Aloperine Inhibits ASFV via Regulating PRLR/JAK2 Signaling Pathway In Vitro
Abstract
:1. Introduction
2. Results
2.1. ALO Inhibited ASFV Replication In Vitro
2.2. The Inhibition Stages of ALO on ASFV
2.3. ALO Did Not Exert Anti-Inflammatory Activity during ASFV Infection
2.4. Analysis of DEGs in MA-104 Cells Infected by ASFV Treated with/without ALO
2.5. RT-qPCR Confirmation of the Selected DEGs
2.6. Knockdown of PRLR Expression Could Inhibit ASFV Replication via Regulating JAK2 Signaling Pathway
3. Discussion
4. Materials and Methods
4.1. Cells, Virus, and Regents
4.2. Cell Viability
4.3. Fluorescence Imaging
4.4. Evaluating the Inhibiting Effect of ALO on ASFV
4.5. Time-of-Addition Assay
4.6. Virucidal Assay and Virus Entry Assay
4.7. Transcriptomic Sequencing and Data Analysis
4.8. Knockdown of PRLR and ANO3 Expression with siRNA
4.9. Western Blotting
4.10. qPCR and RT-qPCR
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karger, A.; Pérez-Núñez, D.; Urquiza, J.; Hinojar, P.; Alonso, C.; Freitas, F.B.; Revilla, Y.; Le Potier, M.-F.; Montoya, M. An update on African swine fever virology. Viruses 2019, 11, 864. [Google Scholar] [CrossRef]
- Gaudreault, N.N.; Madden, D.W.; Wilson, W.C.; Trujillo, J.D.; Richt, J.A. African swine fever virus: An emerging DNA arbovirus. Front. Vet. Sci. 2020, 7, 215. [Google Scholar]
- Zhang, R.; Huang, Y.; Bao, C.; Jung, Y.; Xu, J.; Qian, Y. Epidemiology of African swine fever and analysis of risk factors of its spread in China: An overview. Chin. J. Virol. 2019, 35, 512–522. [Google Scholar]
- Alonso, C.; Borca, M.; Dixon, L.; Revilla, Y.; Rodriguez, F.; Escribano, J.M.; Ictv Report, C. ICTV Virus Taxonomy Profile: Asfarviridae. J. Gen. Virol. 2018, 99, 613–614. [Google Scholar] [CrossRef]
- Kleiboeker, S.; Scoles, G.; Burrage, T.; Sur, J.-H. African swine fever virus replication in the midgut epithelium is required for infection of Ornithodoros ticks. J. Virol. 1999, 73, 8587–8598. [Google Scholar] [PubMed]
- Tran, X.H.; Le, T.T.P.; Nguyen, Q.H.; Do, T.T.; Nguyen, V.D.; Gay, C.G.; Borca, M.V.; Gladue, D.P. African swine fever virus vaccine candidate ASFV-G-ΔI177L efficiently protects European and native pig breeds against circulating Vietnamese field strain. Transbound. Emerg. Dis. 2022, 69, e497–e504. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Rauf, A.; Pan, X. Research Progress on the Natural Product Aloperine and Its Derivatives. Mini Rev. Med. Chem. 2022, 22, 729–742. [Google Scholar] [CrossRef]
- Qian, B.; Hu, Y.; Liu, C.; Zheng, D.; Han, X.; Gong, M.; Zou, Y.; Zeng, D.; Liao, K.; Miao, Y.; et al. Tetrandrine (TET) inhibits African swine fever virus entry into cells by blocking the PI3K/Akt pathway. Virus Res. 2024, 339, 199258. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Huang, L.; Gao, F.; Jian, W.; Chen, H.; Liao, M.; Qi, W. Berbamine Hydrochloride Inhibits African Swine Fever Virus Infection In Vitro. Molecules 2022, 28, 170. [Google Scholar] [CrossRef]
- Tolkachev, O.N.; Monakhova, T.E.; Sheichenko, V.I.; Kabanov, V.S.; Fesenko, O.G.; Proskurnina, N.F. Alkaloids of a new type from Sophora alopecuroides L. Chem. Nat. Compd. 1975, 11, 29–34. [Google Scholar] [CrossRef]
- Tahir, M.; Ali, S.; Zhang, W.; Lv, B.; Qiu, W.; Wang, J. Aloperine: A Potent Modulator of Crucial Biological Mechanisms in Multiple Diseases. Biomedicines 2022, 10, 905. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Choi, Y.H.; Xian, Z.; Zheng, M.; Piao, H.; Yan, G. Aloperine suppresses allergic airway inflammation through NF-κB, MAPK, and Nrf2/HO-1 signaling pathways in mice. Int. Immunopharmacol. 2018, 65, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Wang, Y.; Yang, Y.; Tao, L. Aloperine suppresses LPS-induced macrophage activation through inhibiting the TLR4/NF-κB pathway. Inflamm. Res. 2020, 69, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.Y.; Ma, H.M.; Li, R.Z.; Wang, R.Y.; Liu, W.; Guo, J.Y. Topical application of aloperine improves 2,4-dinitrofluorobenzene-induced atopic dermatitis-like skin lesions in NC/Nga mice. Eur. J. Pharmacol. 2011, 658, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Kavarthapu, R.; Anbazhagan, R.; Dufau, M.L. Crosstalk between PRLR and EGFR/HER2 Signaling Pathways in Breast Cancer. Cancers 2021, 13, 4685. [Google Scholar] [CrossRef]
- Clevenger, C.V.; Gadd, S.L.; Zheng, J. New mechanisms for PRLr action in breast cancer. Trends Endocrinol. Metab. 2009, 20, 223–229. [Google Scholar] [CrossRef]
- Rai, A.; Pruitt, S.; Ramirez-Medina, E.; Vuono, E.A.; Silva, E.; Velazquez-Salinas, L.; Carrillo, C.; Borca, M.V.; Gladue, D.P. Identification of a Continuously Stable and Commercially Available Cell Line for the Identification of Infectious African Swine Fever Virus in Clinical Samples. Viruses 2020, 12, 820. [Google Scholar] [CrossRef]
- Rai, A.; Pruitt, S.; Ramirez-Medina, E.; Vuono, E.A.; Silva, E.; Velazquez-Salinas, L.; Carrillo, C.; Borca, M.V.; Gladue, D.P. Detection and Quantification of African Swine Fever Virus in MA-104 Cells. Bio-Protocol 2021, 11, e3955. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, J.; Liu, C.; Li, T.; Wang, X.; Li, X.; Bao, M.; Li, J.; Huang, L.; Zhang, Z.; et al. CD1d facilitates African swine fever virus entry into the host cells via clathrin-mediated endocytosis. Emerg. Microbes Infect. 2023, 12, 2220575. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zheng, J.; Li, T.; Liu, C.; Bao, M.; Wang, X.; Li, X.; Li, J.; Huang, L.; Zhang, Z.; et al. Coreceptor AXL Facilitates African Swine Fever Virus Entry via Apoptotic Mimicry. J. Virol. 2023, 97, e0061623. [Google Scholar] [CrossRef]
- Dang, Z.; Xie, H.; Zhu, L.; Zhang, Q.; Li, Z.; Huang, L.; Chen, C.H. Structure Optimization of Aloperine Derivatives as HIV-1 Entry Inhibitors. ACS Med. Chem. Lett. 2017, 8, 1199–1203. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.Q.; Zou, L.L.; Tan, J.L.; Li, H.; Li, J.R.; Liu, N.N.; Dong, B.; Song, D.Q.; Peng, Z.G. Aloperine inhibits hepatitis C virus entry into cells by disturbing internalisation from endocytosis to the membrane fusion process. Eur. J. Pharmacol. 2020, 883, 173323. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, Q.; Zhang, N.; Li, Q.Q.; Liu, Z.D.; Li, Y.H.; Gao, L.M.; Wang, Y.C.; Deng, H.B.; Song, D.Q. Discovery and evolution of aloperine derivatives as novel anti-filovirus agents through targeting entry stage. Eur. J. Med. Chem. 2018, 149, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wu, J.J.; Xin, Z.; Zeng, Q.X.; Zhang, N.; Huang, W.J.; Tang, S.; Wang, Y.X.; Kong, W.J.; Wang, Y.C.; et al. Discovery and evolution of 12N-substituted aloperine derivatives as anti-SARS-CoV-2 agents through targeting late entry stage. Bioorganic Chem. 2021, 115, 105196. [Google Scholar] [CrossRef]
- Zhang, F.; Hopwood, P.; Abrams, C.C.; Downing, A.; Murray, F.; Talbot, R.; Archibald, A.; Lowden, S.; Dixon, L.K. Macrophage transcriptional responses following in vitro infection with a highly virulent African swine fever virus isolate. J. Virol. 2006, 80, 10514–10521. [Google Scholar] [CrossRef] [PubMed]
- Hernáez, B.; Guerra, M.; Salas, M.L.; Andrés, G. African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes. PLoS Pathog. 2016, 12, e1005595. [Google Scholar] [CrossRef]
- Chang, Z.; Zhang, P.; Zhang, M.; Jun, F.; Hu, Z.; Yang, J.; Wu, Y.; Zhou, R. Aloperine suppresses human pulmonary vascular smooth muscle cell proliferation via inhibiting inflammatory response. Chin. J. Physiol. 2019, 62, 157–165. [Google Scholar] [CrossRef]
- Fu, X.; Sun, F.; Wang, F.; Zhang, J.; Zheng, B.; Zhong, J.; Yue, T.; Zheng, X.; Xu, J.F.; Wang, C.Y. Aloperine Protects Mice against DSS-Induced Colitis by PP2A-Mediated PI3K/Akt/mTOR Signaling Suppression. Mediat. Inflamm. 2017, 2017, 5706152. [Google Scholar] [CrossRef]
- Gao, Q.; Yang, Y.; Feng, Y.; Quan, W.; Luo, Y.; Wang, H.; Zheng, J.; Chen, X.; Huang, Z.; Chen, X.; et al. Effects of the NF-κB Signaling Pathway Inhibitor BAY11-7082 in the Replication of ASFV. Viruses 2022, 14, 297. [Google Scholar] [CrossRef]
- Lopez Vicchi, F.; Becu-Villalobos, D. Prolactin: The Bright and the Dark Side. Endocrinology 2017, 158, 1556–1559. [Google Scholar] [CrossRef]
- Wallis, M. Do some viruses use growth hormone, prolactin and their receptors to facilitate entry into cells?: Episodic evolution of hormones and receptors suggests host-virus arms races; related placental lactogens may provide protective viral decoys. Bioessays 2021, 43, e2000268. [Google Scholar] [CrossRef]
- Swaminathan, G.; Varghese, B.; Thangavel, C.; Carbone, C.J.; Plotnikov, A.; Kumar, K.G.; Jablonski, E.M.; Clevenger, C.V.; Goffin, V.; Deng, L.; et al. Prolactin stimulates ubiquitination, initial internalization, and degradation of its receptor via catalytic activation of Janus kinase 2. J. Endocrinol. 2008, 196, R1–R7. [Google Scholar] [CrossRef]
- Pedemonte, N.; Galietta, L.J. Structure and function of TMEM16 proteins (anoctamins). Physiol. Rev. 2014, 94, 419–459. [Google Scholar] [CrossRef]
- Sim, J.R.; Shin, D.H.; Park, P.G.; Park, S.H.; Bae, J.Y.; Lee, Y.; Kang, D.Y.; Kim, Y.J.; Aum, S.; Noh, S.H.; et al. Amelioration of SARS-CoV-2 infection by ANO6 phospholipid scramblase inhibition. Cell Rep. 2022, 40, 111117. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Chen, L.; Tian, S.; Lin, Y.; Tang, Q.; Zhou, X.; Li, D.; Yeung, C.K.L.; Che, T.; Jin, L.; et al. Comprehensive variation discovery and recovery of missing sequence in the pig genome using multiple de novo assemblies. Genome Res. 2017, 27, 865–874. [Google Scholar] [CrossRef]
- Yin, D.; Shi, B.; Geng, R.; Liu, Y.; Gong, L.; Shao, H.; Qian, K.; Chen, H.; Qin, A. Function investigation of p11.5 in ASFV infection. Virol. Sin. 2024, 39, 469–477. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Xie, Z.; Ao, Q.; Di, D.; Yu, W.; Lv, L.; Zhong, Q.; Song, Y.; Liao, X.; et al. Development and in vivo evaluation of MGF100-1R deletion mutant in an African swine fever virus Chinese strain. Vet. Microbiol. 2021, 261, 109208. [Google Scholar] [CrossRef]
- Yin, D.; Geng, R.; Shao, H.; Ye, J.; Qian, K.; Chen, H.; Qin, A. Identification of novel linear epitopes in P72 protein of African swine fever virus recognized by monoclonal antibodies. Front. Microbiol. 2022, 13, 1055820. [Google Scholar]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Yin, D.; Geng, R.; Lv, H.; Bao, C.; Shao, H.; Ye, J.; Qian, K.; Qin, A. Development of real-time PCR based on A137R gene for the detection of African swine fever virus. Front. Vet. Sci. 2021, 8, 753967. [Google Scholar]
siRNA | Sequence (5′–3′) |
---|---|
siNC | UUCUCCGAACGUGUCACGUTT |
siPRLR-1173 | GGGCAAGUCUGAAGAACUATT |
siPRLR-1814 | CCGCUAAACCCUUGGAUUATT |
siPRLR-1502 | GCAUAAGCAUAGAAGGCAATT |
siANO3-362 | GCAGAGAGGCUGAAUAUAATT |
siANO3-2280 | GCUUAAAGGGAUAUGUCAATT |
siANO3-982 | UCAAGUAAGCCAAGAAAUUTT |
Target | Sequence (5′–3′) |
---|---|
ASFV-A137R-F | GGACATCGAGTGGTATTAAAAGG |
ASFV-A137R-R | TGGCCTGAAAGTCAACATTGA |
β-actin (monkey)-F | TCGATCATGAAGTGCGACGTG |
β-actin (monkey)-R | GTGATCTCCTTCTGCATCCTGTC |
IL-1β (monkey)-F | TAGACCTCTGCCCTCTGGAT |
IL-1β (monkey)-R | CTCCATGGCTACAACAACCG |
TNF-α (monkey)-F | CTGCACTTTGGAGTGATCGG |
TNF-α (monkey)-R | GCTACAGGCTTGTCACTTGG |
IL-6 (monkey)-F | GGAACGAAAGAGAAGCTCTA |
L-6 (monkey)-R | CTTGTGGAGACGGAGTTCA |
IL-8 (monkey)-F | AGCTCTGTGTGAAGGTGCAG |
IL-8 (monkey)-R | CAGAGCTCTCTTCCATCAGAAA |
GAPDH (pig)-F | CAAGGCTGTGGGCAAGGTCATC |
GAPDH (pig)-R | CACGAGGAAGCAAGCAGAGTCAG |
ASFV-B646L-F | CTGCTCATGGTATCAATCTTATCGA |
ASFV-B646L-R | GATACCACAAGATCAGCCGT |
ASFV-CP204L-F | GAGGAGACGGAATCCTCAGC |
ASFV-CP204L-R | GCAAGCATATACAGCTTGGAGT |
ANO3 (monkey)-F | CAGGAAAGCCTATTGTTATGACTG |
ANO3 (monkey)-R | CACAACTTTTGCAGGCCAGTT |
PRLR (monkey)-F | GCTGAGTGGGAGACCCATTT |
PRLR (monkey)-R | CCATGATCTGGTTTGCAGCG |
SPEF2 (monkey)-F | AAGAAAGCCAGGCAAGTGATCC |
SPEF2 (monkey)-R | TTGAGCACGCGTAGTGAGG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, R.; Shao, H.; Qian, K.; Chen, H.; Qin, A. Aloperine Inhibits ASFV via Regulating PRLR/JAK2 Signaling Pathway In Vitro. Int. J. Mol. Sci. 2024, 25, 9083. https://doi.org/10.3390/ijms25169083
Geng R, Shao H, Qian K, Chen H, Qin A. Aloperine Inhibits ASFV via Regulating PRLR/JAK2 Signaling Pathway In Vitro. International Journal of Molecular Sciences. 2024; 25(16):9083. https://doi.org/10.3390/ijms25169083
Chicago/Turabian StyleGeng, Renhao, Hongxia Shao, Kun Qian, Hongjun Chen, and Aijian Qin. 2024. "Aloperine Inhibits ASFV via Regulating PRLR/JAK2 Signaling Pathway In Vitro" International Journal of Molecular Sciences 25, no. 16: 9083. https://doi.org/10.3390/ijms25169083
APA StyleGeng, R., Shao, H., Qian, K., Chen, H., & Qin, A. (2024). Aloperine Inhibits ASFV via Regulating PRLR/JAK2 Signaling Pathway In Vitro. International Journal of Molecular Sciences, 25(16), 9083. https://doi.org/10.3390/ijms25169083