Genetic, Clinical, Epidemiological, and Immunological Profiling of IgG Response Duration after SARS-CoV-2 Infection
Abstract
:1. Introduction
2. Results
2.1. Clinical and Epidemiological Profiling of IgG Response Duration
2.2. Genetic Factors in IgG Response Duration
2.3. Cytokine Profiles in IgG Response Duration
2.4. Total Plasmatic IgG, IgA, and IgM Levels
3. Discussion
4. Materials and Methods
4.1. Study Design and Data Sources
4.2. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020, 324, 782–793. [Google Scholar] [CrossRef] [PubMed]
- Denaro, M.; Ferro, E.; Barrano, G.; Meli, S.; Busacca, M.; Corallo, D.; Capici, A.; Zisa, A.; Cucuzza, L.; Gradante, S.; et al. Monitoring of SARS-CoV-2 Infection in Ragusa Area: Next Generation Sequencing and Serological Analysis. Int. J. Mol. Sci. 2023, 24, 4742. [Google Scholar] [CrossRef]
- Huang, A.T.; Garcia-Carreras, B.; Hitchings, M.D.T.; Yang, B.; Katzelnick, L.C.; Rattigan, S.M.; Borgert, B.A.; Moreno, C.A.; Solomon, B.D.; Trimmer-Smith, L.; et al. A Systematic Review of Antibody-Mediated Immunity to Coronaviruses: Kinetics, Correlates of Protection, and Association with Severity. Nat. Commun. 2020, 11, 4704. [Google Scholar] [CrossRef] [PubMed]
- Gaebler, C.; Wang, Z.; Lorenzi, J.C.C.; Muecksch, F.; Finkin, S.; Tokuyama, M.; Cho, A.; Jankovic, M.; Schaefer-Babajew, D.; Oliveira, T.Y.; et al. Evolution of Antibody Immunity to SARS-CoV-2. Nature 2021, 591, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Franco-Luiz, A.P.M.; Fernandes, N.M.G.S.; Silva, T.B.d.S.; Bernardes, W.P.d.O.S.; Westin, M.R.; Santos, T.G.; Fernandes, G.d.R.; Simões, T.C.; Silva, E.F.E.; Gava, S.G.; et al. Longitudinal Study of Humoral Immunity against SARS-CoV-2 of Health Professionals in Brazil: The Impact of Booster Dose and Reinfection on Antibody Dynamics. Front. Immunol. 2023, 14, 1220600. [Google Scholar] [CrossRef]
- Dan, J.M.; Mateus, J.; Kato, Y.; Hastie, K.M.; Yu, E.D.; Faliti, C.E.; Grifoni, A.; Ramirez, S.I.; Haupt, S.; Frazier, A.; et al. Immunological Memory to SARS-CoV-2 Assessed for up to 8 Months after Infection. Science 2021, 371, eabf4063. [Google Scholar] [CrossRef]
- Dispinseri, S.; Secchi, M.; Pirillo, M.F.; Tolazzi, M.; Borghi, M.; Brigatti, C.; De Angelis, M.L.; Baratella, M.; Bazzigaluppi, E.; Venturi, G.; et al. Neutralizing Antibody Responses to SARS-CoV-2 in Symptomatic COVID-19 Is Persistent and Critical for Survival. Nat. Commun. 2021, 12, 2670. [Google Scholar] [CrossRef] [PubMed]
- Assaid, N.; Arich, S.; Charoute, H.; Akarid, K.; Sadat, M.A.; Maaroufi, A.; Ezzikouri, S.; Sarih, M. Kinetics of SARS-CoV-2 IgM and IgG Antibodies 3 Months after COVID-19 Onset in Moroccan Patients. Am. J. Trop. Med. Hyg. 2023, 108, 145–154. [Google Scholar] [CrossRef]
- Young, M.K.; Kornmeier, C.; Carpenter, R.M.; Natale, N.R.; Solga, M.D.; Mathers, A.J.; Poulter, M.D.; Qiang, X.; Petri Jr, W.A. IgG Antibodies against SARS-CoV-2 correlate with days from symptom onset, viral load and IL-10. medRxiv 2020. [Google Scholar] [CrossRef]
- Carvalho, A.; Henriques, A.R.; Queirós, P.; Rodrigues, J.; Mendonça, N.; Rodrigues, A.M.; Canhão, H.; de Sousa, G.; Antunes, F.; Guimarães, M. Persistence of IgG COVID-19 Antibodies: A Longitudinal Analysis. Front. Public Health 2023, 10, 1069898. [Google Scholar] [CrossRef]
- Soares, S.R.; da Silva Torres, M.K.; Lima, S.S.; de Sarges, K.M.L.; dos Santos, E.F.; de Brito, M.T.F.M.; da Silva, A.L.S.; de Meira Leite, M.; da Costa, F.P.; Cantanhede, M.H.D.; et al. Antibody Response to the SARS-CoV-2 Spike and Nucleocapsid Proteins in Patients with Different COVID-19 Clinical Profiles. Viruses 2023, 15, 898. [Google Scholar] [CrossRef]
- de Oliveira, C.F.; Neto, W.F.F.; da Silva, C.P.; Ribeiro, A.C.S.; Martins, L.C.; de Sousa, A.W.; Freitas, M.N.O.; Chiang, J.O.; Silva, F.A.; Dos Santos, E.B.; et al. Absence of Anti-RBD Antibodies in SARS-CoV-2 Infected or Naive Individuals Prior to Vaccination with CoronaVac Leads to Short Protection of Only Four Months Duration. Vaccines 2022, 10, 690. [Google Scholar] [CrossRef] [PubMed]
- Bichara, C.D.A.; da Silva Graça Amoras, E.; Vaz, G.L.; da Silva Torres, M.K.; Queiroz, M.A.F.; do Amaral, I.P.C.; Vallinoto, I.M.V.C.; Bichara, C.N.C.; Vallinoto, A.C.R. Dynamics of Anti-SARS-CoV-2 IgG Antibodies Post-COVID-19 in a Brazilian Amazon Population. BMC Infect. Dis. 2021, 21, 443. [Google Scholar] [CrossRef]
- Rodrigues, F.B.B.; da Silva, R.; dos Santos, E.F.; de Brito, M.T.F.M.; da Silva, A.L.S.; de Meira Leite, M.; Póvoa da Costa, F.; de Nazaré do Socorro de Almeida Viana, M.; de Sarges, K.M.L.; Cantanhede, M.H.D.; et al. Association of Polymorphisms of IL-6 Pathway Genes (IL6, IL6R and IL6ST) with COVID-19 Severity in an Amazonian Population. Viruses 2023, 15, 1197. [Google Scholar] [CrossRef] [PubMed]
- Shatti, D.H.; Al-Wazni, W.S.; Mansoor, A.; Ameri, A.L. Association of Interlukin-6-Receptor Gene Polymorphisms with COVID-19 Disease in Kerbala, Iraq. Lat. Am. J. Pharm. 2024, 43, 819–825. [Google Scholar]
- Bian, S.; Guo, X.; Yang, X.; Wei, Y.; Yang, Z.; Cheng, S.; Yan, J.; Chen, Y.; Chen, G.B.; Du, X.; et al. Genetic Determinants of IgG Antibody Response to COVID-19 Vaccination. Am. J. Hum. Genet. 2024, 111, 181–199. [Google Scholar] [CrossRef] [PubMed]
- Scola, L.; Ferraro, D.; Sanfilippo, G.L.; De Grazia, S.; Lio, D.; Giammanco, G.M. Age and Cytokine Gene Variants Modulate the Immunogenicity and Protective Effect of SARS-CoV-2 MRNA-Based Vaccination. Vaccines 2023, 11, 413. [Google Scholar] [CrossRef]
- Yan, X.; Zhao, X.; Du, Y.; Wang, H.; Liu, L.; Wang, Q.; Liu, J.; Wei, S. Dynamics of Anti-SARS-CoV-2 IgG Antibody Responses Following Breakthrough Infection and the Predicted Protective Efficacy: A Longitudinal Community-Based Population Study in China. Int. J. Infect. Dis. 2024, 145, 107075. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.F.; Jang, T.Y.; Wu, P.H.; Kuo, M.C.; Yeh, M.L.; Wang, C.W.; Liang, P.C.; Wei, Y.J.; Hsu, P.Y.; Huang, C.I.; et al. Impact of Comorbidities on the Serological Response to COVID-19 Vaccination in a Taiwanese Cohort. Virol. J. 2023, 20, 112. [Google Scholar] [CrossRef] [PubMed]
- Koretzky, S.G.; Olivar-López, V.; Chávez-López, A.; Sienra-Monge, J.J.; Klünder-Klünder, M.; Márquez-González, H.; Salazar-García, M.; de la Rosa-Zamboni, D.; Parra-Ortega, I.; López-Martínez, B. Behavior of Immunoglobulin G Antibodies for SARS-COV-2 in Mexican Pediatric Patients with Comorbidities: A Prospective Comparative Cohort Study. Transl. Pediatr. 2023, 12, 1319–1326. [Google Scholar] [CrossRef]
- Queiroz, M.A.F.; das Neves, P.F.M.; Lima, S.S.; Lopes, J.d.C.; Torres, M.K.d.S.; Vallinoto, I.M.V.C.; de Brito, M.T.F.M.; da Silva, A.L.S.; Leite, M.d.M.; da Costa, F.P.; et al. Cytokine Profiles Associated With Acute COVID-19 and Long COVID-19 Syndrome. Front. Cell Infect. Microbiol. 2022, 12, 922422. [Google Scholar] [CrossRef] [PubMed]
- da Silva, R.; de Sarges, K.M.L.; Cantanhede, M.H.D.; da Costa, F.P.; dos Santos, E.F.; Rodrigues, F.B.B.; de Nazaré do Socorro de Almeida Viana, M.; de Meira Leite, M.; da Silva, A.L.S.; de Brito, M.T.M.; et al. Thrombophilia and Immune-Related Genetic Markers in Long COVID. Viruses 2023, 15, 885. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.-D.; Ding, M.; Dong, X.; Zhang, J.-J.; Azkur, A.K.; Azkur, D.; Gan, H.; Sun, Y.-L.; Fu, W.; Li, W.; et al. Risk Factors for Severe and Critically Ill COVID-19 Patients: A Review. Allergy 2021, 76, 428–455. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Dong, X.; Liu, G.H.; Gao, Y.D. Risk and Protective Factors for COVID-19 Morbidity, Severity, and Mortality. Clin. Rev. Allergy Immunol. 2023, 64, 90–107. [Google Scholar] [CrossRef]
- Primorac, D.; Brlek, P.; Matišić, V.; Molnar, V.; Vrdoljak, K.; Zadro, R.; Parčina, M. Cellular Immunity—The Key to Long-Term Protection in Individuals Recovered from SARS-CoV-2 and after Vaccination. Vaccines 2022, 10, 442. [Google Scholar] [CrossRef]
- Serwanga, J.; Ankunda, V.; Sembera, J.; Kato, L.; Oluka, G.K.; Baine, C.; Odoch, G.; Kayiwa, J.; Auma, B.O.; Jjuuko, M.; et al. Rapid, Early, and Potent Spike-Directed IgG, IgM, and IgA Distinguish Asymptomatic from Mildly Symptomatic COVID-19 in Uganda, with IgG Persisting for 28 Months. Front. Immunol. 2023, 14, 1152522. [Google Scholar] [CrossRef]
- Röltgen, K.; Boyd, S.D. Antibody and B Cell Responses to SARS-CoV-2 Infection and Vaccination: The End of the Beginning. Annu. Rev. Pathol. Mech. Dis. 2023, 19, 69–97. [Google Scholar] [CrossRef]
- de Sarges, K.M.L.; da Costa, F.P.; dos Santos, E.F.; Cantanhede, M.H.D.; da Silva, R.; Veríssimo, A.d.O.L.; Viana, M.d.N.D.S.d.A.; Rodrigues, F.B.B.; Leite, M.d.M.; Torres, M.K.d.S.; et al. Association of the IFNG +874T/A Polymorphism with Symptomatic COVID-19 Susceptibility. Viruses 2024, 16, 650. [Google Scholar] [CrossRef] [PubMed]
- Klok, F.A.; Kruip, M.J.H.A.; van der Meer, N.J.M.; Arbous, M.S.; Gommers, D.A.M.P.J.; Kant, K.M.; Kaptein, F.H.J.; van Paassen, J.; Stals, M.A.M.; Huisman, M.V.; et al. Incidence of Thrombotic Complications in Critically Ill ICU Patients with COVID-19. Thromb. Res. 2020, 191, 145–147. [Google Scholar] [CrossRef]
- Wang, X.; Fang, X.; Cai, Z.; Wu, X.; Gao, X.; Min, J.; Wang, F. Comorbid Chronic Diseases and Acute Organ Injuries Are Strongly Correlated with Disease Severity and Mortality among COVID-19 Patients: A Systemic Review and Meta-Analysis. Research 2020, 2020, 2402961. [Google Scholar] [CrossRef]
- Çelik, I.; Öztürk, R. From Asymptomatic to Critical Illness: Decoding Various Clinical Stages of COVID-19. Turk. J. Med. Sci. 2021, 51, 3284–3300. [Google Scholar] [CrossRef] [PubMed]
- Galicia, J.C.; Tai, H.; Komatsu, Y.; Shimada, Y.; Akazawa, K.; Yoshie, H. Polymorphisms in the IL-6 Receptor (IL-6R) Gene: Strong Evidence That Serum Levels of Soluble IL-6R Are Genetically Influenced. Genes Immun. 2004, 5, 513–516. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.J.P.; Humphries, S.E. Cytokine and Cytokine Receptor Gene Polymorphisms and Their Functionality. Cytokine Growth Factor Rev. 2009, 20, 43–59. [Google Scholar] [CrossRef] [PubMed]
- Falahi, S.; Zamanian, M.H.; Feizollahi, P.; Rezaiemanesh, A.; Salari, F.; Mahmoudi, Z.; Gorgin Karaji, A. Evaluation of the Relationship between IL-6 Gene Single Nucleotide Polymorphisms and the Severity of COVID-19 in an Iranian Population. Cytokine 2022, 154, 155889. [Google Scholar] [CrossRef] [PubMed]
- Khafaei, M.; Asghari, R.; Zafari, F.; Sadeghi, M. Impact of IL-6 Rs1800795 and IL-17A Rs2275913 Gene Polymorphisms on the COVID-19 Prognosis and Susceptibility in a Sample of Iranian Patients. Cytokine 2024, 174, 156445. [Google Scholar] [CrossRef]
- Islam, F.; Habib, S.; Badruddza, K.; Rahman, M.; Islam, M.R.; Sultana, S.; Nessa, A. The Association of Cytokines IL-2, IL-6, TNF-α, IFN-γ, and IL-10 With the Disease Severity of COVID-19: A Study From Bangladesh. Cureus 2024, 16, e57610. [Google Scholar] [CrossRef]
- Tosato, G.; Seamon, K.B.; Goldman, N.D.; Sehgal, B.; May, L.T.; Washington, G.C.; Jones, K.D.; Pike, S.E. Monocyte-Derived Human B-Cell Growth Factor Identified as Interferon-B2 (BSF-2, IL-6). Sci. New Ser. 1988, 239, 502–504. [Google Scholar]
- Wols, H.A.M.; Underhill, G.H.; Kansas, G.S.; Witte, P.L. The Role of Bone Marrow-Derived Stromal Cells in the Maintenance of Plasma Cell Longevity. J. Immunol. 2002, 169, 4213–4221. [Google Scholar] [CrossRef]
- Yang, R.; Masters, A.R.; Fortner, K.A.; Champagne, D.P.; Yanguas-Casás, N.; Silberger, D.J.; Weaver, C.T.; Haynes, L.; Rincon, M. IL-6 Promotes the Differentiation of a Subset of Naive CD8+ T Cells into IL-21-Producing B Helper CD8+ T Cells. J. Exp. Med. 2016, 213, 2281–2291. [Google Scholar] [CrossRef]
- Grebenciucova, E.; VanHaerents, S. Interleukin 6: At the Interface of Human Health and Disease. Front. Immunol. 2023, 14, 1255533. [Google Scholar] [CrossRef]
- Harbour, S.N.; DiToro, D.F.; Witte, S.J.; Zindl, C.L.; Gao, M.; Schoeb, T.R.; Jones, G.W.; Jones, S.A.; Hatton, R.D.; Weaver, C.T. TH17 Cells Require Ongoing Classic IL-6 Receptor Signaling to Retain Transcriptional and Functional Identity. Sci. Immunol. 2020, 5, eaaw2262. [Google Scholar] [CrossRef]
- Zhang, F.; Yao, S.; Yuan, J.; Zhang, M.; He, Q.; Yang, G.; Gao, Z.; Liu, H.; Chen, X.; Zhou, B. Elevated IL-6 Receptor Expression on CD4+ T Cells Contributes to the Increased Th17 Responses in Patients with Chronic Hepatitis B. Virol. J. 2011, 8, 270. [Google Scholar] [CrossRef] [PubMed]
- Minnai, F.; Biscarini, F.; Esposito, M.; Dragani, T.A.; Bujanda, L.; Rahmouni, S.; Alarcón-Riquelme, M.E.; Bernardo, D.; Carnero-Montoro, E.; Buti, M.; et al. A Genome-Wide Association Study for Survival from a Multi-Centre European Study Identified Variants Associated with COVID-19 Risk of Death. Sci. Rep. 2024, 14, 3000. [Google Scholar] [CrossRef] [PubMed]
- Angulo-Aguado, M.; Carrillo-Martinez, J.C.; Contreras-Bravo, N.C.; Morel, A.; Parra-Abaunza, K.; Usaquén, W.; Fonseca-Mendoza, D.J.; Ortega-Recalde, O. Next-Generation Sequencing of Host Genetics Risk Factors Associated with COVID-19 Severity and Long-COVID in Colombian Population. Sci. Rep. 2024, 14, 8497. [Google Scholar] [CrossRef] [PubMed]
- Hotez, P.J.; Bottazzi, M.E.; Corry, D.B. The Potential Role of Th17 Immune Responses in Coronavirus Immunopathology and Vaccine-Induced Immune Enhancement. Microbes Infect. 2020, 22, 165–167. [Google Scholar] [CrossRef]
- Jovanovic, M.; Sekulic, S.; Jocic, M.; Jurisevic, M.; Gajovic, N.; Jovanovic, M.; Arsenijevic, N.; Jovanovic, M.; Mijailovic, M.; Milosavljevic, M.; et al. Increased Pro Th1 And Th17 Transcriptional Activity In Patients With Severe COVID-19. Int. J. Med. Sci. 2023, 20, 530–541. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Slight, S.R.; Khader, S.A. Th17 Cytokines and Vaccine-Induced Immunity. Semin. Immunopathol. 2010, 32, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Woodworth, J.S.; Contreras, V.; Christensen, D.; Naninck, T.; Kahlaoui, N.; Gallouët, A.-S.; Langlois, S.; Burban, E.; Joly, C.; Gros, W.; et al. A novel adjuvant formulation induces robust Th1/Th17 memory and mucosal recall responses in non-human primates. bioRxiv 2023. [Google Scholar] [CrossRef]
- Hoffmann, J.P.; Srivastava, A.; Yang, H.; Iwanaga, N.; Remcho, T.P.; Hewes, J.L.; Sharoff, R.; Song, K.; Norton, E.B.; Kolls, J.K.; et al. Vaccine-Elicited IL-1R Signaling Results in Th17 TRM-Mediated Immunity. Commun. Biol. 2024, 7, 433. [Google Scholar] [CrossRef]
- Guo, Y.; Han, J.; Zhang, Y.; He, J.; Yu, W.; Zhang, X.; Wu, J.; Zhang, S.; Kong, Y.; Guo, Y.; et al. SARS-CoV-2 Omicron Variant: Epidemiological Features, Biological Characteristics, and Clinical Significance. Front. Immunol. 2022, 13, 877101. [Google Scholar] [CrossRef]
- Kimura, A.; Naka, T.; Kishimoto, T. IL-6-Dependent and-Independent Pathways in the Development of Interleukin 17-Producing T Helper Cells. Proc. Natl. Acad. Sci. USA 2007, 104, 12099–12104. [Google Scholar] [CrossRef] [PubMed]
- Seow, J.; Graham, C.; Merrick, B.; Acors, S.; Pickering, S.; Steel, K.J.A.; Hemmings, O.; O’Byrne, A.; Kouphou, N.; Galao, R.P.; et al. Longitudinal Observation and Decline of Neutralizing Antibody Responses in the Three Months Following SARS-CoV-2 Infection in Humans. Nat. Microbiol. 2020, 5, 1598–1607. [Google Scholar] [CrossRef] [PubMed]
- Pedroza, L.S.R.A.; Sauma, M.F.L.C.; Vasconcelos, J.M.; Takeshita, L.Y.C.; Ribeiro-Rodrigues, E.M.; Sastre, D.; Barbosa, C.M.; Chies, J.A.B.; Veit, T.D.; Lima, C.P.S.; et al. Systemic Lupus Erythematosus: Association with KIR and SLC11A1 Polymorphisms, Ethnic Predisposition and Influence in Clinical Manifestations at Onset Revealed by Ancestry Genetic Markers in an Urban Brazilian Population. Lupus 2011, 20, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Little, J.; Higgins, J.P.T.; Ioannidis, J.P.A.; Moher, D.; Gagnon, F.; Von Elm, E.; Khoury, M.J.; Cohen, B.; Davey-Smith, G.; Grimshaw, J.; et al. STrengthening the REporting of Genetic Association Studies (STREGA)-an Extension of the Strobe Statement. PLoS Med. 2009, 6, 0151–0163. [Google Scholar] [CrossRef] [PubMed]
Variables | Long Response (%) | Short Response (%) | Statistical Analysis |
---|---|---|---|
Sex | |||
Female | 49 (58.3) | 26 (40) | Fisher’s Exact Test; p = 0.03 |
Male | 35 (41.7) | 39 (60) | |
Age (years) | |||
24–39 | 39 (46.4) | 30 (46.1) | Mann–Whitney Test; p = 0.56 |
40–59 | 38 (45.2) | 27 (41.5) | |
≥60 | 7 (8.4) | 8 (12.3) | |
Mean | 41.73 | 43.49 | |
Ethnicity | |||
Brown | 41 (57.7) | 30 (52.6) | Fisher’s Exact Test; p > 0.05 |
White | 20 (28.2) | 18 (31.6) | |
Black | 7 (9.9) | 8 (14.0) | |
Asian | 3 (4.2) | 1 (1.8) | |
Not Informed | 13 | 8 | |
Comorbidities | |||
Yes | 27 (32.1) | 20 (30.8) | Fisher’s Exact Test; p > 0.05 |
No | 57 (67.9) | 45 (69.2) | |
Diabetes | 9 (10.7) | 9 (13.8) | |
Cardiovascular | 19 (22.6) | 11 (17) | |
Obesity | 10 (12) | 7 (10.7) | |
Respiratory | 1 (1.2) | 0 | |
Renal | 1 (1.2) | 0 | |
Hospitalization | |||
No | 59 (70.3) | 29 (44.6) | Fisher’s Exact Test; p = 0.0024; pc = 0.014 |
Yes | 25 (29.7) | 36 (55.4) | |
Long COVID | |||
No | 46 (62.2) | 25 (54.3) | Fisher’s Exact Test; p = 0.44 |
Yes | 28 (37.8) | 21 (45.7) | |
Disease Severity | |||
Asymptomatic | 2 (2.4) | 1 (1.5) | Fisher’s Exact Test showed statistical differences between response groups (asymptomatic + mild versus moderate + severe; p = 0.0025; pc = 0.015) |
Mild | 57 (67.8) | 28 (43.0) | |
Moderate | 9 (10.7) | 18 (27.7) | |
Severe | 16 (19.0) | 18 (27.7) | |
Symptoms | |||
Fever | 58 (69.0) | 48 (74.0) | Wilcoxon paired test comparing proportions across all symptoms between response groups; Z = 2.53; p = 0.011 |
Cough | 43 (51.2) | 46 (70.8) | |
Coryza | 33 (39.3) | 25 (38.5) | |
Retroocular pain | 27 (32.1) | 9 (13.8) | |
Headache | 59 (70.3) | 39 (60.0) | |
Sore throat | 49 (58.3) | 25 (38.5) | |
Chest pain | 43 (51.2) | 24 (37.0) | |
Abdominal pain | 26 (31.0) | 14 (21.5) | |
Myalgia | 60 (71.4) | 36 (55.4) | |
Nausea | 18 (21.4) | 16 (24.6) | |
Vomit | 10 (12.0) | 8 (12.3) | |
Diarrhea | 39 (46.4) | 25 (38.5) | |
Dyspnea | 44 (52.4) | 31 (47.7) | |
Weakness | 43 (51.2) | 22 (34.0) | |
Fatigue | 55 (65.5) | 28 (43.0) | |
Anosmia | 59 (70.3) | 33 (50.8) | |
Ageusia | 61 (72.6) | 32 (49.2) |
Locus | Genotype and Alleles | Control (%) | LR (%) | SR (%) | Statistical Analysis (Fisher’s Exact Test) |
---|---|---|---|---|---|
IL6 | GG | 207 (69) | 47 (56) | 38 (58) | The comparison of the GG genotype frequencies between the control and LR was statistically significant (p = 0.03). The remaining comparisons between the control vs. SR and LR vs. SR did not achieve statistical significance. |
GC | 85 (28) | 31 (37) | 25 (38) | ||
CC | 8 (3) | 6 (7) | 2 (3) | ||
G | 83% | 74.4% | 77.7% | ||
IL6R | AA | 20 (22) | 25 (29.7) | 28 (43) | The comparison of AA genotype frequencies between the control and SR was statistically significant (p = 0.005). The remaining comparisons between the control vs. LR and LR vs. SR did not achieve statistical significance. |
CA | 55 (60) | 36 (43) | 27 (41.5) | ||
CC | 17 (18) | 23 (27.4) | 10 (15.4) | ||
C | 48% | 48.8% | 36% | ||
IFNG | AA | 226 (57) | 37 (44) | 28 (43) | The comparisons of AA genotype frequencies between the control and LR and the control and SR were statistically significant (p = 0.04 and p = 0.04, respectively). The remaining comparison between LR and SR did not achieve statistical significance. |
AT | 147 (37) | 34 (40) | 26 (40) | ||
TT | 25 (6) | 13 (15.5) | 11 (17) | ||
T | 25% | 35.7% | 37% | ||
CD209 | AA | 50 (69) | 57 (68) | 40 (61.5) | p > 0.05 |
AG | 19 (26) | 26 (31) | 24 (37) | ||
GG | 3 (4) | 1 (1.2) | 1 (1.5) | ||
G | 17% | 16.6% | 20% | ||
TNF | GG | 390 (78) | 73 (87) | 54 (83) | p > 0.05 |
AG | 96 (19) | 11 (13) | 11 (17) | ||
AA | 11 (2) | 0 (0) | 0 (0) | ||
A | 12% | 6.5% | 8.4% | ||
DPA1 | AA | 40 (44) | 43 (51.2) | 28 (43.1) | p > 0.05 |
AG | 38 (41.7) | 32 (38.1) | 31 (47.7) | ||
GG | 13 (14.3) | 9 (10.7) | 6 (9.2) | ||
A | 64% | 70% | 67% | ||
DPB1 | AA | 34 (37) | 37 (44) | 25 (38) | p > 0.05 |
AG | 41 (45) | 36 (43) | 33 (51) | ||
GG | 17 (18) | 11 (13) | 7 (11) | ||
A | 59% | 65.5% | 64% | ||
CIITA | AA | 29 (32) | 20 (24) | 17 (26) | p > 0.05 |
AG | 43 (47) | 41 (49) | 26 (40) | ||
GG | 19 (21) | 23 (27) | 22 (34) | ||
A | 55% | 48.2% | 46% | ||
FV | CC | 123 (97) | 81 (96.4) | 65 (100) | p > 0.05 |
CT | 4 (3) | 3 (3.6) | 0 (0) | ||
TT | 0 (0) | 0 | 0 (0) | ||
T | 1.6% | 1.8% | 0% | ||
MTHFR | GG | 56 (44) | 33 (39) | 27 (41) | p > 0.05 |
AG | 56 (44) | 42 (50) | 29 (45) | ||
AA | 15 (12) | 9 (11) | 9 (14) | ||
A | 34% | 36% | 36% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Póvoa da Costa, F.; Sarges, K.M.L.d.; Silva, R.d.; Santos, E.F.d.; Nascimento, M.H.d.; Rodrigues, A.M.; Cantanhede, M.H.D.; Rodrigues, F.B.B.; Viana, M.d.N.d.S.d.A.; Leite, M.d.M.; et al. Genetic, Clinical, Epidemiological, and Immunological Profiling of IgG Response Duration after SARS-CoV-2 Infection. Int. J. Mol. Sci. 2024, 25, 8740. https://doi.org/10.3390/ijms25168740
Póvoa da Costa F, Sarges KMLd, Silva Rd, Santos EFd, Nascimento MHd, Rodrigues AM, Cantanhede MHD, Rodrigues FBB, Viana MdNdSdA, Leite MdM, et al. Genetic, Clinical, Epidemiological, and Immunological Profiling of IgG Response Duration after SARS-CoV-2 Infection. International Journal of Molecular Sciences. 2024; 25(16):8740. https://doi.org/10.3390/ijms25168740
Chicago/Turabian StylePóvoa da Costa, Flávia, Kevin Matheus Lima de Sarges, Rosilene da Silva, Erika Ferreira dos Santos, Matheus Holanda do Nascimento, Alice Maciel Rodrigues, Marcos Henrique Damasceno Cantanhede, Fabíola Brasil Barbosa Rodrigues, Maria de Nazaré do Socorro de Almeida Viana, Mauro de Meira Leite, and et al. 2024. "Genetic, Clinical, Epidemiological, and Immunological Profiling of IgG Response Duration after SARS-CoV-2 Infection" International Journal of Molecular Sciences 25, no. 16: 8740. https://doi.org/10.3390/ijms25168740
APA StylePóvoa da Costa, F., Sarges, K. M. L. d., Silva, R. d., Santos, E. F. d., Nascimento, M. H. d., Rodrigues, A. M., Cantanhede, M. H. D., Rodrigues, F. B. B., Viana, M. d. N. d. S. d. A., Leite, M. d. M., Oliveira, C. F. d., Neves, P. F. M. d., Pereira Neto, G. d. S., Brito, M. T. F. M. d., Silva, A. L. S. d., Henriques, D. F., Quaresma, J. A. S., Falcão, L. F. M., Queiroz, M. A. F., ... Santos, E. J. M. d. (2024). Genetic, Clinical, Epidemiological, and Immunological Profiling of IgG Response Duration after SARS-CoV-2 Infection. International Journal of Molecular Sciences, 25(16), 8740. https://doi.org/10.3390/ijms25168740