Bridging Neurobiological Insights and Clinical Biomarkers in Postpartum Depression: A Narrative Review
Abstract
:1. Insights into Postpartum Depression: Clinical Characteristics
1.1. Basic Management and Psychotherapy
1.2. Pharmacotherapy
2. Multimodal Perspective of Neuroimaging Studies on PPD
2.1. fMRI Studies
2.1.1. Task fMRI
2.1.2. Resting-State fMRI
2.2. PET-CT
2.3. MRS
3. Serum and Plasma Biomarkers
3.1. Hormones
3.1.1. Reproductive Hormones
3.1.2. Stress Hormones
3.2. Inflammatory Cytokines
3.3. Biochemical Markers
4. Biological Mechanisms Involved in the PPD
4.1. A Unified Model of PPD
4.2. Endocrine Dynamics of PPD
4.2.1. Estrogen
4.2.2. Progesterone
4.2.3. Oxytocin
4.2.4. Stress Hormones
5. Laboratory Animal Models of PPD
5.1. Hormone Withdrawal Model
5.2. Chronic Corticosterone Treatment Model
5.3. Gestational Stress Model
5.4. Chronic Social Stress Model (CSSM)
6. Neuronal Mechanisms of PPD
6.1. PFC
6.2. Amygdala
6.3. Hippocampus
6.4. The Striatum and Its Implications in PPD
7. Limitations
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Saharoy, R.; Potdukhe, A.; Wanjari, M.; Taksande, A.B. Postpartum Depression and Maternal Care: Exploring the Complex Effects on Mothers and Infants. Cureus 2023, 15, e41381. [Google Scholar] [CrossRef] [PubMed]
- Stewart, D.E.; Vigod, S. Postpartum Depression. N. Engl. J. Med. 2016, 375, 2177–2186. [Google Scholar] [CrossRef] [PubMed]
- Levin, G.; Ein-Dor, T. A unified model of the biology of peripartum depression. Transl. Psychiatry 2023, 13, 138. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, M.W.; McCabe, J.E. Postpartum depression: Current status and future directions. Annu. Rev. Clin. Psychol. 2013, 9, 379–407. [Google Scholar] [CrossRef] [PubMed]
- Stewart, D.E.; Vigod, S.N. Postpartum Depression: Pathophysiology, Treatment, and Emerging Therapeutics. Annu. Rev. Med. 2019, 70, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Long, M.M.; Cramer, R.J.; Bennington, L.; Morgan, F.G., Jr.; Wilkes, C.A.; Fontanares, A.J.; Sadr, N.; Bertolino, S.M.; Paulson, J.F. Psychometric assessment of the Edinburgh Postnatal Depression Scale in an obstetric population. Psychiatry Res. 2020, 291, 113161. [Google Scholar] [CrossRef] [PubMed]
- Maurer, D.M.; Raymond, T.J.; Davis, B.N. Depression: Screening and Diagnosis. Am. Fam. Physician 2018, 98, 508–515. [Google Scholar] [PubMed]
- Seyfried, L.S.; Marcus, S.M. Postpartum mood disorders. Int. Rev. Psychiatry 2003, 15, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Manjunath, N.G.; Venkatesh, G.; Rajanna. Postpartum Blue is Common in Socially and Economically Insecure Mothers. Indian. J. Community Med. 2011, 36, 231–233. [Google Scholar] [CrossRef]
- Balaram, K.; Marwaha, R. Postpartum Blues. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Friedman, S.H.; Reed, E.; Ross, N.E. Postpartum Psychosis. Curr. Psychiatry Rep. 2023, 25, 65–72. [Google Scholar] [CrossRef]
- Heterogeneity of postpartum depression: A latent class analysis. Lancet Psychiatry 2015, 2, 59–67. [CrossRef] [PubMed]
- Huang, L.; Zhao, Y.; Qiang, C.; Fan, B. Is cognitive behavioral therapy a better choice for women with postnatal depression? A systematic review and meta-analysis. PLoS ONE 2018, 13, e0205243. [Google Scholar] [CrossRef]
- Klier, C.M.; Muzik, M.; Rosenblum, K.L.; Lenz, G. Interpersonal psychotherapy adapted for the group setting in the treatment of postpartum depression. J. Psychother. Pr. Pract. Res. 2001, 10, 124–131. [Google Scholar]
- Wang, X.; Qiu, Q.; Shen, Z.; Yang, S.; Shen, X. A systematic review of interpersonal psychotherapy for postpartum depression. J. Affect. Disord. 2023, 339, 823–831. [Google Scholar] [CrossRef] [PubMed]
- Stephens, S.; Ford, E.; Paudyal, P.; Smith, H. Effectiveness of Psychological Interventions for Postnatal Depression in Primary Care: A Meta-Analysis. Ann. Fam. Med. 2016, 14, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.; Bright, K.; Gagnon, L.; McGirr, A. A systematic review of the safety and effectiveness of repetitive transcranial magnetic stimulation in the treatment of peripartum depression. J. Psychiatr. Res. 2019, 115, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Kelly, L.E.; Poon, S.; Madadi, P.; Koren, G. Neonatal benzodiazepines exposure during breastfeeding. J. Pediatr. 2012, 161, 448–451. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Woo, J.; Ito, S. Frequency of infant adverse events that are associated with citalopram use during breast-feeding. Am. J. Obs. Obstet. Gynecol. 2004, 190, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Uvais, N.A. Self-limiting diarrhea in an infant exposed to sertraline in breast milk. J. Fam. Med. Prim. Care 2017, 6, 876–877. [Google Scholar] [CrossRef]
- Eleftheriou, G.; Zandonella Callegher, R.; Butera, R.; De Santis, M.; Cavaliere, A.F.; Vecchio, S.; Lanzi, C.; Davanzo, R.; Mangili, G.; Bondi, E.; et al. Consensus Panel Recommendations for the Pharmacological Management of Breastfeeding Women with Postpartum Depression. Int. J. Env. Environ. Res. Public. Health 2024, 21, 551. [Google Scholar] [CrossRef]
- Frieder, A.; Fersh, M.; Hainline, R.; Deligiannidis, K.M. Pharmacotherapy of Postpartum Depression: Current Approaches and Novel Drug Development. CNS Drugs 2019, 33, 265–282. [Google Scholar] [CrossRef] [PubMed]
- Schiller, C.E.; Meltzer-Brody, S.; Rubinow, D.R. The role of reproductive hormones in postpartum depression. CNS Spectr. 2015, 20, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Li, H.J.; Martinez, P.E.; Li, X.; Schenkel, L.A.; Nieman, L.K.; Rubinow, D.R.; Schmidt, P.J. Transdermal estradiol for postpartum depression: Results from a pilot randomized, double-blind, placebo-controlled study. Arch. Womens Ment. Health 2020, 23, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Gregoire, A.J.; Kumar, R.; Everitt, B.; Henderson, A.F.; Studd, J.W. Transdermal oestrogen for treatment of severe postnatal depression. Lancet 1996, 347, 930–933. [Google Scholar] [CrossRef] [PubMed]
- Ahokas, A.; Kaukoranta, J.; Wahlbeck, K.; Aito, M. Estrogen deficiency in severe postpartum depression: Successful treatment with sublingual physiologic 17beta-estradiol: A preliminary study. J. Clin. Psychiatry 2001, 62, 332–336. [Google Scholar] [CrossRef]
- Reddy, D.S.; Mbilinyi, R.H.; Estes, E. Preclinical and clinical pharmacology of brexanolone (allopregnanolone) for postpartum depression: A landmark journey from concept to clinic in neurosteroid replacement therapy. Psychopharmacology 2023, 240, 1841–1863. [Google Scholar] [CrossRef] [PubMed]
- Mullard, A. FDA approves first oral drug for postpartum depression, but rejects it for major depressive disorder. Nat. Rev. Drug Discov. 2023, 22, 774. [Google Scholar] [CrossRef] [PubMed]
- Oracz, A.; Modzelewski, S.; Iłendo, K.; Sokół, A. Brexanolone and current methods of treating postpartum and perinatal depression. Pharmacother. Psychiatry Neurol. Farmakoter. 2023, 39, 53–64. [Google Scholar]
- Balan, I.; Patterson, R.; Boero, G.; Krohn, H.; O’Buckley, T.K.; Meltzer-Brody, S.; Morrow, A.L. Brexanolone therapeutics in post-partum depression involves inhibition of systemic inflammatory pathways. EBioMedicine 2023, 89, 104473. [Google Scholar] [CrossRef]
- Fiorelli, M.; Aceti, F.; Marini, I.; Giacchetti, N.; Macci, E.; Tinelli, E.; Calistri, V.; Meuti, V.; Caramia, F.; Biondi, M. Magnetic Resonance Imaging Studies of Postpartum Depression: An Overview. Behav. Neurol. 2015, 2015, 913843. [Google Scholar] [CrossRef]
- Meyer, J.H.; Cervenka, S.; Kim, M.J.; Kreisl, W.C.; Henter, I.D.; Innis, R.B. Neuroinflammation in psychiatric disorders: PET imaging and promising new targets. Lancet Psychiatry 2020, 7, 1064–1074. [Google Scholar] [CrossRef]
- Glover, G.H. Overview of functional magnetic resonance imaging. Neurosurg. Clin. N. Am. 2011, 22, 133–139, vii. [Google Scholar] [CrossRef] [PubMed]
- Pawluski, J.L.; Lonstein, J.S.; Fleming, A.S. The Neurobiology of Postpartum Anxiety and Depression. Trends Neurosci. 2017, 40, 106–120. [Google Scholar] [CrossRef] [PubMed]
- Laurent, H.K.; Ablow, J.C. A face a mother could love: Depression-related maternal neural responses to infant emotion faces. Soc. Neurosci. 2013, 8, 228–239. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.T.; Seok, J.H.; Lee, B.C.; Cho, S.W.; Yoon, B.J.; Lee, K.U.; Chae, J.H.; Choi, I.G.; Ham, B.J. Neural correlates of affective processing in response to sad and angry facial stimuli in patients with major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2008, 32, 778–785. [Google Scholar] [CrossRef]
- Bush, G.; Vogt, B.A.; Holmes, J.; Dale, A.M.; Greve, D.; Jenike, M.A.; Rosen, B.R. Dorsal anterior cingulate cortex: A role in reward-based decision making. Proc. Natl. Acad. Sci. USA 2002, 99, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Adkinson, J.A.; Myers, J.; Allawala, A.B.; Mathura, R.K.; Pirtle, V.; Najera, R.; Provenza, N.R.; Bartoli, E.; Watrous, A.J.; et al. Beta activity in human anterior cingulate cortex mediates reward biases. Nat. Commun. 2024, 15, 5528. [Google Scholar] [CrossRef]
- Laurent, H.K.; Ablow, J.C. A cry in the dark: Depressed mothers show reduced neural activation to their own infant’s cry. Soc. Cogn. Affect. Neurosci. 2012, 7, 125–134. [Google Scholar] [CrossRef]
- Dudin, A.; Wonch, K.E.; Davis, A.D.; Steiner, M.; Fleming, A.S.; Hall, G.B. Amygdala and affective responses to infant pictures: Comparing depressed and non-depressed mothers and non-mothers. J. Neuroendocr. Neuroendocrinol. 2019, 31, e12790. [Google Scholar] [CrossRef]
- Wonch, K.E.; de Medeiros, C.B.; Barrett, J.A.; Dudin, A.; Cunningham, W.A.; Hall, G.B.; Steiner, M.; Fleming, A.S. Postpartum depression and brain response to infants: Differential amygdala response and connectivity. Soc. Neurosci. 2016, 11, 600–617. [Google Scholar] [CrossRef]
- Silverman, M.E.; Loudon, H.; Liu, X.; Mauro, C.; Leiter, G.; Goldstein, M.A. The neural processing of negative emotion postpartum: A preliminary study of amygdala function in postpartum depression. Arch. Womens Ment. Health 2011, 14, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Abler, B.; Erk, S.; Herwig, U.; Walter, H. Anticipation of aversive stimuli activates extended amygdala in unipolar depression. J. Psychiatr. Res. 2007, 41, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Chase, H.W.; Moses-Kolko, E.L.; Zevallos, C.; Wisner, K.L.; Phillips, M.L. Disrupted posterior cingulate-amygdala connectivity in postpartum depressed women as measured with resting BOLD fMRI. Soc. Cogn. Affect. Neurosci. 2014, 9, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
- Buckner, R.L.; Andrews-Hanna, J.R.; Schacter, D.L. The brain’s default network: Anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 2008, 1124, 1–38. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.G.; Chen, X.; Li, L.; Castellanos, F.X.; Bai, T.J.; Bo, Q.J.; Cao, J.; Chen, G.M.; Chen, N.X.; Chen, W.; et al. Reduced default mode network functional connectivity in patients with recurrent major depressive disorder. Proc. Natl. Acad. Sci. USA 2019, 116, 9078–9083. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, J.P.; Furman, D.J.; Chang, C.; Thomason, M.E.; Dennis, E.; Gotlib, I.H. Default-mode and task-positive network activity in major depressive disorder: Implications for adaptive and maladaptive rumination. Biol. Psychiatry 2011, 70, 327–333. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, W.; Wang, G.; Li, B.; Chai, L.; Guo, J.; Gao, X. Aberrant resting-state interhemispheric functional connectivity in patients with postpartum depression. Behav. Brain Res. 2020, 382, 112483. [Google Scholar] [CrossRef]
- Li, B.; Zhang, S.; Li, S.; Liu, K.; Hou, X. Aberrant resting-state regional activity in patients with postpartum depression. Front. Hum. Neurosci. 2022, 16, 925543. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Zuo, X.N. Regional Homogeneity: A Multimodal, Multiscale Neuroimaging Marker of the Human Connectome. Neuroscientist 2016, 22, 486–505. [Google Scholar] [CrossRef]
- Ji, L.; Meda, S.A.; Tamminga, C.A.; Clementz, B.A.; Keshavan, M.S.; Sweeney, J.A.; Gershon, E.S.; Pearlson, G.D. Characterizing functional regional homogeneity (ReHo) as a B-SNIP psychosis biomarker using traditional and machine learning approaches. Schizophr. Res. 2020, 215, 430–438. [Google Scholar] [CrossRef]
- Chen, C.; Li, B.; Zhang, S.; Liu, Z.; Wang, Y.; Xu, M.; Ji, Y.; Wang, S.; Sun, G.; Liu, K. Aberrant structural and functional alterations in postpartum depression: A combined voxel-based morphometry and resting-state functional connectivity study. Front. Neurosci. 2023, 17, 1138561. [Google Scholar] [CrossRef] [PubMed]
- Hirao, K.; Smith, G.S. Positron emission tomography molecular imaging in late-life depression. J. Geriatr. Psychiatry Neurol. 2014, 27, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Sacher, J.; Rekkas, P.V.; Wilson, A.A.; Houle, S.; Romano, L.; Hamidi, J.; Rusjan, P.; Fan, I.; Stewart, D.E.; Meyer, J.H. Relationship of monoamine oxidase-A distribution volume to postpartum depression and postpartum crying. Neuropsychopharmacology 2015, 40, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.H.; Ginovart, N.; Boovariwala, A.; Sagrati, S.; Hussey, D.; Garcia, A.; Young, T.; Praschak-Rieder, N.; Wilson, A.A.; Houle, S. Elevated monoamine oxidase a levels in the brain: An explanation for the monoamine imbalance of major depression. Arch. Gen. Psychiatry 2006, 63, 1209–1216. [Google Scholar] [CrossRef] [PubMed]
- Moses-Kolko, E.L.; Price, J.C.; Wisner, K.L.; Hanusa, B.H.; Meltzer, C.C.; Berga, S.L.; Grace, A.A.; di Scalea, T.L.; Kaye, W.H.; Becker, C.; et al. Postpartum and depression status are associated with lower [¹¹C]raclopride BP(ND) in reproductive-age women. Neuropsychopharmacology 2012, 37, 1422–1432. [Google Scholar] [CrossRef] [PubMed]
- Cannon, D.M.; Klaver, J.M.; Peck, S.A.; Rallis-Voak, D.; Erickson, K.; Drevets, W.C. Dopamine type-1 receptor binding in major depressive disorder assessed using positron emission tomography and [11C]NNC-112. Neuropsychopharmacology 2009, 34, 1277–1287. [Google Scholar] [CrossRef] [PubMed]
- Bowden, C.; Theodorou, A.E.; Cheetham, S.C.; Lowther, S.; Katona, C.L.; Crompton, M.R.; Horton, R.W. Dopamine D1 and D2 receptor binding sites in brain samples from depressed suicides and controls. Brain Res. 1997, 752, 227–233. [Google Scholar] [CrossRef]
- Kraus, C.; Castrén, E.; Kasper, S.; Lanzenberger, R. Serotonin and neuroplasticity—Links between molecular, functional and structural pathophysiology in depression. Neurosci. Biobehav. Rev. 2017, 77, 317–326. [Google Scholar] [CrossRef]
- Drevets, W.C.; Thase, M.E.; Moses-Kolko, E.L.; Price, J.; Frank, E.; Kupfer, D.J.; Mathis, C. Serotonin-1A receptor imaging in recurrent depression: Replication and literature review. Nucl. Med. Biol. 2007, 34, 865–877. [Google Scholar] [CrossRef]
- Moses-Kolko, E.L.; Wisner, K.L.; Price, J.C.; Berga, S.L.; Drevets, W.C.; Hanusa, B.H.; Loucks, T.L.; Meltzer, C.C. Serotonin 1A receptor reductions in postpartum depression: A positron emission tomography study. Fertil. Steril. 2008, 89, 685–692. [Google Scholar] [CrossRef]
- Gujar, S.K.; Maheshwari, S.; Björkman-Burtscher, I.; Sundgren, P.C. Magnetic resonance spectroscopy. J. Neuroophthalmol. 2005, 25, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Rosa, C.E.; Soares, J.C.; Figueiredo, F.P.; Cavalli, R.C.; Barbieri, M.A.; Schaufelberger, M.S.; Salmon, C.E.G.; Del-Ben, C.M.; Santos, A.C. Glutamatergic and neural dysfunction in postpartum depression using magnetic resonance spectroscopy. Psychiatry Res. Neuroimaging 2017, 265, 18–25. [Google Scholar] [CrossRef]
- Saccaro, L.F.; Tassone, M.; Tozzi, F.; Rutigliano, G. Proton magnetic resonance spectroscopy of N-acetyl aspartate in first depressive episode and chronic major depressive disorder: A systematic review and meta-analysis. J. Affect. Disord. 2024, 355, 265–282. [Google Scholar] [CrossRef] [PubMed]
- McEwen, A.M.; Burgess, D.T.; Hanstock, C.C.; Seres, P.; Khalili, P.; Newman, S.C.; Baker, G.B.; Mitchell, N.D.; Khudabux-Der, J.; Allen, P.S.; et al. Increased glutamate levels in the medial prefrontal cortex in patients with postpartum depression. Neuropsychopharmacology 2012, 37, 2428–2435. [Google Scholar] [CrossRef]
- Moriguchi, S.; Takamiya, A.; Noda, Y.; Horita, N.; Wada, M.; Tsugawa, S.; Plitman, E.; Sano, Y.; Tarumi, R.; ElSalhy, M.; et al. Glutamatergic neurometabolite levels in major depressive disorder: A systematic review and meta-analysis of proton magnetic resonance spectroscopy studies. Mol. Psychiatry 2019, 24, 952–964. [Google Scholar] [CrossRef] [PubMed]
- Merkl, A.; Schubert, F.; Quante, A.; Luborzewski, A.; Brakemeier, E.L.; Grimm, S.; Heuser, I.; Bajbouj, M. Abnormal cingulate and prefrontal cortical neurochemistry in major depression after electroconvulsive therapy. Biol. Psychiatry 2011, 69, 772–779. [Google Scholar] [CrossRef]
- Batra, N.A.; Seres-Mailo, J.; Hanstock, C.; Seres, P.; Khudabux, J.; Bellavance, F.; Baker, G.; Allen, P.; Tibbo, P.; Hui, E.; et al. Proton magnetic resonance spectroscopy measurement of brain glutamate levels in premenstrual dysphoric disorder. Biol. Psychiatry 2008, 63, 1178–1184. [Google Scholar] [CrossRef]
- Deligiannidis, K.M.; Fales, C.L.; Kroll-Desrosiers, A.R.; Shaffer, S.A.; Villamarin, V.; Tan, Y.; Hall, J.E.; Frederick, B.B.; Sikoglu, E.M.; Edden, R.A.; et al. Resting-state functional connectivity, cortical GABA, and neuroactive steroids in peripartum and peripartum depressed women: A functional magnetic resonance imaging and spectroscopy study. Neuropsychopharmacology 2019, 44, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Ganau, M.; Syrmos, N.C.; D’Arco, F.; Ganau, L.; Chibbaro, S.; Prisco, L.; Ligarotti, G.K.I.; Ambu, R.; Soddu, A. Enhancing contrast agents and radiotracers performance through hyaluronic acid-coating in neuroradiology and nuclear medicine. Hell. J. Nucl. Med. 2017, 20, 166–168. [Google Scholar] [CrossRef]
- Payne, J.L.; Maguire, J. Pathophysiological mechanisms implicated in postpartum depression. Front. Neuroendocr. Neuroendocrinol. 2019, 52, 165–180. [Google Scholar] [CrossRef]
- Grattan, D.R.; Ladyman, S.R. Neurophysiological and cognitive changes in pregnancy. Handb. Clin. Neurol. 2020, 171, 25–55. [Google Scholar] [CrossRef]
- Bloch, M.; Schmidt, P.J.; Danaceau, M.; Murphy, J.; Nieman, L.; Rubinow, D.R. Effects of gonadal steroids in women with a history of postpartum depression. Am. J. Psychiatry 2000, 157, 924–930. [Google Scholar] [CrossRef] [PubMed]
- Klier, C.M.; Muzik, M.; Dervic, K.; Mossaheb, N.; Benesch, T.; Ulm, B.; Zeller, M. The role of estrogen and progesterone in depression after birth. J. Psychiatr. Res. 2007, 41, 273–279. [Google Scholar] [CrossRef]
- Osborne, L.M.; Betz, J.F.; Yenokyan, G.; Standeven, L.R.; Payne, J.L. The Role of Allopregnanolone in Pregnancy in Predicting Postpartum Anxiety Symptoms. Front. Psychol. 2019, 10, 1033. [Google Scholar] [CrossRef] [PubMed]
- Skrundz, M.; Bolten, M.; Nast, I.; Hellhammer, D.H.; Meinlschmidt, G. Plasma oxytocin concentration during pregnancy is associated with development of postpartum depression. Neuropsychopharmacology 2011, 36, 1886–1893. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Wei, L. Predictive value of serum CRH/5-HT ratio for postpartum depression. Int. J. Gynaecol. Obs. Obstet. 2020, 151, 438–442. [Google Scholar] [CrossRef] [PubMed]
- Glynn, L.M.; Sandman, C.A. Evaluation of the association between placental corticotrophin-releasing hormone and postpartum depressive symptoms. Psychosom. Med. 2014, 76, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Chai, Y.; Li, Q.; Wang, Y.; Tao, E.; Asakawa, T. The Value of HPA Axis Hormones as Biomarkers for Screening and Early Diagnosis of Postpartum Depression: Updated Information About Methodology. Front. Endocrinol. 2022, 13, 916611. [Google Scholar] [CrossRef]
- Yim, I.S.; Glynn, L.M.; Dunkel-Schetter, C.; Hobel, C.J.; Chicz-DeMet, A.; Sandman, C.A. Risk of postpartum depressive symptoms with elevated corticotropin-releasing hormone in human pregnancy. Arch. Gen. Psychiatry 2009, 66, 162–169. [Google Scholar] [CrossRef]
- Corwin, E.J.; Johnston, N.; Pugh, L. Symptoms of postpartum depression associated with elevated levels of interleukin-1 beta during the first month postpartum. Biol. Res. Nurs. 2008, 10, 128–133. [Google Scholar] [CrossRef]
- Cassidy-Bushrow, A.E.; Peters, R.M.; Johnson, D.A.; Templin, T.N. Association of depressive symptoms with inflammatory biomarkers among pregnant African-American women. J. Reprod. Immunol. 2012, 94, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Bränn, E.; Fransson, E.; White, R.A.; Papadopoulos, F.C.; Edvinsson, Å.; Kamali-Moghaddam, M.; Cunningham, J.L.; Sundström-Poromaa, I.; Skalkidou, A. Inflammatory markers in women with postpartum depressive symptoms. J. Neurosci. Res. 2020, 98, 1309–1321. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, J.; Dudek, D.; Schlegel-Zawadzka, M.; Grabowska, M.; Marcinek, A.; Florek, E.; Piekoszewski, W.; Nowak, R.J.; Opoka, W.; Nowak, G. Antepartum/postpartum depressive symptoms and serum zinc and magnesium levels. Pharmacol. Rep. 2006, 58, 571–576. [Google Scholar] [PubMed]
- Christesen, H.T.; Falkenberg, T.; Lamont, R.F.; Jørgensen, J.S. The impact of vitamin D on pregnancy: A systematic review. Acta Obs. Obstet. Gynecol. Scand. 2012, 91, 1357–1367. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, L.; He, M.; Qiang, X.; Xiao, X.; Huang, S.; Zhang, D.; Tang, M. Comprehensive evaluation of postpartum depression and correlations between postpartum depression and serum levels of homocysteine in Chinese women. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2015, 40, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Otto, S.J.; de Groot, R.H.; Hornstra, G. Increased risk of postpartum depressive symptoms is associated with slower normalization after pregnancy of the functional docosahexaenoic acid status. Prostaglandins Leukot. Essent. Fat. Acids 2003, 69, 237–243. [Google Scholar] [CrossRef]
- Xie, R.; Xie, H.; Krewski, D.; He, G. Plasma concentrations of neurotransmitters and postpartum depression. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2018, 43, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Yim, I.S.; Glynn, L.M.; Schetter, C.D.; Hobel, C.J.; Chicz-Demet, A.; Sandman, C.A. Prenatal beta-endorphin as an early predictor of postpartum depressive symptoms in euthymic women. J. Affect. Disord. 2010, 125, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Parry, B.L.; Meliska, C.J.; Lopez, A.M.; Sorenson, D.L.; Martinez, L.F.; Orff, H.J.; Hauger, R.L.; Kripke, D.F. Early versus late wake therapy improves mood more in antepartum versus postpartum depression by differentially altering melatonin-sleep timing disturbances. J. Affect. Disord. 2019, 245, 608–616. [Google Scholar] [CrossRef] [PubMed]
- Lugo-Huitrón, R.; Ugalde Muñiz, P.; Pineda, B.; Pedraza-Chaverrí, J.; Ríos, C.; Pérez-de la Cruz, V. Quinolinic acid: An endogenous neurotoxin with multiple targets. Oxid. Med. Cell Longev. 2013, 2013, 104024. [Google Scholar] [CrossRef]
- Duan, K.M.; Ma, J.H.; Wang, S.Y.; Huang, Z.; Zhou, Y.; Yu, H. The role of tryptophan metabolism in postpartum depression. Metab. Brain Dis. 2018, 33, 647–660. [Google Scholar] [CrossRef] [PubMed]
- Schwarcz, R.; Bruno, J.P.; Muchowski, P.J.; Wu, H.Q. Kynurenines in the mammalian brain: When physiology meets pathology. Nat. Rev. Neurosci. 2012, 13, 465–477. [Google Scholar] [CrossRef] [PubMed]
- Chopra, K.; Kumar, B.; Kuhad, A. Pathobiological targets of depression. Expert. Opin. Ther. Targets 2011, 15, 379–400. [Google Scholar] [CrossRef] [PubMed]
- Mehta, D.; Quast, C.; Fasching, P.A.; Seifert, A.; Voigt, F.; Beckmann, M.W.; Faschingbauer, F.; Burger, P.; Ekici, A.B.; Kornhuber, J.; et al. The 5-HTTLPR polymorphism modulates the influence on environmental stressors on peripartum depression symptoms. J. Affect. Disord. 2012, 136, 1192–1197. [Google Scholar] [CrossRef] [PubMed]
- Comasco, E.; Sylvén, S.M.; Papadopoulos, F.C.; Oreland, L.; Sundström-Poromaa, I.; Skalkidou, A. Postpartum depressive symptoms and the BDNF Val66Met functional polymorphism: Effect of season of delivery. Arch. Womens Ment. Health 2011, 14, 453–463. [Google Scholar] [CrossRef]
- Bekku, N.; Yoshimura, H. Animal model of menopausal depressive-like state in female mice: Prolongation of immobility time in the forced swimming test following ovariectomy. Psychopharmacology 2005, 183, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Sha, Q.; Achtyes, E.; Nagalla, M.; Keaton, S.; Smart, L.; Leach, R.; Brundin, L. Associations between estrogen and progesterone, the kynurenine pathway, and inflammation in the post-partum. J. Affect. Disord. 2021, 281, 9–12. [Google Scholar] [CrossRef]
- Li, B.; Zheng, S.G. How regulatory T cells sense and adapt to inflammation. Cell. Mol. Immunol. 2015, 12, 519–520. [Google Scholar] [CrossRef]
- Tolomeo, S.; Chiao, B.; Lei, Z.; Chew, S.H.; Ebstein, R.P. A Novel Role of CD38 and Oxytocin as Tandem Molecular Moderators of Human Social Behavior. Neurosci. Biobehav. Rev. 2020, 115, 251–272. [Google Scholar] [CrossRef]
- Bell, A.F.; Erickson, E.N.; Carter, C.S. Beyond Labor: The Role of Natural and Synthetic Oxytocin in the Transition to Motherhood. J. Midwifery Women’s Health 2014, 59, 35–42. [Google Scholar] [CrossRef]
- Jonas, W.; Mileva-Seitz, V.; Girard, A.W.; Bisceglia, R.; Kennedy, J.L.; Sokolowski, M.; Meaney, M.J.; Fleming, A.S.; Steiner, M. Genetic variation in oxytocin rs2740210 and early adversity associated with postpartum depression and breastfeeding duration. Genes. Brain Behav. 2013, 12, 681–694. [Google Scholar] [CrossRef] [PubMed]
- Champagne, F.A. Epigenetic mechanisms and the transgenerational effects of maternal care. Front. Neuroendocr. Neuroendocrinol. 2008, 29, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Luo, F.; Zhu, Z.; Du, Y.; Chen, L.; Cheng, Y. Risk Factors for Postpartum Depression Based on Genetic and Epigenetic Interactions. Mol. Neurobiol. 2023, 60, 3979–4003. [Google Scholar] [CrossRef] [PubMed]
- Kimmel, M.; Clive, M.; Gispen, F.; Guintivano, J.; Brown, T.; Cox, O.; Beckmann, M.W.; Kornhuber, J.; Fasching, P.A.; Osborne, L.M.; et al. Oxytocin receptor DNA methylation in postpartum depression. Psychoneuroendocrinology 2016, 69, 150–160. [Google Scholar] [CrossRef]
- Devlin, A.M.; Brain, U.; Austin, J.; Oberlander, T.F. Prenatal exposure to maternal depressed mood and the MTHFR C677T variant affect SLC6A4 methylation in infants at birth. PLoS ONE 2010, 5, e12201. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.; Mesiano, S.; McGrath, S. Hormone trajectories leading to human birth. Regul. Pept. 2002, 108, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Kammerer, M.; Taylor, A.; Glover, V. The HPA axis and perinatal depression: A hypothesis. Arch. Women’s Ment. Health 2006, 9, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Glynn, L.M.; Davis, E.P.; Sandman, C.A. New insights into the role of perinatal HPA-axis dysregulation in postpartum depression. Neuropeptides 2013, 47, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Sivadas, N.; Radhakrishnan, A.; Aswathy, B.S.; Kumar, V.M.; Gulia, K.K. Dynamic changes in sleep pattern during post-partum in normal pregnancy in rat model. Behav. Brain Res. 2017, 320, 264–274. [Google Scholar] [CrossRef]
- González-Mesa, E.; Cuenca-Marín, C.; Suarez-Arana, M.; Tripiana-Serrano, B.; Ibrahim-Díez, N.; Gonzalez-Cazorla, A.; Blasco-Alonso, M. Poor sleep quality is associated with perinatal depression. A systematic review of last decade scientific literature and meta-analysis. J. Perinat. Med. 2019, 47, 689–703. [Google Scholar] [CrossRef]
- Pires, G.N.; Benedetto, L.; Cortese, R.; Gozal, D.; Gulia, K.K.; Kumar, V.M.; Tufik, S.; Andersen, M.L. Effects of sleep modulation during pregnancy in the mother and offspring: Evidences from preclinical research. J. Sleep. Res. 2021, 30, e13135. [Google Scholar] [CrossRef] [PubMed]
- Mir, F.R.; Pollano, A.; Rivarola, M.A. Animal models of postpartum depression revisited. Psychoneuroendocrinology 2022, 136, 105590. [Google Scholar] [CrossRef] [PubMed]
- Hendrick, V.; Altshuler, L.L.; Suri, R. Hormonal changes in the postpartum and implications for postpartum depression. Psychosomatics 1998, 39, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Galea, L.A.; Wide, J.K.; Barr, A.M. Estradiol alleviates depressive-like symptoms in a novel animal model of post-partum depression. Behav. Brain Res. 2001, 122, 1–9. [Google Scholar] [CrossRef]
- Xia, B.; Chen, C.; Zhang, H.; Xue, W.; Tang, J.; Tao, W.; Wu, R.; Ren, L.; Wang, W.; Chen, G. Chronic stress prior to pregnancy potentiated long-lasting postpartum depressive-like behavior, regulated by Akt-mTOR signaling in the hippocampus. Sci. Rep. 2016, 6, 35042. [Google Scholar] [CrossRef] [PubMed]
- Brummelte, S.; Galea, L.A.M. Chronic corticosterone during pregnancy and postpartum affects maternal care, cell proliferation and depressive-like behavior in the dam. Horm. Behav. 2010, 58, 769–779. [Google Scholar] [CrossRef] [PubMed]
- Smith, J. Gestational stress induces post-partum depression-like behaviour and alters maternal care in rats. Psychoneuroendocrinology 2004, 29, 227–244. [Google Scholar] [CrossRef] [PubMed]
- Zoubovsky, S.P.; Hoseus, S.; Tumukuntala, S.; Schulkin, J.O.; Williams, M.T.; Vorhees, C.V.; Muglia, L.J. Chronic psychosocial stress during pregnancy affects maternal behavior and neuroendocrine function and modulates hypothalamic CRH and nuclear steroid receptor expression. Transl. Psychiatry 2020, 10, 6. [Google Scholar] [CrossRef]
- Nephew, B.C.; Bridges, R.S. Effects of chronic social stress during lactation on maternal behavior and growth in rats. Stress. 2011, 14, 677–684. [Google Scholar] [CrossRef]
- Boccia, M.L.; Razzoli, M.; Vadlamudi, S.P.; Trumbull, W.; Caleffie, C.; Pedersen, C.A. Repeated long separations from pups produce depression-like behavior in rat mothers. Psychoneuroendocrinology 2007, 32, 65–71. [Google Scholar] [CrossRef]
- Li, M.; Chou, S.Y. Modeling postpartum depression in rats: Theoretic and methodological issues. Dongwuxue Yanjiu 2016, 37, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Wellman, C.L.; Bollinger, J.L.; Moench, K.M. Effects of stress on the structure and function of the medial prefrontal cortex: Insights from animal models. Int. Rev. Neurobiol. 2020, 150, 129–153. [Google Scholar] [CrossRef] [PubMed]
- Gorman-Sandler, E.; Robertson, B.; Crawford, J.; Wood, G.; Ramesh, A.; Arishe, O.O.; Webb, R.C.; Hollis, F. Gestational stress decreases postpartum mitochondrial respiration in the prefrontal cortex of female rats. Neurobiol. Stress. 2023, 26, 100563. [Google Scholar] [CrossRef] [PubMed]
- Li, M. The medial prefrontal regulation of maternal behavior across postpartum: A triadic model. Psychol. Rev. 2023, 130, 873–895. [Google Scholar] [CrossRef]
- Gao, J.; Wu, R.; Davis, C.; Li, M. Activation of 5-HT(2A) receptor disrupts rat maternal behavior. Neuropharmacology 2018, 128, 96–105. [Google Scholar] [CrossRef]
- Leuner, B.; Fredericks, P.J.; Nealer, C.; Albin-Brooks, C. Chronic gestational stress leads to depressive-like behavior and compromises medial prefrontal cortex structure and function during the postpartum period. PLoS ONE 2014, 9, e89912. [Google Scholar] [CrossRef] [PubMed]
- Šimić, G.; Tkalčić, M.; Vukić, V.; Mulc, D.; Španić, E.; Šagud, M.; Olucha-Bordonau, F.E.; Vukšić, M.; Hof, P.R. Understanding Emotions: Origins and Roles of the Amygdala. Biomolecules 2021, 11, 823. [Google Scholar] [CrossRef]
- Matsuo, S.; Matsuda, K.I.; Takanami, K.; Mori, T.; Tanaka, M.; Kawata, M.; Kitawaki, J. Decrease in neuronal spine density in the postpartum period in the amygdala and bed nucleus of the stria terminalis in rat. Neurosci. Lett. 2017, 641, 21–25. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, B.; Chen, T.; Zhang, S.; Chen, L. Postpartum estrogen withdrawal impairs GABAergic inhibition and LTD induction in basolateral amygdala complex via down-regulation of GPR30. Eur. Neuropsychopharmacol. 2017, 27, 759–772. [Google Scholar] [CrossRef]
- Antonoudiou, P.; Colmers, P.L.W.; Walton, N.L.; Weiss, G.L.; Smith, A.C.; Nguyen, D.P.; Lewis, M.; Quirk, M.C.; Barros, L.; Melon, L.C.; et al. Allopregnanolone Mediates Affective Switching Through Modulation of Oscillatory States in the Basolateral Amygdala. Biol. Psychiatry 2022, 91, 283–293. [Google Scholar] [CrossRef]
- Rupprecht, R.; Papadopoulos, V.; Rammes, G.; Baghai, T.C.; Fan, J.; Akula, N.; Groyer, G.; Adams, D.; Schumacher, M. Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat. Rev. Drug Discov. 2010, 9, 971–988. [Google Scholar] [CrossRef] [PubMed]
- Li, X.B.; Liu, A.; Yang, L.; Zhang, K.; Wu, Y.M.; Zhao, M.G.; Liu, S.B. Antidepressant-like effects of translocator protein (18 kDa) ligand ZBD-2 in mouse models of postpartum depression. Mol. Brain 2018, 11, 12. [Google Scholar] [CrossRef] [PubMed]
- Strathearn, L.; Fonagy, P.; Amico, J.; Montague, P.R. Adult attachment predicts maternal brain and oxytocin response to infant cues. Neuropsychopharmacology 2009, 34, 2655–2666. [Google Scholar] [CrossRef] [PubMed]
- Kim, P.; Feldman, R.; Mayes, L.C.; Eicher, V.; Thompson, N.; Leckman, J.F.; Swain, J.E. Breastfeeding, brain activation to own infant cry, and maternal sensitivity. J. Child. Psychol. Psychiatry 2011, 52, 907–915. [Google Scholar] [CrossRef]
- Lorberbaum, J.P.; Newman, J.D.; Horwitz, A.R.; Dubno, J.R.; Lydiard, R.B.; Hamner, M.B.; Bohning, D.E.; George, M.S. A potential role for thalamocingulate circuitry in human maternal behavior. Biol. Psychiatry 2002, 51, 431–445. [Google Scholar] [CrossRef] [PubMed]
- Hoekzema, E.; Barba-Müller, E.; Pozzobon, C.; Picado, M.; Lucco, F.; García-García, D.; Soliva, J.C.; Tobeña, A.; Desco, M.; Crone, E.A.; et al. Pregnancy leads to long-lasting changes in human brain structure. Nat. Neurosci. 2016, 20, 287–296. [Google Scholar] [CrossRef]
- Lima-Ojeda, J.M.; Rupprecht, R.; Baghai, T.C. Neurobiology of depression: A neurodevelopmental approach. World J. Biol. Psychiatry 2018, 19, 349–359. [Google Scholar] [CrossRef]
- Kim, P.; Dufford, A.J.; Tribble, R.C. Cortical thickness variation of the maternal brain in the first 6 months postpartum: Associations with parental self-efficacy. Brain Struct. Funct. 2018, 223, 3267–3277. [Google Scholar] [CrossRef]
- Kim, P.; Leckman, J.F.; Mayes, L.C.; Feldman, R.; Wang, X.; Swain, J.E. The plasticity of human maternal brain: Longitudinal changes in brain anatomy during the early postpartum period. Behav. Neurosci. 2010, 124, 695–700. [Google Scholar] [CrossRef]
- Moses-Kolko, E.L.; Banihashemi, L.; Hipwell, A.E. Reduced postpartum hippocampal volume is associated with positive mother-infant caregiving behavior. J. Affect. Disord. 2021, 281, 297–302. [Google Scholar] [CrossRef]
- Eid, R.S.; Chaiton, J.A.; Lieblich, S.E.; Bodnar, T.S.; Weinberg, J.; Galea, L.A.M. Early and late effects of maternal experience on hippocampal neurogenesis, microglia, and the circulating cytokine milieu. Neurobiol. Aging 2019, 78, 1–17. [Google Scholar] [CrossRef]
- Pawluski, J.L.; Barakauskas, V.E.; Galea, L.A. Pregnancy decreases oestrogen receptor alpha expression and pyknosis, but not cell proliferation or survival, in the hippocampus. J. Neuroendocr. Neuroendocrinol. 2010, 22, 248–257. [Google Scholar] [CrossRef]
- Green, A.D.; Galea, L.A.M. Adult hippocampal cell proliferation is suppressed with estrogen withdrawal after a hormone-simulated pregnancy. Horm. Behav. 2008, 54, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Pawluski, J.L.; Valença, A.; Santos, A.I.M.; Costa-Nunes, J.P.; Steinbusch, H.W.M.; Strekalova, T. Pregnancy or stress decrease complexity of CA3 pyramidal neurons in the hippocampus of adult female rats. Neuroscience 2012, 227, 201–210. [Google Scholar] [CrossRef]
- Li, N.; Lee, B.; Liu, R.-J.; Banasr, M.; Dwyer, J.M.; Iwata, M.; Li, X.-Y.; Aghajanian, G.; Duman, R.S. mTOR-Dependent Synapse Formation Underlies the Rapid Antidepressant Effects of NMDA Antagonists. Science 2010, 329, 959–964. [Google Scholar] [CrossRef] [PubMed]
- Hoirisch-Clapauch, S. The Fibrinolytic System in Peripartum Depression. Semin. Thromb. Hemost. 2022, 49, 382–390. [Google Scholar] [CrossRef]
- Vanmierlo, T.; De Vry, J.; Nelissen, E.; Sierksma, A.; Roumans, N.; Steinbusch, H.W.M.; Wennogle, L.P.; van den Hove, D.; Prickaerts, J. Gestational stress in mouse dams negatively affects gestation and postpartum hippocampal BDNF and P11 protein levels. Mol. Cell. Neurosci. 2018, 88, 292–299. [Google Scholar] [CrossRef]
- von Poser Toigo, E.; Diehl, L.A.; Ferreira, A.G.K.; Mackendanz, V.; Krolow, R.; Benitz, A.N.D.; Noschang, C.; Huffell, A.P.; Silveira, P.P.; Wyse, A.T.S.; et al. Maternal Depression Model: Long-Lasting Effects on the Mother Following Separation from Pups. Neurochem. Res. 2011, 37, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Huang, X.Y.; Zhou, L.; Zhou, Q.G.; Hu, Y.; Luo, C.X.; Li, F.; Zhu, D.Y. DETA/NONOate, a nitric oxide donor, produces antidepressant effects by promoting hippocampal neurogenesis. Psychopharmacology 2008, 200, 231–242. [Google Scholar] [CrossRef]
- Acker, C.I.; Luchese, C.; Prigol, M.; Nogueira, C.W. Antidepressant-like effect of diphenyl diselenide on rats exposed to malathion: Involvement of Na+K+ ATPase activity. Neurosci. Lett. 2009, 455, 168–172. [Google Scholar] [CrossRef]
- el-Mallakh, R.S.; Wyatt, R.J. The Na,K-ATPase hypothesis for bipolar illness. Biol. Psychiatry 1995, 37, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Avraham, Y.; Hants, Y.; Vorobeiv, L.; Staum, M.; Abu Ahmad, W.; Mankuta, D.; Galun, E.; Arbel-Alon, S. Brain neurotransmitters in an animal model with postpartum depressive-like behavior. Behav. Brain Res. 2017, 326, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.; Zhou, Y.; Kwok, V.P.Y.; Li, Y.; Wang, S.; Zhao, Y.; Meng, Y.; Deng, W.; Wang, J. Altered functional connectivity density and couplings in postpartum depression with and without anxiety. Soc. Social. Cogn. Affect. Neurosci. 2022, 17, 756–766. [Google Scholar] [CrossRef]
- Silverman, M.E.; Loudon, H.; Safier, M.; Protopopescu, X.; Leiter, G.; Liu, X.; Goldstein, M. Neural dysfunction in postpartum depression: An fMRI pilot study. CNS Spectr. 2007, 12, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.K.; Guo, C.; Moses-Kolko, E.L.; Phillips, M.L.; Stepp, S.D.; Hipwell, A.E. Postpartum depressive symptoms moderate the link between mothers’ neural response to positive faces in reward and social regions and observed caregiving. Soc. Social. Cogn. Affect. Neurosci. 2017, 12, 1605–1613. [Google Scholar] [CrossRef] [PubMed]
- Post, C.; Leuner, B. The maternal reward system in postpartum depression. Arch. Women’s Ment. Health 2018, 22, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Money, K.M.; Stanwood, G.D. Developmental origins of brain disorders: Roles for dopamine. Front. Cell. Neurosci. 2013, 7, 260. [Google Scholar] [CrossRef]
- Bolton, J.L.; Wiley, M.G.; Ryan, B.; Truong, S.; Strait, M.; Baker, D.C.; Yang, N.Y.; Ilkayeva, O.; O’Connell, T.M.; Wroth, S.W.; et al. Perinatal western-type diet and associated gestational weight gain alter postpartum maternal mood. Brain Behav. 2017, 7, e00828. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; He, L.; Li, Z.; Ding, R.; Han, X.; Chen, B.; Cao, G.; Ye, J.-H.; Li, T.; Fu, R. Bridging Neurobiological Insights and Clinical Biomarkers in Postpartum Depression: A Narrative Review. Int. J. Mol. Sci. 2024, 25, 8835. https://doi.org/10.3390/ijms25168835
Zhang K, He L, Li Z, Ding R, Han X, Chen B, Cao G, Ye J-H, Li T, Fu R. Bridging Neurobiological Insights and Clinical Biomarkers in Postpartum Depression: A Narrative Review. International Journal of Molecular Sciences. 2024; 25(16):8835. https://doi.org/10.3390/ijms25168835
Chicago/Turabian StyleZhang, Keyi, Lingxuan He, Zhuoen Li, Ruxuan Ding, Xiaojiao Han, Bingqing Chen, Guoxin Cao, Jiang-Hong Ye, Tian Li, and Rao Fu. 2024. "Bridging Neurobiological Insights and Clinical Biomarkers in Postpartum Depression: A Narrative Review" International Journal of Molecular Sciences 25, no. 16: 8835. https://doi.org/10.3390/ijms25168835
APA StyleZhang, K., He, L., Li, Z., Ding, R., Han, X., Chen, B., Cao, G., Ye, J.-H., Li, T., & Fu, R. (2024). Bridging Neurobiological Insights and Clinical Biomarkers in Postpartum Depression: A Narrative Review. International Journal of Molecular Sciences, 25(16), 8835. https://doi.org/10.3390/ijms25168835