MODY Only Monogenic? A Narrative Review of the Novel Rare and Low-Penetrant Variants
Abstract
:1. Introduction
2. Novel Rare and Low-Penetrant Genes Associated with MODY
2.1. RFX6 (Regulatory Factor X6)
2.2. NK2.2 (NK2 Homeobox 2)
2.3. NKX6.1 (NK6 Homeobox 1)
2.4. WFS1 (Wolframin ER Transmembrane Glycoprotein)
2.5. PCBD1 (Pterin-4 Alpha-Carbinolamine Dehydratase 1)
2.6. MTOR (Mechanistic/Mammalian Target of Rapamycin)
2.7. TBC1D4 (TBC1 Domain Family Member 4)
2.8. CACNA1E (Calcium Voltage-Gated Channel Subunit Alpha1 E)
2.9. MNX1 (Motor Neuron and Pancreas Homeobox 1)
2.10. AKT2 (AKT Serine/Threonine Kinase 2)
2.11. NEUROG3 (Neurogenin 3)
2.12. Additional Rare Gene Variants Potentially Associated with MODY
2.12.1. EIF2AK3 (Eukaryotic Translation Initiation Factor 2-Alpha Kinase 3)
2.12.2. GLIS3 (Glis Family Zinc Finger Protein 3)
2.12.3. HADH (3-Hydroxyacyl-CoA Dehydrogenase)
2.12.4. PTF1A (Pancreas Transcription Factor 1, Alpha Subunit)
3. Controversial Data of MODY-Related Genetic Background
4. Molecular Advances and Future Prospectives
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Laver, T.W.; Wakeling, M.; Knox, O.; Colclough, K.; Wright, C.F.; Ellard, S.; Hattersley, A.T.; Weedon, M.N.; Patel, K. Evaluation of Evidence for Pathogenicity Demonstrates That BLK, KLF11, and PAX4 Should Not Be Included in Diagnostic Testing for MODY. Diabetes 2022, 71, 1128–1136. [Google Scholar] [CrossRef]
- Nkonge, K.M.; Nkonge, D.K.; Nkonge, T.N. The epidemiology, molecular pathogenesis, diagnosis, and treatment of maturity-onset diabetes of the young (MODY). Clin. Diabetes Endocrinol. 2020, 6, 20. [Google Scholar] [CrossRef] [PubMed]
- Ellard, S.; Bellanné-Chantelot, C.; Hattersley, A.T. Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young. Diabetologia 2008, 51, 546–553. [Google Scholar] [CrossRef]
- Tshivhase, A.; Matsha, T.; Raghubeer, S. Diagnosis and Treatment of MODY: An Updated Mini Review. Appl. Sci. 2021, 11, 9436. [Google Scholar] [CrossRef]
- Li, J.; Shu, M.; Wang, X.; Deng, A.; Wen, C.; Wang, J.; Jin, S.; Zhang, H. Precision Therapy for a Chinese Family with Maturity-Onset Diabetes of the Young. Front. Endocrinol. 2021, 12, 700342. [Google Scholar] [CrossRef]
- Urakami, T. Maturity-onset diabetes of the young (MODY): Current perspectives on diagnosis and treatment. Diabetes Metab. Syndr. Obes. Targets Ther. 2019, 12, 1047–1056. [Google Scholar] [CrossRef]
- Yahaya, T.O.; Ufuoma, S.B. Genetics and Pathophysiology of Maturity-onset Diabetes of the Young (MODY): A Review of Current Trends. Oman Med. J. 2020, 35, e126. [Google Scholar] [CrossRef]
- Płoszaj, T.; Antosik, K.; Jakiel, P.; Zmysłowska, A.; Borowiec, M. Screening for extremely rare pathogenic variants of monogenic diabetes using targeted panel sequencing. Endocrine 2021, 73, 752–757. [Google Scholar] [CrossRef]
- Maltoni, G.; Franceschi, R.; Di Natale, V.; Al-Qaisi, R.; Greco, V.; Bertorelli, R.; De Sanctis, V.; Quattrone, A.; Mantovani, V.; Cauvin, V.; et al. Next Generation Sequencing Analysis of MODY-X Patients: A Case Report Series. J. Pers. Med. 2022, 12, 1613. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Kettunen, J.; Laakso, M.; Stančáková, A.; Laver, T.W.; Colclough, K.; Johnson, M.; Abramowicz, M.; Groop, L.; Miettinen, P.J.; et al. Heterozygous RFX6 protein truncating variants are associated with MODY with reduced penetrance. Nat. Commun. 2017, 8, 888. [Google Scholar] [CrossRef]
- Mohan, V.; Radha, V.; Nguyen, T.T.; Stawiski, E.W.; Pahuja, K.B.; Goldstein, L.D.; Tom, J.; Anjana, R.M.; Kong-Beltran, M.; Bhangale, T.; et al. Comprehensive genomic analysis identifies pathogenic variants in maturity-onset diabetes of the young (MODY) patients in South India. BMC Med. Genet. 2018, 19, 22. [Google Scholar] [CrossRef]
- Simaite, D.; Kofent, J.; Gong, M.; Rüschendorf, F.; Jia, S.; Arn, P.; Bentler, K.; Ellaway, C.; Kühnen, P.; Hoffmann, G.F.; et al. Recessive Mutations in PCBD1 Cause a New Type of Early-Onset Diabetes. Diabetes 2014, 63, 3557–3564. [Google Scholar] [CrossRef] [PubMed]
- Imaki, S.; Iizuka, K.; Horikawa, Y.; Yasuda, M.; Kubota, S.; Kato, T.; Liu, Y.; Takao, K.; Mizuno, M.; Hirota, T.; et al. A novel RFX6 heterozygous mutation (p.R652X) in maturity-onset diabetes mellitus: A case report. J. Diabetes Investig. 2021, 12, 1914–1918. [Google Scholar] [CrossRef] [PubMed]
- Jakiel, P.; Gadzalska, K.; Juścińska, E.; Gorządek, M.; Płoszaj, T.; Skoczylas, S.; Borowiec, M.; Zmysłowska, A. Identification of rare variants in candidate genes associated with monogenic diabetes in polish mody-x patients. J. Diabetes Metab. Disord. 2023, 23, 545–554. [Google Scholar] [CrossRef]
- Liang, H.; Zhang, Y.; Li, M.; Yan, J.; Yang, D.; Luo, S.; Zheng, X.; Yang, G.; Li, Z.; Xu, W.; et al. Recognition of maturity-onset diabetes of the young in China. J. Diabetes Investig. 2020, 12, 501–509. [Google Scholar] [CrossRef]
- Billings, L.K.; Shi, Z.; Resurreccion, W.K.; Wang, C.; Wei, J.; Pollin, T.I.; Udler, M.S.; Xu, J. Statistical evidence for high-penetrance MODY-causing genes in a large population-based cohort. Endocrinol. Diabetes Metab. 2022, 5, e372. [Google Scholar] [CrossRef] [PubMed]
- Horikawa, Y. Maturity-onset diabetes of the young as a model for elucidating the multifactorial origin of type 2 diabetes mellitus. J. Diabetes Investig. 2018, 9, 704–712. [Google Scholar] [CrossRef]
- Mirshahi, U.L.; Colclough, K.; Wright, C.F.; Wood, A.R.; Beaumont, R.N.; Tyrrell, J.; Laver, T.W.; Stahl, R.; Golden, A.; Goehringer, J.M.; et al. Reduced penetrance of MODY-associated HNF1A/HNF4A variants but not GCK variants in clinically unselected cohorts. Am. J. Hum. Genet. 2022, 109, 2018–2028. [Google Scholar] [CrossRef]
- Costa, A.; Bescós, M.; Velho, G.; Chêvre, J.; Vidal, J.; Sesmilo, G.; Bellanné-Chantelot, C.; Froguel, P.; Casamitjana, R.; Rivera-Fillat, F.; et al. Genetic and clinical characterisation of maturity-onset diabetes of the young in Spanish families. Eur. J. Endocrinol. 2000, 142, 380–386. [Google Scholar] [CrossRef]
- Soyer, J.; Flasse, L.; Raffelsberger, W.; Beucher, A.; Orvain, C.; Peers, B.; Ravassard, P.; Vermot, J.; Voz, M.L.; Mellitzer, G.; et al. Rfx6 is an Ngn3-dependent winged helix transcription factor required for pancreatic islet cell development. Development 2010, 137, 203–212. [Google Scholar] [CrossRef]
- Smith, S.B.; Qu, H.-Q.; Taleb, N.; Kishimoto, N.Y.; Scheel, D.W.; Lu, Y.; Patch, A.-M.; Grabs, R.; Wang, J.; Lynn, F.C.; et al. Rfx6 directs islet formation and insulin production in mice and humans. Nature 2010, 463, 775–780. [Google Scholar] [CrossRef]
- Chandra, V.; Albagli-Curiel, O.; Hastoy, B.; Piccand, J.; Randriamampita, C.; Vaillant, E.; Cavé, H.; Busiah, K.; Froguel, P.; Vaxillaire, M.; et al. RFX6 Regulates Insulin Secretion by Modulating Ca2+ Homeostasis in Human β Cells. Cell Rep. 2014, 9, 2206–2218. [Google Scholar] [CrossRef]
- Lu, J.; Cheng, C.; Cheng, Z.-C.; Wu, Q.; Shen, H.; Yuan, M.; Zhang, B.; Yang, J.-K. The dual role of RFX6 in directing β cell development and insulin production. J. Mol. Endocrinol. 2021, 66, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Coykendall, V.M.; Qian, M.F.; Tellez, K.; Bautista, A.; Bevacqua, R.J.; Gu, X.; Hang, Y.; Neukam, M.; Zhao, W.; Chang, C.; et al. RFX6 maintains gene expression and function of adult human islet α cells. Diabetes 2023, 73, 448–460. [Google Scholar] [CrossRef]
- Pearl, E.J.; Jarikji, Z.; Horb, M.E. Functional analysis of Rfx6 and mutant variants associated with neonatal diabetes. Dev. Biol. 2011, 351, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Piorno, A.G.; Gata, I.L.; Anez, R.; Maricel, A.; Collado Gonzalez, G.; Gomez-Gordo Hernanz, M.; González Albarrán, O. Maturity Onset Diabetes of the Young (MODY) associated with mutations in the Regulatory factor X6 (RFX6) gene: A case report. In Proceedings of the 25th European Congress of Endocrinology, Istanbul, Turkey, 13–16 May 2023. [Google Scholar] [CrossRef]
- Piccand, J.; Strasser, P.; Hodson, D.J.; Meunier, A.; Ye, T.; Keime, C.; Birling, M.-C.; Rutter, G.A.; Gradwohl, G. Rfx6 Maintains the Functional Identity of Adult Pancreatic β Cells. Cell Rep. 2014, 9, 2219–2232. [Google Scholar] [CrossRef]
- Artuso, R.; Provenzano, A.; Mazzinghi, B.; Giunti, L.; Palazzo, V.; Andreucci, E.; Blasetti, A.; Chiuri, R.M.; Gianiorio, F.E.; Mandich, P.; et al. Therapeutic implications of novel mutations of the RFX6 gene associated with early-onset diabetes. Pharmacogenom. J. 2014, 15, 49–54. [Google Scholar] [CrossRef]
- Auerbach, A.; Cohen, A.; Ofek Shlomai, N.; Weinberg-Shukron, A.; Gulsuner, S.; King, M.-C.; Hemi, R.; Levy-Lahad, E.; Abulibdeh, A.; Zangen, D. NKX2-2 Mutation Causes Congenital Diabetes and Infantile Obesity with Paradoxical Glucose-Induced Ghrelin Secretion. J. Clin. Endocrinol. Metab. 2020, 105, 3486–3495. [Google Scholar] [CrossRef]
- Doyle, M.J.; Sussel, L. Nkx2.2 Regulates β-Cell Function in the Mature Islet. Diabetes 2007, 56, 1999–2007. [Google Scholar] [CrossRef]
- Mio, C.; Baldan, F.; Damante, G. NK2 homeobox gene cluster: Functions and roles in human diseases. Genes Dis. 2022, 10, 2038–2048. [Google Scholar] [CrossRef]
- Aigha, I.I.; Abdelalim, E.M. NKX6.1 transcription factor: A crucial regulator of pancreatic β cell development, identity, and proliferation. Stem Cell Res. Ther. 2020, 11, 459. [Google Scholar] [CrossRef] [PubMed]
- Sander, M. Ventral neural patterning by Nkx homeobox genes: Nkx6.1 controls somatic motor neuron and ventral interneuron fates. Genes Dev. 2000, 14, 2134–2139. [Google Scholar] [CrossRef]
- Schisler, J.C.; Jensen, P.B.; Taylor, D.G.; Becker, T.; Knop, F.K.; Takekawa, S.; German, M.S.; Weir, G.C.; Lu, D.; Mirmira, R.G.; et al. The Nkx6.1 homeodomain transcription factor suppresses glucagon expression and regulates glucose-stimulated insulin secretion in islet beta cells. Proc. Natl. Acad. Sci. USA 2005, 102, 7297–7302. [Google Scholar] [CrossRef] [PubMed]
- Taylor, B.L.; Liu, F.-F.; Sander, M. Nkx6.1 Is Essential for Maintaining the Functional State of Pancreatic Beta Cells. Cell Rep. 2013, 4, 1262–1275. [Google Scholar] [CrossRef] [PubMed]
- Donelan, W.; Koya, V.; Li, S.; Li, Y. Distinct Regulation of Hepatic Nuclear Factor 1α by NKX6.1 in Pancreatic Beta Cells. J. Biol. Chem. 2010, 285, 12181–12189. [Google Scholar] [CrossRef] [PubMed]
- Chapla, A.; Johnson, J.; Korula, S.; Mohan, N.; Ahmed, A.; Varghese, D.; Rangasamy, P.; Ravichandran, L.; Jebasingh, F.; Agrawal, K.; et al. WFS1 Gene–associated Diabetes Phenotypes and Identification of a Founder Mutation in Southern India. J. Clin. Endocrinol. Metab. 2022, 107, 1328–1336. [Google Scholar] [CrossRef]
- Ishihara, H. Disruption of the WFS1 gene in mice causes progressive -cell loss and impaired stimulus-secretion coupling in insulin secretion. Hum. Mol. Genet. 2004, 13, 1159–1170. [Google Scholar] [CrossRef] [PubMed]
- Serbis, A.; Rallis, D.; Giapros, V.; Galli-Tsinopoulou, A.; Siomou, E. Wolfram Syndrome 1: A Pediatrician’s and Pediatric Endocrinologist’s Perspective. Int. J. Mol. Sci. 2023, 24, 3690. [Google Scholar] [CrossRef]
- Minton, J.A.L.; Hattersley, A.T.; Owen, K.; McCarthy, M.I.; Walker, M.; Latif, F.; Barrett, T.; Frayling, T.M. Association Studies of Genetic Variation in the WFS1 Gene and Type 2 Diabetes in U.K. Populations. Diabetes 2002, 51, 1287–1290. [Google Scholar] [CrossRef]
- Domènech, E.; Gómez-Zaera, M.; Nunes, V. WFS1 mutations in Spanish patients with diabetes mellitus and deafness. Eur. J. Hum. Genet. 2002, 10, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, M.S.; Weedon, M.N.; Fawcett, K.A.; Wasson, J.; Debenham, S.L.; Daly, A.; Lango, H.; Frayling, T.M.; Neumann, R.J.; Sherva, R.; et al. Common variants in WFS1 confer risk of type 2 diabetes. Nat. Genet. 2007, 39, 951–953. [Google Scholar] [CrossRef] [PubMed]
- Franks, P.W.; Rolandsson, O.; Debenham, S.L.; Fawcett, K.A.; Payne, F.; Dina, C.; Froguel, P.; Mohlke, K.L.; Willer, C.; Olsson, T.; et al. Replication of the association between variants in WFS1 and risk of type 2 diabetes in European populations. Diabetologia 2007, 51, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Cheurfa, N.; Brenner, G.M.; Reis, A.F.; Dubois-Laforgue, D.; Roussel, R.; Tichet, J.; Lantieri, O.; Balkau, B.; Fumeron, F.; Timsit, J.; et al. Decreased insulin secretion and increased risk of type 2 diabetes associated with allelic variations of the WFS1 gene: The Data from Epidemiological Study on the Insulin Resistance Syndrome (DESIR) prospective study. Diabetologia 2010, 54, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Awata, T.; Inoue, K.; Kurihara, S.; Ohkubo, T.; Inoue, I.; Abe, T.; Takino, H.; Kanazawa, Y.; Katayama, S. Missense Variations of the Gene Responsible for Wolfram Syndrome (WFS1/wolframin) in Japanese: Possible Contribution of the Arg456His Mutation to Type 1 Diabetes as a Nonautoimmune Genetic Basis. Biochem. Biophys. Res. Commun. 2000, 268, 612–616. [Google Scholar] [CrossRef] [PubMed]
- Bansal, V.; Boehm, B.O.; Darvasi, A. Identification of a missense variant in the WFS1 gene that causes a mild form of Wolfram syndrome and is associated with risk for type 2 diabetes in Ashkenazi Jewish individuals. Diabetologia 2018, 61, 2180–2188. [Google Scholar] [CrossRef] [PubMed]
- Ferrè, S.; de Baaij, J.H.F.; Ferreira, P.; Germann, R.; de Klerk, J.B.C.; Lavrijsen, M.; van Zeeland, F.; Venselaar, H.; Kluijtmans, L.A.J.; Hoenderop, J.G.J.; et al. Mutations in PCBD1 Cause Hypomagnesemia and Renal Magnesium Wasting. J. Am. Soc. Nephrol. 2013, 25, 574–586. [Google Scholar] [CrossRef]
- Marques-Ramos, A.; Cervantes, R. Expression of mTOR in normal and pathological conditions. Mol. Cancer 2023, 22, 112. [Google Scholar] [CrossRef] [PubMed]
- Asahara, S.; Inoue, H.; Watanabe, H.; Kido, Y. Roles of MTOR in the regulation of pancreatic Β-Cell mass and insulin secretion. Biomolecules 2022, 12, 614. [Google Scholar] [CrossRef] [PubMed]
- Tuo, Y.; Xiang, M. mTOR: A double-edged sword for diabetes. J. Leukoc. Biol. 2018, 106, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Springer, C.; Binsch, C.; Weide, D.; Toska, L.; Cremer, A.L.; Backes, H.; Scheel, A.K.; Espelage, L.; Kotzka, J.; Sill, S.; et al. Depletion of TBC1D4 Improves the Metabolic Exercise Response by Overcoming Genetically Induced Peripheral Insulin Resistance. Diabetes 2024, 73, 1058–1071. [Google Scholar] [CrossRef]
- Schneider, T.; Neumaier, F.; Hescheler, J.; Alpdogan, S. Cav2.3 R-type calcium channels: From its discovery to pathogenic de novo CACNA1E variants: A historical perspective. Pflügers Arch.-Eur. J. Physiol. 2020, 472, 811–816. [Google Scholar] [CrossRef]
- Yao, X.; Wang, Y.; Wang, Z.; Fan, X.; Wu, D.; Huang, J.; Mueller, A.; Gao, S.; Hu, M.; Robinson, C.V.; et al. Structures of the R-type human Cav2.3 channel reveal conformational crosstalk of the intracellular segments. Nat. Commun. 2022, 13, 7358. [Google Scholar] [CrossRef]
- Tuluc, P.; Theiner, T.; Jacobo-Piqueras, N.; Geisler, S.M. Role of High Voltage-Gated Ca2+ channel subunits in pancreatic Β-Cell insulin release. From structure to function. Cells 2021, 10, 2004. [Google Scholar] [CrossRef]
- Aly, H.H.; De Franco, E.; Flanagan, S.E.; Elhenawy, Y.I. MNX1 mutations causing neonatal diabetes: Review of the literature and report of a case with extra-pancreatic congenital defects presenting in severe diabetic ketoacidosis. J. Diabetes Investig. 2022, 14, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Dworschak, G.C.; Reutter, H.M.; Ludwig, M. Currarino syndrome: A comprehensive genetic review of a rare congenital disorder. Orphanet J. Rare Dis. 2021, 16, 167. [Google Scholar] [CrossRef] [PubMed]
- Miao, R.; Fang, X.; Wei, J.; Wu, H.; Wang, X.; Tian, J. AKT: A potential drug target for metabolic syndrome. Front. Physiol. 2022, 13, 822333. [Google Scholar] [CrossRef] [PubMed]
- Latva-Rasku, A.; Honka, M.; Stančáková, A.; Koistinen, H.A.; Kuusisto, J.; Guan, L.; Manning, A.K.; Stringham, H.; Gloyn, A.L.; Lindgren, C.M.; et al. A partial Loss-of-Function variant in AKT2 is associated with reduced Insulin-Mediated glucose uptake in multiple Insulin-Sensitive tissues: A Genotype-Based callback positron emission tomography study. Diabetes 2017, 67, 334–342. [Google Scholar] [CrossRef]
- Elangeeb, M.E.; Elfaki, I.; Elkhalifa, M.A.; Adam, K.M.; Alameen, A.O.; Elfadl, A.K.; Albalawi, I.A.; Almasoudi, K.S.; Almotairi, R.; Alsaedi, B.S.O.; et al. In Silico Investigation of AKT2 Gene and Protein Abnormalities Reveals Potential Association with Insulin Resistance and Type 2 Diabetes. Curr. Issues Mol. Biol. 2023, 45, 7449–7475. [Google Scholar] [CrossRef] [PubMed]
- Yong, H.J.; Xie, G.; Liu, C.; Wang, W.; Naji, A.; Irianto, J.; Wang, Y.J. Gene signatures of NEUROGENIN3+ endocrine progenitor cells in the human pancreas. Front. Endocrinol. 2021, 12, 736286. [Google Scholar] [CrossRef]
- Wang, J.; Cortina, G.; Wu, S.V.; Tran, R.; Cho, J.; Tsai, M.; Bailey, T.J.; Jamrich, M.; Ament, M.E.; Treem, W.R.; et al. Mutant neurogenin-3 in congenital malabsorptive diarrhea. N. Engl. J. Med. 2006, 355, 270–280. [Google Scholar] [CrossRef]
- Zhang, W.; Feng, D.; Li, Y.; Iida, K.; McGrath, B.; Cavener, D.R. PERK EIF2AK3 control of pancreatic β cell differentiation and proliferation is required for postnatal glucose homeostasis. Cell Metab. 2006, 4, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Scoville, D.W.; Jetten, A.M. GLIS3: A critical transcription factor in Islet Β-Cell generation. Cells 2021, 10, 3471. [Google Scholar] [CrossRef]
- Ye, H.; Wang, R.; Wei, J.; Wang, Y.; Wang, L.; Zhang, X. HADH may be the target molecule of early vascular endothelial impairment in T2DM. Front. Cardiovasc. Med. 2022, 9, 963916. [Google Scholar] [CrossRef] [PubMed]
- Clayton, P.T.; Eaton, S.; Aynsley-Green, A.; Edginton, M.; Hussain, K.; Krywawych, S.; Datta, V.; Malingré, H.E.; Berger, R.; Van Den Berg, I.E. Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of β-oxidation in insulin secretion. J. Clin. Investig. 2001, 108, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Molven, A.; Matre, G.E.; Duran, M.; Wanders, R.J.; Rishaug, U.; Njølstad, P.R.; Jellum, E.; Søvik, O. Familial hyperinsulinemic hypoglycemia caused by a defect in the SCHAD enzyme of mitochondrial fatty acid oxidation. Diabetes 2004, 53, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Miguel-Escalada, I.; Maestro, M.Á.; Balboa, D.; Elek, A.; Bernal, A.; Bernardo, E.; Grau, V.; García-Hurtado, J.; Sebé-Pedrós, A.; Ferrer, J. Pancreas agenesis mutations disrupt a lead enhancer controlling a developmental enhancer cluster. Dev. Cell 2022, 57, 1922–1936.e9. [Google Scholar] [CrossRef]
- Bonnefond, A.; Yengo, L.; Philippe, J.; Dechaume, A.; Ezzidi, I.; Vaillant, E.; Gjesing, A.P.; Andersson, E.A.; Czernichow, S.; Herçberg, S.; et al. Reassessment of the putative role of BLK-p.A71T loss-of-function mutation in MODY and type 2 diabetes. Diabetologia 2012, 56, 492–496. [Google Scholar] [CrossRef]
- Yang, Y.; Chan, L. Monogenic Diabetes: What It Teaches Us on the Common Forms of Type 1 and Type 2 Diabetes. Endocr. Rev. 2016, 37, 190–222. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Hu, X.; Cui, J.; Zhao, M.; Yao, H. A novel mutation KCNJ11 R136C caused KCNJ11-MODY. Diabetol. Metab. Syndr. 2021, 13, 91. [Google Scholar] [CrossRef]
- Timmers, M.; Dirinck, E.; Lauwers, P.; Wuyts, W.; De Block, C. ABCC8 variants in MODY12: Review of the literature and report of a case with severe complications. Diabetes/Metab. Res. Rev. 2021, 37, e3459. [Google Scholar] [CrossRef]
- Koufakis, T.; Sertedaki, A.; Tatsi, E.B.; Trakatelli, C.M.; Karras, S.N.; Manthou, E.; Kanaka-Gantenbein, C.; Kotsa, K. First Report of Diabetes Phenotype due to a Loss-of-Function ABCC8 Mutation Previously Known to Cause Congenital Hyperinsulinism. Case Rep. Genet. 2019, 2019, 3654618. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Forero-Castro, N.; Ramirez, L.; Je, C.; Henao, F.; Valencia, F. Clinical and molecular description of two cases of neonatal diabetes secondary to mutations in PDX1. Endocrinol. Diabetes Metab. Case Rep. 2023, 3, 22-0383. [Google Scholar] [CrossRef]
- Wang, X.; Sterr, M.; Ansarullah; Burtscher, I.; Böttcher, A.; Beckenbauer, J.; Siehler, J.; Meitinger, T.; Häring, H.-U.; Staiger, H.; et al. Point mutations in the PDX1 transactivation domain impair human β-cell development and function. Mol. Metab. 2019, 24, 80–97. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Tong, R.; Xu, J.; Tian, Y.; Pan, J.; Cui, J.; Chen, H.; Peng, Y.; Fei, S.; Yang, S.; et al. PDX1 and MC4R genetic polymorphisms are associated with type 2 diabetes mellitus risk in the Chinese Han population. BMC Med. Genom. 2021, 14, 249. [Google Scholar] [CrossRef]
- Boike, S.; Mir, M.; Rauf, I.; Jama, A.B.; Sunesara, S.; Mushtaq, H.; Khedr, A.; Nitesh, J.; Surani, S.; Khan, S.A. Ketosis-prone diabetes mellitus: A phenotype that hospitalists need to understand. World J. Clin. Cases 2022, 10, 10867–10872. [Google Scholar] [CrossRef] [PubMed]
- Lau, H.H.; Krentz, N.A.J.; Abaitua, F.; Perez-Alcantara, M.; Chan, J.-W.; Ajeian, J.; Ghosh, S.; Lee, Y.; Yang, J.; Thaman, S.; et al. PAX4 loss of function increases diabetes risk by altering human pancreatic endocrine cell development. Nat. Commun. 2023, 14, 6119. [Google Scholar] [CrossRef] [PubMed]
- Ang, S.F.; Tan, C.S.H.; Wang, L.; Dorajoo, R.; Fong, J.C.W.; Kon, W.Y.C.; Lian, J.X.; Ang, K.; Rahim, J.B.; Jeevith, B.; et al. PAX4 R192H is associated with younger onset of Type 2 diabetes in East Asians in Singapore. J. Diabetes Its Complicat. 2019, 33, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Mauvais-Jarvis, F.; Smith, S.B.; May, C.L.; Leal, S.M.; Gautier, J.-F.; Molokhia, M.; Riveline, J.-P.; Rajan, A.S.; Kevorkian, J.-P.; Zhang, S.; et al. PAX4 gene variations predispose to ketosis-prone diabetes. Hum. Mol. Genet. 2004, 13, 3151–3159. [Google Scholar] [CrossRef]
- Demirbilek, H.; Hatipoglu, N.; Gul, U.; Tatli, Z.U.; Ellard, S.; Flanagan, S.E.; De Franco, E.; Kurtoglu, S. Permanent neonatal diabetes mellitus and neurological abnormalities due to a novel homozygous missense mutation in NEUROD1. Pediatr. Diabetes 2018, 19, 898–904. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Wang, H.; Zhang, Y.-Y. Neuronal Differentiation 1 gene Ala45Thr polymorphism and type 2 diabetes mellitus: A meta-analysis of 7,940 subjects. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1809–1821. [Google Scholar] [CrossRef]
- Støy, J.; De Franco, E.; Ye, H.; Park, S.-Y.; Bell, G.I.; Hattersley, A.T. In celebration of a century with insulin—Update of insulin gene mutations in diabetes. Mol. Metab. 2021, 52, 101280. [Google Scholar] [CrossRef] [PubMed]
- Kamel, A.M.; Mira, M.F.; Gamal, E.; Kassem, S.; Radwan, E.R.; Mamdouh, M.; Amin, M.M.; Badawy, N.; Bazaraa, H.; Ibrahim, A.; et al. Association of insulin gene VNTR INS-23/Hph1 A>T (rs689) polymorphism with type 1 diabetes mellitus in Egyptian children. Egypt. J. Med. Hum. Genet. 2019, 20, 13. [Google Scholar] [CrossRef]
- Li, L.-M.; Jiang, B.-G.; Sun, L.-L. HNF1A: From Monogenic Diabetes to Type 2 Diabetes and Gestational Diabetes Mellitus. Front. Endocrinol. 2022, 13, 829565. [Google Scholar] [CrossRef]
- Azizi, S.M.; Sarhangi, N.; Afshari, M.; Abbasi, D.; Aghaei Meybodi, H.R.; Hasanzad, M. Association Analysis of the HNF4A Common Genetic Variants with Type 2 Diabetes Mellitus Risk. Int. J. Mol. Cell. Med. 2019, 8 (Suppl. S1), 56–62. [Google Scholar] [CrossRef]
- Amaral, S.; Palha, A.; Bogalho, P.; Silva-Nunes, J. Maturity-onset diabetes of the young secondary to HNF1B variants (HNF1B-MODY): A series of 10 patients from a single diabetes center. Diabetol. Metab. Syndr. 2023, 15, 21. [Google Scholar] [CrossRef]
- Li, C.; Yang, Y.; Liu, X.; Li, Z.; Liu, H.; Tan, Q. Glucose metabolism-related gene polymorphisms as the risk predictors of type 2 diabetes. Diabetol. Metab. Syndr. 2020, 12, 97. [Google Scholar] [CrossRef]
- Ivanoshchuk, D.; Shakhtshneider, E.; Mikhailova, S.; Ovsyannikova, A.; Rymar, O.; Valeeva, E.; Orlov, P.; Voevoda, M. The Mutation Spectrum of Rare Variants in the Gene of Adenosine Triphosphate (ATP)-Binding Cassette Subfamily C Member 8 in Patients with a MODY Phenotype in Western Siberia. J. Pers. Med. 2023, 13, 172. [Google Scholar] [CrossRef] [PubMed]
- O’Donovan, E.M.; Sanchez-Lechuga, B.; Prehn, E.; Byrne, M.M. The coexistence of autoimmune diabetes and maturity-onset diabetes of the young (MODY): A case series. Endocrinol. Diabetes Metab. Case Rep. 2022, 2022, 21-0212. [Google Scholar] [CrossRef] [PubMed]
- Fajans, S.S.; Bell, G.I. MODY. Diabetes Care 2011, 34, 1878–1884. [Google Scholar] [CrossRef]
- Tattersall, R.B.; Fajans, S.S. A difference between the inheritance of classical juvenile-onset and maturity-onset type diabetes of young people. Diabetes 1975, 24, 44–53. [Google Scholar] [CrossRef]
- Velho, G. Primary pancreatic beta-cell secretory defect caused by mutations in glucokinase gene in kindreds of maturity onset diabetes of the young. Lancet 1992, 340, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Stoffel, M.; Froguel, P.; Takeda, J.; Zouali, H.; Vionnet, N.; Nishi, S.; Weber, I.T.; Harrison, R.W.; Pilkis, S.J.; Lesage, S. Human glucokinase gene: Isolation, characterization, and identification of two missense mutations linked to early-onset non-insulin-dependent (type 2) diabetes mellitus. Proc. Natl. Acad. Sci. USA 1992, 89, 7698–7702. [Google Scholar] [CrossRef]
- Yamagata, K.; Furuta, H.; Oda, N.; Kaisaki, P.J.; Menzel, S.; Cox, N.J.; Fajans, S.S.; Signorini, S.; Stoffel, M.; Bell, G.I. Mutations in the hepatocyte nuclear factor-4α gene in maturity-onset diabetes of the young (MODY1). Nature 1996, 384, 458–460. [Google Scholar] [CrossRef] [PubMed]
- Yamagata, K.; Oda, N.; Kaisaki, P.J.; Menzel, S.; Furuta, H.; Vaxillaire, M.; Southam, L.; Cox, R.D.; Lathrop, G.M.; Boriraj, V.V.; et al. Mutations in the hepatocyte nuclear factor-1α gene in maturity-onset diabetes of the young (MODY3). Nature 1996, 384, 455–458. [Google Scholar] [CrossRef] [PubMed]
- Tatsi, E.B.; Kanaka-Gantenbein, C.; Scorilas, A.; Chrousos, G.P.; Sertedaki, A. Next generation sequencing targeted gene panel in Greek MODY patients increases diagnostic accuracy. Pediatr. Diabetes 2020, 21, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Tosur, M.; Philipson, L.H. Precision diabetes: Lessons learned from maturity-onset diabetes of the young (MODY). J. Diabetes Investig. 2022, 13, 1465–1471. [Google Scholar] [CrossRef] [PubMed]
- Bonner, C.; Nyhan, K.C.; Bacon, S.; Kyithar, M.P.; Schmid, J.; Concannon, C.G.; Bray, I.M.; Stallings, R.L.; Prehn, J.H.M.; Byrne, M.M. Identification of circulating microRNAs in HNF1A-MODY carriers. Diabetologia 2013, 56, 1743–1751. [Google Scholar] [CrossRef]
- del Rosario, M.C.; Ossowski, V.; Knowler, W.C.; Bogardus, C.; Baier, L.J.; Hanson, R.L. Potential epigenetic dysregulation of genes associated with MODY and type 2 diabetes in humans exposed to a diabetic intrauterine environment: An analysis of genome-wide DNA methylation. Metabolism 2014, 63, 654–660. [Google Scholar] [CrossRef]
Gene Symbol (Gene Name) | OMIM ID | Locus | Function | Clinical and Laboratory Characteristics |
---|---|---|---|---|
RFX6 (Regulatory Factor X6) | 612659 | 6q22.1 | Regulates pancreatic islet cell differentiation and function, including β-cell insulin and α-cell glucagon secretion. | RFX6 TPV-related MODY
|
NK2.2 (NK2 Homeobox 2) | 604612 | 20p11.22 | Modulates pancreatic islet cell differentiation during embryogenesis and mature β-cell function, regulates pancreatic islet architecture. Participates in the morphogenesis of the ventral central nervous system and of the epithelial enteroendocrine cells. | No specific genotype–phenotype/laboratory correlations due to limited data in the literature. |
NKX6.1 (NK6 Homeobox 1) | 602563 | 4q21.23 | Regulates pancreatic β-cell differentiation and function, including insulin production, glucose uptake and metabolism, and cell proliferation. Regulates glucagon gene (GCG) expression, may induce suppression of pancreatic α-cell development. Contributes to the neural development and motor neuron specification. | No specific genotype–phenotype/laboratory correlations due to limited data in the literature. |
WFS1 (Wolframin ER Transmembrane Glycoprotein) | 606201 | 4p16.1 | Modulates endoplasmic reticulum calcium homeostasis and calcium signal transduction processes involved in cellular apoptosis. Regulates β-cell function, glucose metabolism and insulin secretion. |
|
PCBD1 (Pterin-4 Alpha-Carbinolamine Dehydratase 1) | 126090 | 10q22.1 | In nucleus acts as a dimerization cofactor of HNF1A and HNF1B, and enhances HNF1A/B-mediated transcription. In cytoplasm modulates the tetrahydrobiopterin (BH4) biosynthesis. |
|
MTOR (Mechanistic Target of Rapamycin) | 601231 | 1p36.22 | Antidiabetic effects: mTOR activation may enhance β-cell proliferation and insulin secretion with subsequent reduction in glycemia. Prodiabetic effects: A protracted hyperactivation of mTOR may lead to elevated blood glucose levels due to the depletion of insulin secretory capacity and increased β-cell death. Chronic activation of mTOR may alter the metabolic and functional properties of specific immune cells, hence contributing to β-cell impairment. | No specific genotype–phenotype/laboratory correlations due to limited data in the literature. Found in 3 Polish patients with MODY-X:
|
TBC1D4 (TBC1 Domain Family Member 4) | 612465 | 13q22.2 | Modulates glucose transporter type 4 (GLUT4) translocation to the plasma membrane with subsequent control of glucose uptake into adipocytes and muscle cells. | No specific genotype–phenotype/laboratory correlations due to limited data in the literature. Found in one Polish patient with MODY-X
|
CACNA1E (Calcium Voltage-Gated Channel Subunit Alpha1 E) | 601013 | 1q25.3 | Regulates Ca2+ influx into excitable cells and is involved in physiological calcium-dependent processes. Modulates second-phase insulin secretion by β-pancreatic cells. Regulates the release of glucagon and somatostatin by α- and δ- pancreatic cells. Contributes to the differentiation of the mature pancreatic islet cell lineages via mechanisms not fully elucidated. | No specific genotype–phenotype/laboratory correlations due to limited data in the literature. Found in 2 Polish patients with MODY-X.
|
MNX1 (Motor Neuron and Pancreas Homeobox 1) | 142994 | 7q.36.3 | Regulates the differentiation and development of spinal cord motor neuron cells and pancreatic islet cells, in particular β-cells. | No specific genotype–phenotype/laboratory correlations due to limited data in the literature. Found in 1 Polish patient with MODY-X
|
AKT2 (AKT Serine/Threonine Kinase 2) | 164731 | 19q13.2 | Modulates the glucose uptake and metabolism in insulin target cells. Promotes FoxO3 signaling pathway, which supports β-cell function and regeneration. | No specific genotype–phenotype/laboratory correlations due to limited data in the literature. |
NEUROG3 (Neurogenin 3) | 604882 | 10q22.1 | Regulates endocrine cell differentiation in the pancreas and intestine. Regulates the expression of NEUROD1 (associated with MODY6). | No specific genotype–phenotype/laboratory correlations due to limited data in the literature Found in 1 Chinese patient with MODY-X:
|
EIF2AK3 (Eukaryotic Translation Initiation Factor 2-Alpha Kinase 3) | 604032 | 2p11.2 | Modulates fetal β-cell differentiation, function and proliferation. Regulates the development of the pancreatic islet architecture. | No specific genotype–phenotype/laboratory correlations due to limited data in the literature. |
GLIS3 (Glis Family Zinc Finger Protein 3) | 610192 | 9p24.2 | Encodes a crucial transcription factor involved in β-cell development and maturation. | No specific genotype–phenotype/laboratory correlations due to limited data in the literature. |
HADH (3-Hydroxyacyl-CoA Dehydrogenase) | 601609 | 4q25 | Plays a critical role in fatty acid β-oxidation. | No specific genotype–phenotype/laboratory correlations due to limited data in the literature. |
PTF1A (Pancreas Transcription Factor 1, Alpha Subunit) | 607194 | 10p12.2 | Regulates the early and late-stage pancreas development and differentiation of both endocrine and exocrine cells. | No specific genotype–phenotype/laboratory correlations due to limited data in the literature. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasballa, I.; Maggi, D. MODY Only Monogenic? A Narrative Review of the Novel Rare and Low-Penetrant Variants. Int. J. Mol. Sci. 2024, 25, 8790. https://doi.org/10.3390/ijms25168790
Hasballa I, Maggi D. MODY Only Monogenic? A Narrative Review of the Novel Rare and Low-Penetrant Variants. International Journal of Molecular Sciences. 2024; 25(16):8790. https://doi.org/10.3390/ijms25168790
Chicago/Turabian StyleHasballa, Iderina, and Davide Maggi. 2024. "MODY Only Monogenic? A Narrative Review of the Novel Rare and Low-Penetrant Variants" International Journal of Molecular Sciences 25, no. 16: 8790. https://doi.org/10.3390/ijms25168790
APA StyleHasballa, I., & Maggi, D. (2024). MODY Only Monogenic? A Narrative Review of the Novel Rare and Low-Penetrant Variants. International Journal of Molecular Sciences, 25(16), 8790. https://doi.org/10.3390/ijms25168790