Fibrosis-Related microRNAs in Crohn’s Disease with Fibrostenosis and Inflammatory Stenosis
Abstract
:1. Introduction
2. Results
2.1. Identification of Potential miRNA Targets miRnome Panel Involved in Fibrosis
2.2. Expression of miRNA with Profibrotic Effects
2.3. Expression of miRNA with Fibroprotective Effects
3. Discussion
4. Materials and Methods
4.1. Patient Cohorts and Sample Selection
4.2. Ethics
4.3. Isolation of Total RNA
4.4. miRNA Expression Profiling
4.5. First-Strand cDNA Synthesis
4.6. Quantitative Real-Time PCR (qPCR)
4.7. Analysis of miRNome PCR Panels I + II, V5
4.8. Validation of Target miRNA
4.8.1. Reverse Transcription (RT) PCR
4.8.2. Quantitative Real-Time PCR (qPCR)
4.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rieder, F.; Latella, G.; Magro, F.; Yuksel, E.S.; Higgins, P.D.R.; Di Sabatino, A.; de Bruyn, J.R.; Rimola, J.; Brito, J.; Bettenworth, D.; et al. European Crohn’s and Colitis Organisation Topical Review on Prediction, Diagnosis and Management of Fibrostenosing Crohn’s Disease. J. Crohns Colitis 2016, 10, 873–885. [Google Scholar] [CrossRef]
- Lenze, F.; Wessling, J.; Bremer, J.; Ullerich, H.; Spieker, T.; Weckesser, M.; Gonschorrek, S.; Kannengiesser, K.; Rijcken, E.; Heidemann, J.; et al. Detection and differentiation of inflammatory versus fibromatous Crohn’s disease strictures: Prospective comparison of 18F-FDG-PET/CT, MR-enteroclysis, and transabdominal ultrasound versus endoscopic/histologic evaluation. Inflamm. Bowel Dis. 2012, 18, 2252–2260. [Google Scholar] [CrossRef]
- Solitano, V.; Dal Buono, A.; Gabbiadini, R.; Wozny, M.; Repici, A.; Spinelli, A.; Vetrano, S.; Armuzzi, A. Fibro-Stenosing Crohn’s Disease: What Is New and What Is Next? J. Clin. Med. 2023, 12, 3052. [Google Scholar] [CrossRef]
- Tavares de Sousa, H.; Estevinho, M.M.; Peyrin-Biroulet, L.; Danese, S.; Dias, C.C.; Carneiro, F.; Magro, F. Transmural Histological Scoring Systems in Crohn’s Disease: A Systematic Review with Assessment of Methodological Quality and Operating Properties. J. Crohns Colitis 2020, 14, 743–756. [Google Scholar] [CrossRef] [PubMed]
- Tavares de Sousa, H.; Magro, F. How to Evaluate Fibrosis in IBD? Diagnostics 2023, 13, 2188. [Google Scholar] [CrossRef] [PubMed]
- Rieder, F.; Fiocchi, C.; Rogler, G. Mechanisms, Management, and Treatment of Fibrosis in Patients with Inflammatory Bowel Diseases. Gastroenterology 2017, 152, 340–350.e6. [Google Scholar] [CrossRef]
- Rieder, F.; Mukherjee, P.K.; Massey, W.J.; Wang, Y.; Fiocchi, C. Fibrosis in IBD: From pathogenesis to therapeutic targets. Gut 2024, 73, 854–866. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Jiang, W.; Wang, L.; Mao, X.; Ye, Z.; Zhang, H. Intestinal Ultrasound for Differentiating Fibrotic or Inflammatory Stenosis in Crohn’s Disease: A Systematic Review and Meta-analysis. J. Crohns Colitis 2022, 16, 1493–1504. [Google Scholar] [CrossRef] [PubMed]
- Lewis, A.; Nijhuis, A.; Mehta, S.; Kumagai, T.; Feakins, R.; Lindsay, J.O.; Silver, A. Intestinal Fibrosis in Crohnʼs Disease. Inflamm. Bowel Dis. 2015, 21, 1141–1150. [Google Scholar] [CrossRef]
- Nijhuis, A.; Biancheri, P.; Lewis, A.; Bishop, C.L.; Giuffrida, P.; Chan, C.; Feakins, R.; Poulsom, R.; Di Sabatino, A.; Corazza, G.R.; et al. In Crohn’s disease fibrosis-reduced expression of the miR-29 family enhances collagen expression in intestinal fibroblasts. Clin. Sci. 2014, 127, 341–350. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, E.C.S.; Quaglio, A.E.V.; Grillo, T.G.; Di Stasi, L.C.; Sassaki, L.Y. MicroRNAs in inflammatory bowel disease: What do we know and what can we expect? World J. Gastroenterol. 2024, 30, 2184–2190. [Google Scholar] [CrossRef] [PubMed]
- Zidar, N.; Boštjančič, E.; Jerala, M.; Kojc, N.; Drobne, D.; Štabuc, B.; Glavač, D. Down-regulation of microRNAs of the miR-200 family and up-regulation of Snail and Slug in inflammatory bowel diseases—Hallmark of epithelial-mesenchymal transition. J. Cell. Mol. Med. 2016, 20, 1813–1820. [Google Scholar] [CrossRef] [PubMed]
- Aggeletopoulou, I.; Mouzaki, A.; Thomopoulos, K.; Triantos, C. miRNA Molecules—Late Breaking Treatment for Inflammatory Bowel Diseases? Int. J. Mol. Sci. 2023, 24, 2233. [Google Scholar] [CrossRef]
- Chacon-Millan, P.; Lama, S.; Del Gaudio, N.; Gravina, A.G.; Federico, A.; Pellegrino, R.; Luce, A.; Altucci, L.; Facchiano, A.; Caraglia, M.; et al. A Combination of Microarray-Based Profiling and Biocomputational Analysis Identified miR331-3p and hsa-let-7d-5p as Potential Biomarkers of Ulcerative Colitis Progression to Colorectal Cancer. Int. J. Mol. Sci. 2024, 25, 5699. [Google Scholar] [CrossRef]
- Quintanilla, I.; Jung, G.; Jimeno, M.; Lozano, J.J.; Sidorova, J.; Camps, J.; Carballal, S.; Bujanda, L.; Vera, M.I.; Quintero, E.; et al. Differentially Deregulated MicroRNAs as Novel Biomarkers for Neoplastic Progression in Ulcerative Colitis. Clin. Transl. Gastroenterol. 2022, 13, e00489. [Google Scholar] [CrossRef] [PubMed]
- Josse, C.; Bouznad, N.; Geurts, P.; Irrthum, A.; Huynh-Thu, V.A.; Servais, L.; Hego, A.; Delvenne, P.; Bours, V.; Oury, C. Identification of a microRNA landscape targeting the PI3K/Akt signaling pathway in inflammation-induced colorectal carcinogenesis. Am. J. Physiol. Liver Physiol. 2014, 306, G229–G243. [Google Scholar] [CrossRef] [PubMed]
- Wei, P.; Xie, Y.; Abel, P.W.; Huang, Y.; Ma, Q.; Li, L.; Hao, J.; Wolff, D.W.; Wei, T.; Tu, Y. Transforming growth factor (TGF)-β1-induced miR-133a inhibits myofibroblast differentiation and pulmonary fibrosis. Cell Death Dis. 2019, 10, 670. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Kwan, B.C.-H.; Lai, F.M.-M.; Chow, K.-M.; Li, P.K.-T.; Szeto, C.-C. Urinary miR-21, miR-29, and miR-93: Novel Biomarkers of Fibrosis. Am. J. Nephrol. 2012, 36, 412–418. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, H.; Wu, L.; Li, Z.; Zhang, R.; Zeng, Y.; Yang, T.; Ruan, H. LncRNA KCNQ1OT1 promotes the development of diabetic nephropathy by regulating miR-93-5p/ROCK2 axis. Diabetol. Metab. Syndr. 2021, 13, 108. [Google Scholar] [CrossRef]
- Sun, X.-Y.; Han, X.-M.; Zhao, X.-L.; Cheng, X.-M.; Zhang, Y. MiR-93-5p promotes cervical cancer progression by targeting THBS2/MMPS signal pathway. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 5113–5121. [Google Scholar] [CrossRef]
- Hu, B.; Mao, Z.; Du, Q.; Jiang, X.; Wang, Z.; Xiao, Z.; Zhu, D.; Wang, X.; Zhu, Y.; Wang, H. miR-93-5p targets Smad7 to regulate the transforming growth factor-β1/Smad3 pathway and mediate fibrosis in drug-resistant prolactinoma. Brain Res. Bull. 2019, 149, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhang, L.; Hao, J.; Li, N.; Tang, J.; Hao, L. Up-regulation of microRNA-93 inhibits TGF-β1-induced EMT and renal fibrogenesis by down-regulation of Orai1. J. Pharmacol. Sci. 2018, 136, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Moret-Tatay, I.; Cerrillo, E.; Hervás, D.; Iborra, M.; Sáez-González, E.; Forment, J.; Tortosa, L.; Nos, P.; Gadea, J.; Beltrán, B. Specific Plasma MicroRNA Signatures in Predicting and Confirming Crohn’s Disease Recurrence: Role and Pathogenic Implications. Clin. Transl. Gastroenterol. 2021, 12, e00416. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, Y.; Zhu, H.; Hu, J.; Xie, Z. MiR-34a/miR-93 target c-Ski to modulate the proliferaton of rat cardiac fibroblasts and extracellular matrix deposition in vivo and in vitro. Cell. Signal. 2018, 46, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Huang, W.; Zhang, L.; Chen, Q.; Zhao, H. Molecular pathogenesis involved in human idiopathic pulmonary fibrosis based on an integrated microRNA-mRNA interaction network. Mol. Med. Rep. 2018, 18, 4365–4373. [Google Scholar] [CrossRef] [PubMed]
- Oak, S.R.; Murray, L.; Herath, A.; Sleeman, M.; Anderson, I.; Joshi, A.D.; Coelho, A.L.; Flaherty, K.R.; Toews, G.B.; Knight, D.; et al. A Micro RNA Processing Defect in Rapidly Progressing Idiopathic Pulmonary Fibrosis. PLoS ONE 2011, 6, e21253. [Google Scholar] [CrossRef] [PubMed]
- Chou, M.-Y.; Hsieh, P.-L.; Chao, S.-C.; Liao, Y.-W.; Yu, C.-C.; Tsai, C.-Y. MiR-424/TGIF2-Mediated Pro-Fibrogenic Responses in Oral Submucous Fibrosis. Int. J. Mol. Sci. 2023, 24, 5811. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, H.; Enzan, H.; Miyazaki, E.; Kuroda, N.; Naruse, K.; Hiroi, M. Differential expression of CD34 in normal colorectal tissue, peritumoral inflammatory tissue, and tumour stroma. J. Clin. Pathol. 2000, 53, 626–629. [Google Scholar] [CrossRef]
- Huang, Y.; Xie, Y.; Abel, P.W.; Wei, P.; Plowman, J.; Toews, M.L.; Strah, H.; Siddique, A.; Bailey, K.L.; Tu, Y. TGF-β1-induced miR-424 promotes pulmonary myofibroblast differentiation by targeting Slit2 protein expression. Biochem. Pharmacol. 2020, 180, 114172. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, F.; Lei, Y.; Liu, P.; Liu, C.; Tao, Y. microRNA-322/424 promotes liver fibrosis by regulating angiogenesis through targeting CUL2/HIF-1α pathway. Life Sci. 2021, 266, 118819. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, M.; Zheng, K.; Li, H.; Yang, H.; Ma, S.; Zhong, M. Detection of microRNA expression levels based on microarray analysis for classification of idiopathic pulmonary fibrosis. Exp. Ther. Med. 2020, 20, 3096–3103. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Y.; Lin, L.; Wang, P.; Jiang, L.; Liu, J.; Wang, X. Overexpression of miR-133a-3p inhibits fibrosis and proliferation of keloid fibroblasts by regulating IRF5 to inhibit the TGF-β/Smad2 pathway. Mol. Cell. Probes 2020, 52, 101563. [Google Scholar] [CrossRef]
- Zhao, X.; Song, W.; Chen, Y.; Liu, S.; Ren, L. Collagen-based materials combined with microRNA for repairing cornea wounds and inhibiting scar formation. Biomater. Sci. 2018, 7, 51–62. [Google Scholar] [CrossRef]
- Cao, D.; Wang, Y.; Zhang, Y.; Zhang, Y.; Huang, Q.; Yin, Z.; Cai, G.; Chen, X.; Sun, X. Regulation of connective tissue growth factor expression by miR-133b for the treatment of renal interstitial fibrosis in aged mice with unilateral ureteral obstruction. Stem Cell Res. Ther. 2021, 12, 171. [Google Scholar] [CrossRef]
- Liu, M.; Su, M.; Tang, D.; Hao, L.; Xun, X.-H.; Huang, Y. Ligustrazin increases lung cell autophagy and ameliorates paraquat-induced pulmonary fibrosis by inhibiting PI3K/Akt/mTOR and hedgehog signalling via increasing miR-193a expression. BMC Pulm. Med. 2019, 19, 35. [Google Scholar] [CrossRef]
- Qiu, Z.; Zhong, Z.; Zhang, Y.; Tan, H.; Deng, B.; Meng, G. Human umbilical cord mesenchymal stem cell-derived exosomal miR-335-5p attenuates the inflammation and tubular epithelial-myofibroblast transdifferentiation of renal tubular epithelial cells by reducing ADAM19 protein levels. Stem Cell Res. Ther. 2022, 13, 373. [Google Scholar] [CrossRef] [PubMed]
- Ezhilarasan, D. MicroRNA interplay between hepatic stellate cell quiescence and activation. Eur. J. Pharmacol. 2020, 885, 173507. [Google Scholar] [CrossRef] [PubMed]
- Hyun, J.; Wang, S.; Kim, J.; Rao, K.M.; Park, S.Y.; Chung, I.; Ha, C.-S.; Kim, S.-W.; Yun, Y.H.; Jung, Y. MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression. Nat. Commun. 2016, 7, 10993. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, X.; He, S.; Zhang, F.; Li, Y. Gypenosides suppress fibrosis of the renal NRK-49F cells by targeting miR-378a-5p through the PI3K/AKT signaling pathway. J. Ethnopharmacol. 2023, 311, 116466. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Fan, X.; Chen, B.; Dong, P.; Zheng, J. Activation of Hepatic Stellate Cells is Inhibited by microRNA-378a-3p via Wnt10a. Cell. Physiol. Biochem. 2016, 39, 2409–2420. [Google Scholar] [CrossRef] [PubMed]
- Jerala, M.; Remic, T.; Hauptman, N.; Homan, P.; Zajšek, N.; Petitjean, M.; Chen, L.; Zidar, N. Thrombospondin 2, matrix Gla protein and digital analysis identified distinct fibroblast populations in fibrostenosing Crohn’s disease. Sci. Rep. 2024, 14, 13810. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Welker, N.C.; Zhao, Z.; Li, Y.; Zhang, J.; Reuss, S.A.; Zhang, X.; Lee, H.; Liu, Y.; Bronner, M.P. Novel specific microRNA biomarkers in idiopathic inflammatory bowel disease unrelated to disease activity. Mod. Pathol. 2014, 27, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Chen, D.; Zheng, R.-H.; Zhang, H.; Chen, Y.-P.; Xiang, Z. miRNA-133a-UCP2 pathway regulates inflammatory bowel disease progress by influencing inflammation, oxidative stress and energy metabolism. World J. Gastroenterol. 2017, 23, 76–86. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Peltier, H.J.; Latham, G.J. Normalization of microRNA expression levels in quantitative RT-PCR assays: Identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA 2008, 14, 844–852. [Google Scholar] [CrossRef] [PubMed]
Fibrostenosis (n = 20) | Inflammatory Stenosis (n = 20) | |
---|---|---|
Age (St. Dev.) [years] | 41.1 (15.3) | 45.3 (17.7) |
Disease duration (St. dev.) [years] | 7.6 (8.2) | 6.4 (5.9) |
Sex [male–female] | 11:9 | 10:10 |
miRNome PCR Panel | Reference miRNA Assay |
---|---|
Panel I | hsa-miR-25-3p |
Panel I | hsa-miR-92a-3p |
Panel I | hsa-miR-151a-3p |
Panel I | hsa-miR-320a |
Panel I | hsa-miR-324-3p |
Panel I | hsa-miR-671-5p |
Panel I | hsa-miR-181a-5p |
Panel II | hsa-miR-663b |
Panel II | hsa-miR-664a-3p |
Panel II | hsa-miR-320c |
Panel II | hsa-miR-339-3p |
Panel II | hsa-miR-320b |
miRNA | Inf_SM vs. Inf_SS | Fib_SM vs. Fib_SS | Inf_SM vs. Fib_SM | Inf_SS vs. Fib_SS |
---|---|---|---|---|
hsa-miR-133a-3p | 3.04 | −1.61 | 1.76 | −2.80 |
hsa-miR-133b | 3.49 | −1.52 | 2.14 | −2.47 |
hsa-miR-193a-3p | 1.36 | 2.61 | −1.41 | 1.36 |
hsa-miR-335-5p | −3.64 | −40.49 | 1.84 | −6.05 |
hsa-miR-376c-3p | −1.87 | 1.05 | 1.24 | 2.43 |
hsa-miR-378a-5p | 1.31 | −2.61 | 1.15 | −2.97 |
hsa-miR-424-5p | −4.99 | −2.69 | 1.41 | 2.60 |
hsa-miR-93-5p | 1.39 | −1.22 | −1.36 | −2.30 |
miRCURY LNA miRNA PCR Assays | Catalog Number | Assay ID |
---|---|---|
hsa-let-7e-5p | Q339306 | YP00205711 |
hsa-mir-484 | Q339306 | YP00205636 |
SNORD38B (hsa) | Q339306 | YP00203901 |
hsa-miR-133a-3p | Q339306 | YP00204788 |
hsa-miR-133b | Q339306 | YP00206058 |
hsa-miR-193a-3p | Q339306 | YP00204665 |
hsa-miR-335-5p | Q339306 | YP02119293 |
hsa-miR-376c-3p | Q339306 | YP00204442 |
hsa-miR-378a-5p | Q339306 | YP00205946 |
hsa-miR-424-5p | Q339306 | YP00204736 |
hsa-miR-93-5p | Q339306 | YP00204715 |
UniSp6 | Q339306 | YP00203954 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jerala, M.; Remic, T.; Hauptman, N.; Zidar, N. Fibrosis-Related microRNAs in Crohn’s Disease with Fibrostenosis and Inflammatory Stenosis. Int. J. Mol. Sci. 2024, 25, 8826. https://doi.org/10.3390/ijms25168826
Jerala M, Remic T, Hauptman N, Zidar N. Fibrosis-Related microRNAs in Crohn’s Disease with Fibrostenosis and Inflammatory Stenosis. International Journal of Molecular Sciences. 2024; 25(16):8826. https://doi.org/10.3390/ijms25168826
Chicago/Turabian StyleJerala, Miha, Tinkara Remic, Nina Hauptman, and Nina Zidar. 2024. "Fibrosis-Related microRNAs in Crohn’s Disease with Fibrostenosis and Inflammatory Stenosis" International Journal of Molecular Sciences 25, no. 16: 8826. https://doi.org/10.3390/ijms25168826
APA StyleJerala, M., Remic, T., Hauptman, N., & Zidar, N. (2024). Fibrosis-Related microRNAs in Crohn’s Disease with Fibrostenosis and Inflammatory Stenosis. International Journal of Molecular Sciences, 25(16), 8826. https://doi.org/10.3390/ijms25168826