, E.; Djuric, U.; Zeng, J.; Saleh, M.; Gilbert, L.; Seoud, M.; Qureshi, S.; Slim, R. NLRP7, a nucleotide oligomerization domain-like receptor protein, is required for normal cytokine secretion and co-localizes with Golgi and the microtubule-organizing center. J. Biol. Chem. 2011, 286, 43313–43323. [Google Scholar] [CrossRef] [PubMed]
- Sills, E.S.; Obregon-Tito, A.J.; Gao, H.; McWilliams, T.K.; Gordon, A.T.; Adams, C.A.; Slim, R. Pathogenic variant in NLRP7 (19q13.42) associated with recurrent gestational trophoblastic disease: Data from early embryo development observed during in vitro fertilization. Clin. Exp. Reprod. Med. 2017, 44, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Alici-Garipcan, A.; Özçimen, B.; Süder, I.; Ülker, V.; Önder, T.T.; Özören, N. NLRP7 plays a functional role in regulating BMP4 signaling during differentiation of patient-derived trophoblasts. Cell Death Dis. 2020, 11, 658. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhu, X.; Yu, X.; Huang, B.; Jiang, T.; Zhang, X.; Yang, H.; Qian, J. Abnormal processing of IL-1β in NLRP7-mutated monocytes in hydatidiform mole patients. Clin. Exp. Immunol. 2020, 202, 72–79. [Google Scholar] [CrossRef]
- Reddy, R.; Nguyen, N.M.P.; Sarrabay, G.; Rezaei, M.; Rivas, M.C.G.; Kavasoglu, A.; Berkil, H.; Elshafey, A.; Nunez, K.P.; Dreyfus, H.; et al. The genomic architecture of NLRP7 is Alu rich and predisposes to disease-associated large deletions. Eur. J. Hum. Genet. 2016, 24, 1445–1452. [Google Scholar] [CrossRef]
- Rezaei, M.; Suresh, B.; Bereke, E.; Hadipour, Z.; Aguinaga, M.; Qian, J.H.; Bagga, R.; Fardaei, M.; Hemida, R.; Jagadeesh, S.; et al. Novel pathogenic variants in NLRP7, NLRP5, and PADI6 in patients with recurrent hydatidiform moles and reproductive failure. Clin. Genet. 2021, 99, 823–828. [Google Scholar] [CrossRef] [PubMed]
- Buza, N.; McGregor, S.M.; Barroilhet, L.; Zheng, X.; Hui, P. Paternal uniparental isodisomy of tyrosine hydroxylase locus at chromosome 11p15.4: Spectrum of phenotypical presentations simulating hydatidiform moles. Mod. Pathol. 2019, 32, 1180–1188. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Lu, B.; Lu, W.; Li, S.; Li, X.; Wang, X.; Wan, X.; Chen, Y.; Feng, S.; Jia, Y.; et al. Whole-exome sequencing reveals genetic variants in ERC1 and KCNG4 associated with complete hydatidiform mole in Chinese Han women. Oncotarget 2017, 8, 75264–75271. Available online: https://www.oncotarget.com/article/20769/text/ (accessed on 1 June 2024). [CrossRef] [PubMed]
- Hemida, R.; van Doorn, H.; Fisher, R. A Novel Genetic Mutation in a Patient with Recurrent Biparental Complete Hydatidiform Mole: A Brief Report. Int. J. Gynecol. Cancer Off. J. Int. Gynecol. Cancer Soc. 2016, 26, 1351–1353. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Maehara, K.; Kaneki, E.; Matsuoka, K.; Sugahara, N.; Miyata, T.; Kamura, H.; Yamaguchi, Y.; Kono, A.; Nakabayashi, K.; et al. Novel Nonsense Mutation in the NLRP7 Gene Associated with Recurrent Hydatidiform Mole. Gynecol. Obs. Investig. 2016, 81, 353–358. [Google Scholar] [CrossRef]
- Nguyen, N.M.P.; Ge, Z.-J.; Reddy, R.; Fahiminiya, S.; Sauthier, P.; Bagga, R.; Sahin, F.I.; Mahadevan, S.; Osmond, M.; Breguet, M.; et al. Causative Mutations and Mechanism of Androgenetic Hydatidiform Moles. Am. J. Hum. Genet. 2018, 103, 740–751. [Google Scholar] [CrossRef]
- Al-Jabri, M.; Al-Badi, S.; Al-Kindi, H.; Arafa, M. Immunohistochemical expression of BCL-2 in hydatidiform moles: A tissue microarray study. Pathol. J. Ital. Soc. Anat. Pathol. Diagn. Cytopathol. 2023, 115, 148–154. [Google Scholar] [CrossRef]
- Nguyen, N.M.P.; Zhang, L.; Reddy, R.; Déry, C.; Arseneau, J.; Cheung, A.; Surti, U.; Hoffner, L.; Seoud, M.; Zaatari, G.; et al. Comprehensive genotype-phenotype correlations between NLRP7 mutations and the balance between embryonic tissue differentiation and trophoblastic proliferation. J. Med. Genet. 2014, 51, 623–634. [Google Scholar] [CrossRef]
- Dube, R.; Kar, S.S.; Jhancy, M.; George, B.T. Molecular Basis of Müllerian Agenesis Causing Congenital Uterine Factor Infertility—A Systematic Review. Int. J. Mol. Sci. 2024, 25, 120. [Google Scholar] [CrossRef]
- Khooei, A.; Pasdar, F.A.; Fazel, A.; Mahmoudi, M.; Nikravesh, M.R.; Shahbazian, S.D. View of Expression of Pro-Apoptotic Bax and Anti-Apoptotic Bcl-2 Proteins in Hydatidiform Moles and Placentas with Hydropic Changes. Acta Medica Iran. 2019, 57, 27–32. [Google Scholar] [CrossRef]
- Missaoui, N.; Landolsi, H.; Mestiri, S.; Essakly, A.; Abdessayed, N.; Hmissa, S.; Mokni, M.; Yacoubi, M.T. Immunohistochemical analysis of c-erbB-2, Bcl-2, p53, p21WAF1/Cip1, p63 and Ki-67 expression in hydatidiform moles. Pathol. Res. Pract. 2019, 215, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Erol, O.; Suren, D.; Tutus, B.; Yararbas, K.; Sayiner, A.; Ozel, M.K.; Derbent, A.U.; Sezer, C. Comparison of p57, c-erbB-2, CD117, and Bcl-2 expression in the differential diagnosis of hydatidiform mole and hydropic abortion. Eur. J. Gynaecol. Oncol. 2016, 37, 522–529. Available online: https://pubmed.ncbi.nlm.nih.gov/29894078/ (accessed on 31 May 2024). [PubMed]
- Wang, J.; Zhao, M.; Xiao, J.; Wu, M.; Song, Y.; Yin, Y. E-Cadherin, CD44v6, and Insulin-Like Growth Factor-II mRNA-Binding Protein 3 Expressions in Different Stages of Hydatidiform Moles. J. Biochem. Mol. Toxicol. 2016, 30, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Moussa, R.A.; Eesa, A.N.; Abdallah, Z.F.; Abdelmeged, A.; Mahran, A.; Bahaa, H. Diagnostic Utility of Twist1, Ki-67, and E-Cadherin in Diagnosing Molar Gestations and Hydropic Abortions. Am. J. Clin. Pathol. 2018, 149, 442–455. [Google Scholar] [CrossRef] [PubMed]
- Cicek, O.S.Y.; Hekimoglu, E.R.; Turgal, M.; Atilla, P.; Cakar, A.N.; Usubutun, A.; Beksac, M.S. Differential expression of leukemia inhibitory factor and insulin like growth factor-1 between normal pregnancies, partial hydatidiform moles and complete hydatidiform moles. Placenta 2018, 69, 64–70. [Google Scholar] [CrossRef]
- Deka FF, H.A.; Abd Ali Al Saeng, Z.H.; Almukhtar, K. Role of the Immunohistochemical Marker (Ki67) in Diagnosis and Classification of Hydatidiform Mole. IIUM Med. J. Malays. 2019, 18, 136–142. [Google Scholar] [CrossRef]
- Guo, Z.; Sui, L.; Qi, J.; Sun, Q.; Xu, Y.; Zou, N.; Xie, Y.; Kong, Y. miR-196b inhibits cell migration and invasion through targeting MAP3K1 in hydatidiform mole. Biomed. Pharmacother. 2019, 113, 108760. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.; Zhao, J.R.; Xu, Y.Y.; Wu, W.B.; Zhang, H.J. miR-21 Is Overexpressed in Hydatidiform Mole Tissues and Promotes Proliferation, Migration, and Invasion in Choriocarcinoma Cells. Int. J. Gynecol. Cancer 2017, 27, 364–374. [Google Scholar] [CrossRef]
- Kheradmand, P.; Goudarzi, M.; Tavakoli, M. Analysis of p53 expression in partial hydatidiform mole and hydropic abortion. Front. Biol. 2017, 12, 357–360. [Google Scholar] [CrossRef]
- Khooei, A.; Pasdar, F.A.; Fazel, A.; Mahmoudi, M.; Nikravesh, M.R.; Shahbazian, S.D. P53 expression in various types of hydropic placentas (through ploidy analysis as a complementary tool in diagnosis of samples). Casp. J. Intern. Med. 2019, 10, 205. [Google Scholar] [CrossRef]
- Kubelka-Sabit, K.; Prodanova, I.; Jasar, D.; Bozinovski, G.; Filipovski, V.; Drakulevski, S.; Plaseska-Karanfilska, D. Molecular and immunohistochemical characteristics of complete hydatidiform moles. Balk. J. Med. Genet. 2017, 20, 27–34. [Google Scholar] [CrossRef]
- Masood, S.; Kehar, S.I.; Shawana, S.; Aamir, I. Differential expression of p63 in hydropic and molar gestations. J. Coll. Physicians Surg. Pak. 2015, 25, 198–202. [Google Scholar] [PubMed]
- Jahanbin, B.; Sarmadi, S.; Ghasemi, D.; Nili, F.; Moradi, J.-A.; Ghasemi, S. Pathogenic role of Twist-1 protein in hydatidiform molar pregnancies and investigation of its potential diagnostic utility in complete moles. Diagn. Pathol. 2023, 18, 40. [Google Scholar] [CrossRef] [PubMed]
- Luchini, C.; Parcesepe, P.; Mafficini, A.; Nottegar, A.; Parolini, C.; Veronese, N.; Remo, A.; Manfrin, E. Specific expression patterns of epithelial to mesenchymal transition factors in gestational molar disease. Placenta 2015, 36, 1318–1324. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Sharifi, N.; Farazestanian, M.; Nazemian, S.S.; Sani, F.M. Immunohistochemistry Study of P53 and C-erbB-2 Expression in Trophoblastic Tissue and Their Predictive Values in Diagnosing Malignant Progression of Simple Molar Pregnancy. Iran. J. Cancer Prev. 2016, 9, e4115. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Wu, Q.; Ruan, G.; Zheng, X.; Song, Y.; Zhun, J.; Wu, L.; Gotlieb, W.H. Expression patterns of maspin and mutant p53 are associated with the development of gestational trophoblastic neoplasia. Oncol. Lett. 2016, 12, 3135–3142. [Google Scholar] [CrossRef] [PubMed]
- Hadi, F.; Kazemi, N.; Hosseini, M.S.; Ebrahimi, A. Evaluation of TP53 and HER-2/neu Genes Expression Levels in Gestational Trophoblastic Diseases Cases and Determining Their Predictive Value in Diagnosis of Malignancy and Disease Progression. Int. J. Cancer Manag. 2022, 15, 119264. [Google Scholar] [CrossRef]
- Chen, J. The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harb. Perspect. Med. 2016, 6, a026104. [Google Scholar] [CrossRef] [PubMed]
- Mak, V.C.; Lee, L.; Siu, M.K.; Wong, O.G.; Lu, X.; Ngan, H.Y.; Wong, E.S.; Cheung, A.N. Downregulation of ASPP2 in choriocarcinoma contributes to increased migratory potential through Src signaling pathway activation. Carcinogenesis 2013, 34, 2170–2177. [Google Scholar] [CrossRef] [PubMed]
- Mak, V.C.Y.; Lee, L.; Siu, M.K.Y.; Wong, O.G.W.; Lu, X.; Ngan, H.Y.S.; Wong, E.S.Y.; Cheung, A.N.Y. Downregulation of ASPP1 in gestational trophoblastic disease: Correlation with hypermethylation, apoptotic activity and clinical outcome. Mod. Pathol. 2011, 24, 522–532. [Google Scholar] [CrossRef]
- Chan, K.-K.; Wong, E.S.-Y.; Wong, I.T.-L.; Cheung, C.L.-Y.; Wong, O.G.-W.; Ngan, H.Y.-S.; Cheung, A.N.-Y. Overexpression of iASPP is required for autophagy in response to oxidative stress in choriocarcinoma. BMC Cancer 2019, 19, 953. [Google Scholar] [CrossRef]
- Chan, K.K.; Wong, E.S.Y.; Wong, O.G.W.; Ngan, H.Y.S.; Cheung, A.N.Y. Identification of nonsynonymous TP53 mutations in hydatidiform moles. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2018, 809, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Kar, A.; Mishra, C.; Biswal, P.; Kar, T.; Panda, S.; Naik, S. Differential expression of cyclin E, p63, and Ki-67 in gestational trophoblastic disease and its role in diagnosis and management: A prospective case-control study. Indian J. Pathol. Microbiol. 2019, 62, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Braga, A.; Maestá, I.; Soares, R.R.; Elias, K.M.; Domingues, M.A.C.; Barbisan, L.F.; Berkowitz, R.S. Apoptotic index for prediction of postmolar gestational trophoblastic neoplasia. Am. J. Obstet. Gynecol. 2016, 215, 336.e1–336.e12. [Google Scholar] [CrossRef] [PubMed]
- Toki, T.; Horiuchi, A.; Ichikawa, N.; Mori, A.; Nikaido, T.; Fujii, S. Inverse relationship between apoptosis and Bcl-2 expression in syncytiotrophoblast and fibrin-type fibrinoid in early gestation. Mol. Hum. Reprod. 1999, 5, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Nagib, R.M.; MAZaki, M.; Wageh, A.; Abdelrazik, M. Can Ki67 and Caspase Predict Molar Progression? Fetal Pediatr. Pathol. 2019, 38, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Ronnett, B.M.; Descipio, C.; Murphy, K.M. Hydatidiform moles: Ancillary techniques to refine diagnosis. Int. J. Gynecol. Pathol. 2011, 30, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Wargasetia, T.L.; Shahib, M.N.; Martaadisoebrata, D.; Dhianawaty, D.; Hernowo, B. Characterization of apoptosis and autophagy through Bcl-2 and Beclin-1 immunoexpression in gestational trophoblastic disease. Iran. J. Reprod. Med. 2015, 13, 413. [Google Scholar] [PubMed]
- Lin, L.H.; Maestá, I.; Laurent, J.D.S.; Hasselblatt, K.T.; Horowitz, N.S.; Goldstein, D.P.; Quade, B.J.; Sun, S.Y.; Braga, A.; Fisher, R.A.; et al. Distinct microRNA profiles for complete hydatidiform moles at risk of malignant progression. Am. J. Obstet. Gynecol. 2021, 224, 372.e1–372.e30. [Google Scholar] [CrossRef]
- Fulop, V.; Mok, S.C.; Genest, D.R.; Szigetvari, I.; Cseh, I.; Berkowitz, R.S. c-myc, c-erbB-2, c-fms and bcl-2 oncoproteins. Expression in normal placenta, partial and complete mole, and choriocarcinoma. J. Reprod. Med. 1998, 43, 101–110. [Google Scholar]
- Al-Bozom, I.A. P53 and Bcl-2 oncoprotein expression in placentas with hydropic changes and partial and complete moles. APMIS 2000, 108, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Pinkas-Kramarski, R.; Alroy, I.; Yarden, Y. ErbB receptors and EGF-like ligands: Cell lineage determination and oncogenesis through combinatorial signaling. J. Mammary Gland. Biol. Neoplasia 1997, 2, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Fock, V.; Plessl, K.; Fuchs, R.; Dekan, S.; Milla, S.K.; Haider, S.; Fiala, C.; Knöfler, M.; Pollheimer, J. Trophoblast subtype-specific EGFR/ERBB4 expression correlates with cell cycle progression and hyperplasia in complete hydatidiform moles. Hum. Reprod. 2015, 30, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Miettinen, M.; Lasota, J. KIT (CD117): A review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation. Appl. Immunohistochem. Mol. Morphol. 2005, 13, 205–220. [Google Scholar] [CrossRef]
- Sheikh, E.; Tran, T.; Vranic, S.; Levy, A.; Bonfil, R.D. Role and significance of c-KIT receptor tyrosine kinase in cancer: A review. Bosn. J. Basic Med. Sci. 2022, 22, 683. [Google Scholar] [CrossRef] [PubMed]
- Pekcan, M.K.; Tokmak, A.; Topfedaisi Ozkan, N.; Ozaksit, G.; Kosem, A.; Erel, O.; Meydanli, M. Thiol/Disulfide Homeostasis in Patients with Molar Pregnancies. Fetal Pediatr. Pathol. 2020, 39, 99–106. [Google Scholar] [CrossRef]
- Incebiyik, A.; Vural, M.; Camuzcuoglu, H.; Taskin, A.; Camuzcuoglu, A.; Hilali, N.G.; Aksoy, N. Can circulating M30 and M65 levels be beneficial markers in the diagnosis and management of patients with complete hydatidiform mole? Wien. Klin. Wochenschr. 2016, 128 (Suppl 8), 566–571. [Google Scholar] [CrossRef]
- Agarwal, A.; Gupta, S.; Sharma, R.K. Role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol. 2005, 3, 28–48. [Google Scholar] [CrossRef]
- Martinez, C.; González-Ramírez, J.; Marín, M.E.; Martínez-Coronilla, G.; Meza-Reyna, V.I.; Mora, R.; Díaz-Molina, R. Isthmin 2 is decreased in preeclampsia and highly expressed in choriocarcinoma. Heliyon 2020, 6, e05096. [Google Scholar] [CrossRef]
- Chiang, Y.T.; Seow, K.M.; Chen, K.H. The Pathophysiological, Genetic, and Hormonal Changes in Preeclampsia: A Systematic Review of the Molecular Mechanisms. Int. J. Mol. Sci. 2024, 25, 4532. [Google Scholar] [CrossRef]
- Rayner, A.A.; Berkowitz, R.; Steele, G.; Schur, P.H.; Rodrick, M.L.; Goldstein, D.P.; Harte, P.J.; Wilson, R.E.; Zamcheck, N.; Munroe, A.E. Circulating immune complex levels in patients with gestational trophoblastic neoplasia. J. Natl. Cancer Inst. 1982, 69, 23–26. Available online: https://pubmed.ncbi.nlm.nih.gov/6285061/ (accessed on 1 June 2024). [PubMed]
- Piani, F.; Tossetta, G.; Fantone, S.; Agostinis, C.; Di Simone, N.; Mandalà, M.; Bulla, R.; Marzioni, D.; Borghi, C. First Trimester CD93 as a Novel Marker of Preeclampsia and Its Complications: A Pilot Study. High Blood Press. Cardiovasc. Prev. Off. J. Ital. Soc. Hypertens. 2023, 30, 591–594. [Google Scholar] [CrossRef] [PubMed]
Chromosome Number | Mutation [Reference] | Gene Involved |
---|---|---|
1 | c.[1796T>A]; [1796T>A] [62] | PADI6 |
6 | 6p21.33 Mutation p.M1V, c.1A>G [52] | KHDC3L |
c.322_325delGACT [6,15,16,17] c.602 C>G [48] c.299_302delTCAA, p.Ile100Argfs*2 c.322_325delGACT, p.Asp108Ilefs*30 [47] c.17_20delGGTT, p.Arg6Leufs*7 c.349+1G4A [53] c.232C>T, p.Arg78Ter [56] | ||
6 | c.334 1G>A [67] | REC114 |
11 | pUPD 11p15.4 [63] | TH01 |
11 | c.783dup (p.Glu262*) missense variant c.1501T>C (p.Ser501Pro) [67] | TOP6BL/C11orf80 |
13 | G48C(p.Q16H) [64] | ERC1c |
16 | c.G1114A(p.G372S) [64] | KCNG4 |
17 | Exon6-213(nonsense) p.Arg213X Exon6-220(missense) p.Tyr220Cys Exon7-245(missense) p.Gly245Ser Exon7-248(missense) p.Arg248Gln Exon7-249(missense) p.Arg249Ser Exon8-295(missense) p.Pro295Leu [68] | TP53 |
19 | c.1441G>A [48] Exon 4 (missense) c.1358T>G, p.Ile453Ser Exon 7 (Frameshift) c.2655dupC, p.Ile886HisfsTer11 [54] c.555_557delCAC, p.Thr185del [55] c.2810+2T>G [58] Exon 2, c.197G>A [65] c.584G>A; p.W195X [66] Exon 6/intron 9 (c.[2248C4G]; [2810+2T4G]) Exon 4 (c.[1374_1375delAG]; [1374_1375delAG]) Exon 4/6 (c.[1908dup]; [2161C4T]) Exon4/intron 10 (c.[939_952dup14]; [2982-2A4G]) Exon 9 (c.[2759G4A]; [2759G4A]) Exon 9 (c.[2777T4G]; [2777T4G]) Intron 5 (c.[2130-6_2132del]; [ = ]) Intron 5 & 6 (c.[2130-266_2300+782del]; [2130-266_2300+782del]) Before exon 1 & intron 5 (c.[ −39-231_2130-510del]; [-39-231_2130-510del]) Intron 1 & intron 5/exon 8 (c.[-40+251_2130-681del];[2571dup]) Intron 1 & intron 5 (c.[-3998_2130-668del]; [-3998_2130-668del]) Before exon 1/exon 6 (c.[-13413_2982-344del];[2248C4G]) [61] c.[1812_1837dup]; [1812_1837dup] c.[2162G>A]; [2162G>A] c.[2204A>C]; [2204A>C] c.[−40 + 3G > C]; [−40 + 3G > C] c.[−6831_-39–1586]; [2248C > G] [62] c.1093G > A, p.(Asp365Asn) c.[1093G > A]; [1093G > A] [62] | NLRP7 |
22 | c.3452G>A c.1196þ1G>A, affecting the splice donor of exon 10, and a 1-bp deletion, c.2206del (p.Val736Serfs*31), in exon 19 [67] | MEI1 |
Gene | Reference | Detection Method | GTD Diagnosis Method | Result |
---|---|---|---|---|
BCL-2 | [68,71,73] | TMA; IHC; IHC | Morphological appearance and p57 IHC; Morphological appearance and ploidy analysis by flow cytometry; Morphological appearance and STR genotyping | Decreased expression in CHM compared to PHM and control |
BCL-2 | [72] | IHC | Morphological appearance and p57 IHC nuclear DNA microsatellite polymorphism for discordant cases | Increased expression in CHM and PHM compared to HA |
CD117 | [73] | IHC | Morphological appearance and STR genotyping | Decreased expression in HA compared to CHM and PHM |
CD44v6 | [74] | IHC | Not specified | No significant difference in CD44v6 expression |
c-erB-2 | [73] | IHC | Morphological appearance and STR genotyping | Increased expression in CHM compared to PHM and HA |
E-cadherin | [14,75] | IHC; IHC | Morphological appearance and molecular genotyping; Morphological appearance, ploidy analysis by flow cytometry, and p57 IHC | Decreased expression in HM compared to HA |
IGF-1 | [76] | IHC | Morphological appearance and p57 IHC | Downregulation in CHM decidua and chorionic villi |
Inhibin-alpha | [14] | IHC | Morphological appearance and molecular genotyping | Increased expression in HM compared with HA |
Ki-67 | [72,75,77] | IHC for all | Morphological appearance and p57 IHC; Morphological appearance, ploidy analysis by flow cytometry, and p57 IHC; Morphological appearance | Increased expression in CHM compared to PHM and HA. Increased expression in PHM compared to HA. |
LIF | [76] | IHC | Morphological appearance and p57 immunostaining | Downregulated in CHM decidua but upregulated in CHM trophoblasts. |
MAP3K1 | [78] | IHC | Not specified | Significantly higher expression in CHM compared to control |
miRNA-21 | [79] | qRT-PCR | Morphological appearance | miRNA-21 is upregulated in HM |
miR-196b | [78] | qRT-PCR | Not specified | Significantly lower expression in CHM compared to control. |
P53 | [14,72,80,81] | IHC; IHC; IHC; IHC | Morphological appearance and molecular genotyping; Morphological appearance and p57 immunostaining; Morphological appearance; Morphological appearance and ploidy analysis by flow cytometry | Increased expression in CHM compared to PHM and HA. Increased expression in PHM compared to HA. |
P57 | [73,82] | IHC; IHC | Morphological appearance and STR genotyping; Not specified | Absent expression in all CHM (both androgenetic diploidy and biparental diploidy) No significant difference in expression between PHM and HA |
P63 | [72,83] | IHC; IHC | Morphological appearance, p57 immunostaining, and nuclear DNA micro- satellite polymorphism for discordant cases; Morphological appearance | Increased expression in CHM and PHM compared to HA |
Twist-1 | [75,84,85] | IHC; IHC; IHC | Morphological appearance, ploidy analysis by flow cytometry, and p57 immunostaining; Morphological appearance and p57 immunostaining; Morphological appearance and p57 immunostaining and ploidy analysis | Expression is significantly higher in CHM compared to PHM and HA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahutair, S.N.M.; Dube, R.; Kuruba, M.G.B.; Salama, R.A.A.; Patni, M.A.M.F.; Kar, S.S.; Kar, R. Molecular Basis of Hydatidiform Moles—A Systematic Review. Int. J. Mol. Sci. 2024, 25, 8739. https://doi.org/10.3390/ijms25168739
Bahutair SNM, Dube R, Kuruba MGB, Salama RAA, Patni MAMF, Kar SS, Kar R. Molecular Basis of Hydatidiform Moles—A Systematic Review. International Journal of Molecular Sciences. 2024; 25(16):8739. https://doi.org/10.3390/ijms25168739
Chicago/Turabian StyleBahutair, Shadha Nasser Mohammed, Rajani Dube, Manjunatha Goud Bellary Kuruba, Rasha Aziz Attia Salama, Mohamed Anas Mohamed Faruk Patni, Subhranshu Sekhar Kar, and Rakhee Kar. 2024. "Molecular Basis of Hydatidiform Moles—A Systematic Review" International Journal of Molecular Sciences 25, no. 16: 8739. https://doi.org/10.3390/ijms25168739
APA StyleBahutair, S. N. M., Dube, R., Kuruba, M. G. B., Salama, R. A. A., Patni, M. A. M. F., Kar, S. S., & Kar, R. (2024). Molecular Basis of Hydatidiform Moles—A Systematic Review. International Journal of Molecular Sciences, 25(16), 8739. https://doi.org/10.3390/ijms25168739