Genetic Polymorphisms in the HMGCR Gene and Associations with Cognitive Decline in Parkinson’s Disease Patients
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Subjects
4.2. Neurological Examination
4.3. Neuropsychological Assessment
4.4. Genetic Study
4.5. Statistical Analysis
5. Conclusions
6. Study Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kalia, L.V.; Lang, A.E.; Hazrati, L.N.; Fujioka, S.; Wszolek, Z.K.; Dickson, D.W.; Ross, O.A.; Van Deerlin, V.M.; Trojanowski, J.Q.; Hurtig, H.I.; et al. Clinical correlations with Lewy body pathology in LRRK2-related Parkinson disease. JAMA Neurol. 2015, 72, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Aarsland, D.; Kurz, M.W. The epidemiology of dementia associated with Parkinson disease. J. Neurol. Sci. 2010, 289, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Jellinger, K.A. Alpha-synuclein pathology in Parkinson’s and Alzheimer’s disease brain: Incidence and topographic distribution—A pilot study. Acta Neuropathol. 2003, 106, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Shahmoradian, S.H.; Lewis, A.J.; Genoud, C.; Hench, J.; Moors, T.E.; Navarro, P.P.; Castaño-Díez, D.; Schweighauser, G.; Graff-Meyer, A.; Goldie, K.N.; et al. Lewy pathology in Parkinson’s disease consists of crowded organelles and lipid membranes. Nat. Neurosci. 2019, 22, 1099–1109. [Google Scholar] [CrossRef] [PubMed]
- Alecu, I.; Bennett, S.A.L. Dysregulated Lipid Metabolism and Its Role in α-Synucleinopathy in Parkinson’s Disease. Front. Neurosci. 2019, 13, 328. [Google Scholar] [CrossRef]
- Björkhem, I.; Meaney, S. Brain cholesterol: Long secret life behind a barrier. Arter. Thromb. Vasc. Biol. 2004, 24, 806–815. [Google Scholar] [CrossRef]
- Paul, R.; Choudhury, A.; Borah, A. Cholesterol—A putative endogenous contributor towards Parkinson’s disease. Neurochem. Int. 2015, 90, 125–133. [Google Scholar] [CrossRef]
- Peng, Z.; Dong, S.; Tao, Y.; Huo, Y.; Zhou, Z.; Huang, W.; Qu, H.; Liu, J.; Chen, Y.; Xu, Z.; et al. Metabolic syndrome contributes to cognitive impairment in patients with Parkinson’s disease. Park. Relat. Disord. 2018, 55, 68–74. [Google Scholar] [CrossRef]
- Hu, G.; Antikainen, R.; Jousilahti, P.; Kivipelto, M.; Tuomilehto, J. Total cholesterol and the risk of Parkinson disease. Neurology 2008, 70, 1972–1979. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Chen, H.; Miller, W.C.; Mailman, R.B.; Woodard, J.L.; Chen, P.C.; Xiang, D.; Murrow, R.W.; Wang, Y.Z.; Poole, C. Lower low-density lipoprotein cholesterol levels are associated with Parkinson’s disease. Mov. Disord. 2007, 22, 377–381. [Google Scholar] [CrossRef]
- Choe, C.U.; Petersen, E.; Lezius, S.; Cheng, B.; Schulz, R.; Buhmann, C.; Pötter-Nerger, M.; Daum, G.; Blankenberg, S.; Gerloff, C.; et al. Association of lipid levels with motor and cognitive function and decline in advanced Parkinson’s disease in the Mark-PD study. Park. Relat. Disord. 2021, 85, 5–10. [Google Scholar] [CrossRef]
- Saeedi Saravi, S.S.; Saeedi Saravi, S.S.; Arefidoust, A.; Dehpour, A.R. The beneficial effects of HMG-CoA reductase inhibitors in the processes of neurodegeneration. Metab. Brain Dis. 2017, 32, 949–965. [Google Scholar] [CrossRef]
- Yan, J.; Qiao, L.; Tian, J.; Liu, A.; Wu, J.; Huang, J.; Shen, M.; Lai, X. Effect of statins on Parkinson’s disease: A systematic review and meta-analysis. Medicine 2019, 98, e14852. [Google Scholar] [CrossRef]
- Medina, M.W.; Gao, F.; Ruan, W.; Rotter, J.I.; Krauss, R.M. Alternative splicing of 3-hydroxy-3-methylglutaryl coenzyme A reductase is associated with plasma low-density lipoprotein cholesterol response to simvastatin. Circulation 2008, 118, 355–362. [Google Scholar] [CrossRef]
- Donnelly, L.A.; Doney, A.S.; Dannfald, J.; Whitley, A.L.; Lang, C.C.; Morris, A.D.; Donnan, P.T.; Palmer, C.N. A paucimorphic variant in the HMG-CoA reductase gene is associated with lipid-lowering response to statin treatment in diabetes: A GoDARTS study. Pharmacogenet. Genom. 2008, 18, 1021–1026. [Google Scholar] [CrossRef]
- Chasman, D.I.; Posada, D.; Subrahmanyan, L.; Cook, N.R.; Stanton, V.P.; Ridker, P.M. Pharmacogenetic study of statin therapy and cholesterol reduction. JAMA 2004, 291, 2821–2827. [Google Scholar] [CrossRef] [PubMed]
- Leduc, V.; De Beaumont, L.; Théroux, L.; Dea, D.; Aisen, P.; Petersen, R.C.; Dufour, R.; Poirier, J. HMGCR is a genetic modifier for risk, age of onset and MCI conversion to Alzheimer’s disease in a three cohorts study. Mol. Psychiatry 2015, 20, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Anang, J.B.; Gagnon, J.F.; Bertrand, J.A.; Romenets, S.R.; Latreille, V.; Panisset, M.; Montplaisir, J.; Postuma, R.B. Predictors of dementia in Parkinson disease: A prospective cohort study. Neurology 2014, 83, 1253–1260. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; van Hilten, J.J.; Marinus, J. Predictors of dementia in Parkinson’s disease; findings from a 5-year prospective study using the SCOPA-COG. Park. Relat. Disord. 2014, 20, 980–985. [Google Scholar] [CrossRef]
- Aarsland, D.; Andersen, K.; Larsen, J.P.; Lolk, A.; Kragh-Sørensen, P. Prevalence and characteristics of dementia in Parkinson disease: An 8-year prospective study. Arch. Neurol. 2003, 60, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Benn, M.; Nordestgaard, B.G.; Frikke-Schmidt, R.; Tybjærg-Hansen, A. Low LDL cholesterol, PCSK9 and HMGCR genetic variation, and risk of Alzheimer’s disease and Parkinson’s disease: Mendelian randomisation study. BMJ 2017, 357, j1648. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Chen, Y.D.; Li, X.; Post, W.; Herrington, D.; Polak, J.F.; Rotter, J.I.; Taylor, K.D. The HMG-CoA reductase gene and lipid and lipoprotein levels: The multi-ethnic study of atherosclerosis. Lipids 2009, 44, 733–743. [Google Scholar] [CrossRef]
- Hurh, K.; Park, M.; Jang, S.I.; Park, E.C.; Jang, S.Y. Association between serum lipid levels over time and risk of Parkinson’s disease. Sci. Rep. 2022, 12, 21020. [Google Scholar] [CrossRef]
- Huang, C.Q.; Dong, B.R.; Wu, H.M.; Zhang, Y.L.; Wu, J.H.; Lu, Z.C.; Flaherty, J.H. Association of cognitive impairment with serum lipid/lipoprotein among Chinese nonagenarians and centenarians. Dement. Geriatr. Cogn. Disord. 2009, 27, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Pierzchlińska, A.; Białecka, M.; Kurzawski, M.; Sławek, J. The impact of Apolipoprotein E alleles on cognitive performance in patients with Parkinson’s disease. Neurol. Neurochir. Pol. 2018, 52, 477–482. [Google Scholar] [CrossRef]
- Pierzchlińska, A.; Sławek, J.; Mak, M.; Gawrońska-Szklarz, B.; Białecka, M. Genetic polymorphisms in the renin-angiotensin system and cognitive decline in Parkinson’s disease. Mol. Biol. Rep. 2021, 48, 5541–5548. [Google Scholar] [CrossRef]
- Yang, Z.; Xue, L.; Li, C.; Li, M.; Xie, A. Association between ABCA7 gene polymorphisms and Parkinson’s disease susceptibility in a northern Chinese Han population. Neurosci. Lett. 2022, 784, 136734. [Google Scholar] [CrossRef] [PubMed]
- Siokas, V.; Arseniou, S.; Aloizou, A.M.; Tsouris, Z.; Liampas, I.; Sgantzos, M.; Liakos, P.; Bogdanos, D.P.; Hadjigeorgiou, G.M.; Dardiotis, E. CD33 rs3865444 as a risk factor for Parkinson’s disease. Neurosci. Lett. 2021, 748, 135709. [Google Scholar] [CrossRef] [PubMed]
- Freitas, R.N.; Khaw, K.T.; Wu, K.; Bowman, R.; Jeffery, H.; Luben, R.; Wareham, N.J.; Rodwell, S. HMGCR gene polymorphism is associated with stroke risk in the EPIC-Norfolk study. Eur. J. Cardiovasc. Prev. Rehabil. 2010, 17, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Freitas, R.N.; Khaw, K.T.; Wu, K.; Bowman, R.; Jeffery, H.; Luben, R.; Wareham, N.J.; Bingham, S.A. A HMGCR polymorphism is associated with relations between blood pressure and urinary sodium and potassium ratio in the Epic-Norfolk Study. J. Am. Soc. Hypertens. 2009, 3, 238–244. [Google Scholar] [CrossRef]
- Rizwan, M.; Aslam, N.; Ashfaq, U.A.; Hayat, M.; Hussain, S.M. SNP of HMGCR and Apo E genes and their impact in response to statin therapy in hypercholesterolemic and hypertriglyceridemic patients in Pakistan. Pak. J. Pharm. Sci. 2021, 34, 1577–1583. [Google Scholar] [PubMed]
- Kushniarevich, A.; Utevska, O.; Chuhryaeva, M.; Agdzhoyan, A.; Dibirova, K.; Uktveryte, I.; Möls, M.; Mulahasanovic, L.; Pshenichnov, A.; Frolova, S.; et al. Genetic Heritage of the Balto-Slavic Speaking Populations: A Synthesis of Autosomal, Mitochondrial and Y-Chromosomal Data. PLoS ONE 2015, 10, e0135820. [Google Scholar] [CrossRef]
- Burkhardt, R.; Kenny, E.E.; Lowe, J.K.; Birkeland, A.; Josowitz, R.; Noel, M.; Salit, J.; Maller, J.B.; Pe’er, I.; Daly, M.J.; et al. Common SNPs in HMGCR in micronesians and whites associated with LDL-cholesterol levels affect alternative splicing of exon13. Arter. Thromb. Vasc. Biol. 2008, 28, 2078–2084. [Google Scholar] [CrossRef] [PubMed]
- Medina, M.W. The relationship between HMGCR genetic variation, alternative splicing, and statin efficacy. Discov. Med. 2010, 9, 495–499. [Google Scholar]
- Cano-Corres, R.; Candás-Estébanez, B.; Padró-Miquel, A.; Fanlo-Maresma, M.; Pintó, X.; Alía-Ramos, P. Influence of 6 genetic variants on the efficacy of statins in patients with dyslipidemia. J. Clin. Lab. Anal. 2018, 32, e22566. [Google Scholar] [CrossRef]
- Leduc, V.; Bourque, L.; Poirier, J.; Dufour, R. Role of rs3846662 and HMGCR alternative splicing in statin efficacy and baseline lipid levels in familial hypercholesterolemia. Pharmacogenet. Genom. 2016, 26, 1–11. [Google Scholar] [CrossRef]
- Chang, X.L.; Tan, L.; Tan, M.S.; Wang, H.F.; Tan, C.C.; Zhang, W.; Zheng, Z.J.; Kong, L.L.; Wang, Z.X.; Jiang, T.; et al. Association of HMGCR polymorphism with late-onset Alzheimer’s disease in Han Chinese. Oncotarget 2016, 7, 22746–22751. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.M.; Jensen, S.L.; Cockriel, K.L.; Davis, B.; Tschanz, J.T.; Munger, R.G.; Corcoran, C.D.; Kauwe, J.S.K. Association study of rs3846662 with Alzheimer’s disease in a population-based cohort: The Cache County Study. Neurobiol. Aging 2019, 84, 242.e1–242.e6. [Google Scholar] [CrossRef]
- Hughes, A.J.; Daniel, S.E.; Kilford, L.; Lees, A.J. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 1992, 55, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Litvan, I.; Aarsland, D.; Adler, C.H.; Goldman, J.G.; Kulisevsky, J.; Mollenhauer, B.; Rodriguez-Oroz, M.C.; Tröster, A.I.; Weintraub, D. MDS Task Force on mild cognitive impairment in Parkinson’s disease: Critical review of PD-MCI. Mov. Disord. 2011, 26, 1814–1824. [Google Scholar] [CrossRef]
- Emre, M.; Aarsland, D.; Brown, R.; Burn, D.J.; Duyckaerts, C.; Mizuno, Y.; Broe, G.A.; Cummings, J.; Dickson, D.W.; Gauthier, S.; et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov. Disord. 2007, 22, 1689–1707. [Google Scholar] [CrossRef] [PubMed]
p-Value a | p-Value b | Control Group | PDD | PD-MCI | PD-NCI | PD | Demographic and Clinical Data | |
---|---|---|---|---|---|---|---|---|
(n = 249) | (n = 85) | (n = 142) | (n = 79) | (n = 306) | ||||
0.593 * | <0.001 * | 76/173 | 49/36 | 74/68 | 46/33 | 169/137 | Sex (M/F) | |
<0.001 # | 0.261 & | 65.11 ± 9.27 | 68.60 ± 8.32 | 62.84 ± 9.04 | 62.90 ± 9.91 | 64.45 ± 9.41 | [mean ± SD] | Age [years] |
25–83 | 35–85 | 39–87 | 43–89 | 35–89 | [range] | |||
<0.001 # | 59.61 ± 9.61 | 56.16 ± 10.66 | 56.54 ± 10.54 | 57.22 ± 10.42 | [mean ± SD] | Age at disease onset [years] | ||
29–77 | 28–80 | 37–87 | 28–87 | [range] | ||||
0.002 & | 8.94 ± 5.62 | 6.70 ± 4.94 | 6.29 ± 4.63 | 7.21 ± 5.16 | [mean ± SD] | Disease duration | ||
0.5–24 | 1–21 | 0.5–21 | 0.5–24 | [range] | ||||
(n = 80) | (n = 131) | (n = 71) | (n = 282) | |||||
<0.001 & | 39.96 ± 22.36 | 28.46 ± 15.75 | 21.85 ± 12.09 | 30.06 ± 18.38 | [mean ± SD] | UPDRS (part II–IV) score | ||
4–101 | 2–80 | 1–54 | 1–101 | [range] | ||||
(n = 83) | (n = 141) | (n = 77) | (n = 301) | |||||
0.0005 & | 948.25 ± 493.17 | 782.82 ± 493.84 | 694.25 ± 391.55 | 805.78 ± 477.69 | [mean ± SD] | Daily L-dopa dosage [mg] | ||
150–2567 | 150–1995 | 150–1750 | 150–2567 | [range] |
OR (95% CI) | p-Value a | p-Value b | Control Group (n = 249) | PD Patients (n = 306) | . | |||
---|---|---|---|---|---|---|---|---|
% | n | % | n | |||||
HMGCR rs17244841 | ||||||||
genotype | ||||||||
- | 1 | AA + AT vs. TT | 0.252 | 94.38% | 235 | 96.41% | 295 | AA |
1.60 (0.71–3.59) | 0.31 | AA vs. AT + TT | 5.62% | 14 | 3.59% | 11 | AT | |
- | 1 | AA vs. TT | 0% | 0 | 0% | 0 | TT | |
1 | AT vs. TT | |||||||
1.60 (0.71–3.59) | 0.31 | AA vs. AT | ||||||
HMGCR rs17244841 | ||||||||
allele | ||||||||
97.19% | 484 | 98.20% | 601 | A | ||||
1.58 (0.71–3.51) | 0.31 | A vs. T | 2.81% | 14 | 1.80% | 11 | T | |
HMGCR rs3846662 | ||||||||
genotype | ||||||||
0.72 (0.48–1.09) | 0.14 | AA + AG vs. GG | 0.302 | 32.26% | 80 | 29.74% | 91 | AA |
0.89 (0.62–1.28) | 0.58 | AA vs. AG + GG | 49.60% | 123 | 46.73% | 143 | AG | |
0.71 (0.44–1.15) | 0.18 | AA vs. GG | 18.14% | 45 | 23.53% | 72 | GG | |
0.73 (0.47–1.13) | 0.18 | AG vs. GG | ||||||
0.98 (0.67–1.44) | 0.92 | AA vs. AG | ||||||
HMGCR rs3846662 | ||||||||
allele | ||||||||
57.06% | 283 | 53.10% | 325 | A | ||||
0.85 (0.67–1.08) | 0.2 | A vs. G | 42.94% | 213 | 46.90% | 287 | G | |
HMGCR rs17238540 | ||||||||
genotype | ||||||||
0.71 (0.25–1.97) | 0.6 | GG + GT vs. TT | 0.611 | 0.80% | 2 | 0.98% | 3 | GG |
1.22 (0.20–7.38) | 1 | GG vs. GT + TT | 2.41% | 6 | 1.31% | 4 | GT | |
1.21 (0.20–7.29) | 1 | GG vs. TT | 96.79% | 241 | 97.71% | 299 | TT | |
0.54 (0.15–1.93) | 0.36 | GT vs. TT | ||||||
2.25 (0.25–20.13) | 0.61 | GG vs. GT | ||||||
HMGCR rs17238540 | ||||||||
allele | ||||||||
2.01% | 10 | 1.63% | 10 | G | ||||
0.81 (0.34–1.96) | 0.66 | G vs. T | 97.99% | 488 | 98.37% | 602 | T |
p-Value # | PDD n = 65 (%) | PD-MCI n = 122 (%) | PD-NCI n = 67 (%) | Genotype/Allele | Polymorphism |
---|---|---|---|---|---|
0.76 | 63 (96.9) | 118 (96.7) | 66 (98.5) | AA | HMGCR rs17244841: A > T |
2 (3.1) | 4 (3.3) | 1 (1.5) | AT | ||
0 (0.0) | 0 (0.0) | 0 (0.0) | TT | ||
0.76 | 2 | 4 | 1 | AT + TT | |
0.763 | (0.8) | (1.6) | (1.5) | MAF (T%) | |
p-Value # | PDD n = 65 (%) | PD-MCI n = 122 (%) | PD-NCI n = 68 (%) | ||
0.041 | 26 (40.0) | 36 (29.5) | 16 (23.5) | AA | HMGCR rs3846662: A > G |
27 (41.5) | 64 (52.5) | 29 (42.7) | AG | ||
12 (18.5) | 22 (18.0) | 23 (33.8) | GG | ||
0.112 | 39 | 86 | 52 | AG + GG | |
0.026 | MAF (G%) | (55.15) | (44.26) | (39.23) | |
p-Value # | PDD n = 65 (%) | PD-MCI n = 122 (%) | PD-NCI n = 68 (%) | ||
0.19 | 0 (0.0) | 3 (2.5) | 0 (0.0) | GG | HMGCR rs17238540: T > G |
0 (0.0) | 0 (0.0) | 0 (0.0) | GT | ||
65 (100.0) | 119 (97.5) | 68 (100.0) | TT | ||
0.19 | 0 | 3 | 0 | GT + GG | |
0.037 | (0.0) | (2.46) | (0.0) | MAF (G%) |
HMGCR rs17238540 | Parameters | ||||
---|---|---|---|---|---|
TT vs. TG | TG | TT | |||
p-Value | Mean ± SD | n | Mean ± SD | n | |
0.957 * | 65.67 ± 4.93 | 3 | 65.90 ± 7.27 | 69 | Age [years] |
0.141* | 22.77 ± 1.30 | 3 | 26.29 ± 4.06 | 69 | BMI [kg/m2] |
0.130 * | 221.00 ± 40.29 | 3 | 187.38 ± 37.14 | 69 | CH [mg/dL] |
0.035 # | 84.47 ± 21.73 | 3 | 56.79 ± 13.92 | 69 | HDL [mg/dL] |
0.745 * | 117.67 ± 31.01 | 3 | 111.58 ± 31.64 | 69 | LDL [mg/dL] |
0.944 # | 94.00 ± 49.76 | 3 | 99.52 ± 35.11 | 69 | TG [mg/dL] |
HMGCR rs17244841 | Parameters | ||||
---|---|---|---|---|---|
AA vs. AT | AT | AA | |||
p-Value | Mean ± SD | n | Mean ± SD | n | |
0.957 * | 65.67 ± 4.93 | 3 | 65.90 ± 7.27 | 79 | Age [years] |
0.141 * | 22.77 ± 1.30 | 3 | 26.29 ± 4.06 | 79 | BMI [kg/m2] |
0.130 * | 221.00 ± 40.29 | 3 | 187.38 ± 37.14 | 79 | CH [mg/dL] |
0.035 # | 84.47 ± 21.73 | 3 | 56.79 ± 13.92 | 79 | HDL [mg/dL] |
0.745 * | 117.67 ± 31.01 | 3 | 111.58 ± 31.64 | 79 | LDL [mg/dL] |
0.944 # | 94.00 ± 49.76 | 3 | 99.52 ± 35.11 | 79 | TG [mg/dL] |
HMGCR rs3846662 Genotype | Parameters | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AA + GA vs. GG | GG + GA vs. | GG vs. AA | AA vs. GA | GG vs. GA | AA | GA | GG | ||||
AA | |||||||||||
p-Value & | Mean ± SD | n | Mean ± SD | n | Mean ± SD | n | |||||
0.91 | 0.888 | 0.986 | 0.806 | 0.9 | 65.36 ± 5.87 | 11 | 66.14 ± 6.86 | 37 | 65.75 ± 8.33 | 24 | Age [years] |
0.667 | 0.348 | 0.466 | 0.339 | 0.825 | 26.99 ± 3.46 | 11 | 26.07 ± 3.67 | 37 | 25.87 ± 4.87 | 24 | BMI [kg/m2] |
0.807 | 0.981 | 0.972 | 1 | 0.779 | 188.71 ± 18.06 | 11 | 190.80 ± 38.81 | 37 | 185.69 ± 42.96 | 24 | CH [mg/dL] |
0.053 | 0.197 | 0.062 | 0.469 | 0.108 | 63.62 ± 16.96 | 11 | 59.16 ± 14.97 | 37 | 53.47 ± 13.98 | 24 | HDL [mg/dL] |
0.914 | 0.32 | 0.67 | 0.211 | 0.751 | 105.90 ± 13.51 | 11 | 114.45 ± 33.06 | 37 | 110.54 ± 35.05 | 24 | LDL [mg/dL] |
0.256 | 0.839 | 0.546 | 0.932 | 0.252 | 95.44 ± 22.08 | 11 | 95.72 ± 35.64 | 37 | 106.55 ± 39.76 | 24 | TG [mg/dL] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pierzchlińska, A.; Sławek, J.; Kwaśniak-Butowska, M.; Malinowski, D.; Komaniecka, N.; Mak, M.; Czerkawska, A.; Kukowka, A.; Białecka, M. Genetic Polymorphisms in the HMGCR Gene and Associations with Cognitive Decline in Parkinson’s Disease Patients. Int. J. Mol. Sci. 2024, 25, 8964. https://doi.org/10.3390/ijms25168964
Pierzchlińska A, Sławek J, Kwaśniak-Butowska M, Malinowski D, Komaniecka N, Mak M, Czerkawska A, Kukowka A, Białecka M. Genetic Polymorphisms in the HMGCR Gene and Associations with Cognitive Decline in Parkinson’s Disease Patients. International Journal of Molecular Sciences. 2024; 25(16):8964. https://doi.org/10.3390/ijms25168964
Chicago/Turabian StylePierzchlińska, Anna, Jarosław Sławek, Magdalena Kwaśniak-Butowska, Damian Malinowski, Nina Komaniecka, Monika Mak, Anna Czerkawska, Arnold Kukowka, and Monika Białecka. 2024. "Genetic Polymorphisms in the HMGCR Gene and Associations with Cognitive Decline in Parkinson’s Disease Patients" International Journal of Molecular Sciences 25, no. 16: 8964. https://doi.org/10.3390/ijms25168964
APA StylePierzchlińska, A., Sławek, J., Kwaśniak-Butowska, M., Malinowski, D., Komaniecka, N., Mak, M., Czerkawska, A., Kukowka, A., & Białecka, M. (2024). Genetic Polymorphisms in the HMGCR Gene and Associations with Cognitive Decline in Parkinson’s Disease Patients. International Journal of Molecular Sciences, 25(16), 8964. https://doi.org/10.3390/ijms25168964