The Interplay between Autophagy and Mitochondria in Cancer
Abstract
:1. Introduction: The Function of Mitochondria
2. Autophagy
2.1. Selective Autophagy—Mitophagy
2.1.1. Ubiquitin-Mediated Mitophagy
2.1.2. Ubiquitin-Independent Mitophagy
Type of Mitophagy Receptors | Key Properties | Regulators (Positive [+]/Negative [-]) | Ubiquitin Dependent (+/-) | Location |
---|---|---|---|---|
Protein receptors | ||||
SQSTM/p62 | Oxidative-stress-inducible protein; regulator of Nrf2 factor, NF-kB [33] | ULK1 [+]; CK2 [+]; TBK1 [+]; mTORC1 [+]; | + | Cytoplasm |
CALCOCO2/NDP52 | Promotor of phagophore biogenesis [34] | TANK binding kinase 1 (TBK1), [+]; | + | Cytoplasm |
OPTN (Optineurin) | Promotor of phagophore biogenesis [35] | TNF-α [+]; Interferons [+]; | + | Cytoplasm |
NBR1 | Oxidative-stress-inducible protein; cooperates with p62 [35]; | - | + | Cytoplasm |
TAX1BP1 | Eliminator of excessive ROS [36,37] | - | + | Cytoplasm |
BNIP3 | BCL2 apoptosis regulator protein (pro-apoptotic); promotes hypoxia-induced autophagy; regulator of mTOR [32]; | FOXO3 (starvation, [+]); HIF-1 [+]; MA-5 [+]; | -/+ | OMM |
BNIP3L/NIX | Stress sensor; inducer of cell death and mitophagy (ischemia, erythrocyte development [38]) | HIF1A (hypoxia, [+]); GTPase RHEB (phosphorylation, [+]); PKA (phosphorylation, [-]); | -/+ | OMM |
FUNDC1 | Involved in hypoxia-induced mitophagy; dephosphorylated form activates fission and mitophagy; connects with fission (DNM1L, DRP1)/fusion (OPA1) proteins; regulator of proteostasis [39] | SRC (kinase, [-]); CK2 (kinase, [-]); ULK1(kinase, [+]); PGAM5 (phosphatase, [+]); MARCH5 (ubiquitin ligase E3, [-]); MIR137 [-]; | - | OMM |
BCL2L13 | Promotor of mitochondrial fragmentation; regulator of fission; maintainer of mitochondrial quality; inducer of apoptosis [32,40] | Unknown; | - | OMM |
FKBP8 | Anti-apoptotic protein; regulator of mTORC1; exerts peptidylprolyl isomerase activity [32,41] | RHEB [-]; | - | OMM |
AMBRA1 | Phagophore activator; along with BECN1, it is an activator of PtdIns3k (phosphatidylinositol 3-kinase); interacts with HUWE1 (E3 ubiquitin ligase) and thus induces ubiquitin-independent mitophagy [32,42] | NFKBI [+]; BCL2 family proteins [-]; MCL1 [-]; CHUK [+]; GSK3B [+]; | -/+ | OMM |
PHB2 (prohibitin 2) | Regulator of mitochondrial proteases; maintainer of mitochondrial genome; promotor of PINK1-PARKIN-dependent mitophagy; along with AURKA, it is a kinase promotor of PARKIN-independent mitophagy [32] | AURKA [+] | -/+ | OMM/IMM |
Lipid receptors | ||||
CL (cardiolipin) | Maintainer of electron transport chain function; involved in apoptosis; cooperates with BECN1 (mitophagy) and DNM1L (mitochondrial division) [43] | CRLS1 (cardiolipin synthase 1, [+]); PLSCR3 ((phospholipid scramblase 3), transport CL to OMM [+]); NDPK-D (kinase, [+]) PRRT2/PKC [+]; SNCA[+]; | - | OMM/IMM |
Ceramide | Ceramide-induced mitophagy [32] | CERS1(ceramide synthase 1, [+]); DNM1L [+]; | - | OMM |
2.1.3. Chaperone-Mediated Autophagy
3. Role of Autophagy in Tumorigenesis
4. Modulation of Mitochondria and Autophagy Exhibits Promise in Cancer Treatment
Compound | Mechanism | Ref. |
---|---|---|
Mitochondria inhibitors | ||
Rotenone | Inhibits complex I in gastric cancer cells (MKN-1, MKN-B, and MKN-74) | [91] |
BAY 87-2243 | Inhibited complex I in melanoma tumor xenograft (SK-MEL-28 and G-361 cells) and in vitro (A-375, G-361, SK-MEL-5, SK-MEL-28 cells) | [92] |
MitoVES (mitochondrially targeted vitamin E succinate) | Inhibits complex II in colon cancer (HCT116 cells in vitro and in BALB/c nu/nu mice) | [93] |
Atovaquone (ATO) | Inhibits complex III in breast cancer cells (MCF7) | [94] |
Antimycin A | Inhibits complex III in acute myeloid leukemia U937 and HL-60 cells | [95] |
VLX600 | Acts as an OXPHOS inhibitor (inhibiting complexes I, II, IV) in colon cancer 3-D microtissues; Acts as an iron chelator; Induces autophagy-dependent cell death and mitophagy through BNIP3/BNIP3L activation in glioblastoma cells (U251, MZ54, NCH644) and organotypic brain slice cultures | [96] |
BTB06584 | Inhibits ATP synthase in non-small-cell lung cancer cells (A549) | [97] |
Oligomycin | Inhibits ATP synthase in breast metastasis cells (MDA-MB-231) | [98] |
Mitochondrial activators | ||
Ophinobolin A (OPA) | Activates complex IV in lung squamous cell carcinoma (NCI-H1703) | [70] |
Autophagy inhibitors | ||
Vitexin | Inhibits LC3-associated autophagosome formation Decreases p-ERK1/2 levels in hepatocellular carcinoma (SK-Hep1 and Hepa1-6 cells) | [99] |
RA-XII | Inhibits AMPK pathway; Induces apoptosis through the suppression of autophagy in liver cancer (HepG2 cells); | [100] |
3-methyladenine (3-MA) | Inhibits LC3-I/II and class III PI3K complex; Increases p62 levels in colon cancer cells (LOVO and SW480) | [101] |
Astragaloside II | Decreases the levels of LC3-II and Beclin-1 in hepatic cancer cell lines (Bel-7402 and Bel-7402/FU) | [102] |
Bafilomycin A1 | Increases LC3 levels; Promotes the association of Beclin-1 and Bcl-2; Blocks V-ATPase in B-cell acute lymphoblastic leukemia (697 cells) | [103] |
SAR405 | Suppresses VPS34 and PIK3C3 kinase in carcinoma cell line H1299 | [104] |
Clarithromycin | Upregulates LC3-II in primary colorectal cancer surgical samples; Induces autophagosome formation and decreases p62/SQSTM1 levels in colorectal cancer (HCT116 cells) | [105] |
4-acetylantroquinonol B | Inhibits ATG5 in ovarian cell line ES-2 | [106] |
Autophagy activators | ||
Salinomycin | Increases LC3B-II levels and vacuolization in melanoma SK-Mel-19 cells | [107] |
Esomeprazole | Inhibits V-ATPase in lung cancer (A549/Taxol cells) | [108] |
Niraparib | Inhibits AKT/mTOR pathway and increases ROS levels; Activates ERK1/2 and increases LC3-II in hepatocellular carcinoma (Huh7 and HepG2) | [109] |
Matrine | Leads to the accumulation of LC3-II; Reduces the levels of total AKT and mTOR in gastric cancer (SGC-7901) | [110] |
Bisindolylmaleimide (BMA-155Cl) | Increases Beclin-1, NF-kB, and p65 levels in hepatocarcinoma HepG-2 cells | [111] |
Resveratrol Spermidine | Activates SIRT1 in colon cancer HCT 116 cells | [112] |
Bicyclol | Inhibits p-AKT and pERK; Decreases the levels of p-mTOR (Ser2448); Increases LC3-II levels in hepatocellular carcinoma cell HepG2 | [113] |
Glycochenodeoxycholate | Increases LC3-II and pAMPK levels; Decreases p63 and pmTOR levels in hepatocellular carcinoma (SMMC7721 and Huh7 cells) | [114] |
Lapatinib | Increases LC3-II, ATG7, Beclin-1, and ATG5 levels in acute myeloblastic leukemia (U937 cells) | [115] |
Lycorine | Decreases TCRP1 (tongue-cancer-resistance-associated protein 1) and p-AKT levels, increases LC3 II levels, and decreases Beclin-1 levels in hepatocellular carcinoma (HepG2 and SMMC-7721) | [116] |
Baicalein/baicalin | Activates ATG5, ATG7, ATG12, Beclin-1, and LC3-IIB proteins in bladder cancer T24 cells | [117] |
Epigallocatechin gallate (EGCG) | Elevates levels of LC3-II; Increases number of autophagosomes in cepatocellular carcinoma cell line HepG2 | [118] |
Title | Drug | Target | Cancer Type | ClinicalTrials.gov ID | Ref. |
---|---|---|---|---|---|
Targeted apoptotic pathway | |||||
A Phase I clinical trial evaluating the tolerance and pharmacokinetics of TQB3909 tablets in patients with relapsed or refractory advanced malignant tumors (China) | TQB3909 | BCL-2 inhibitor | Phase I: advanced malignant tumors | NCT04975204 | [119] |
A Phase Ib/ii study to investigate the safety, tolerance and pharmacokinetics of TQB3909 with HR-positive, HER2-negative advanced breast cancer (China) | Phase Ib/II: advanced breast cancer | NCT05775575 | |||
A Phase Ib/II clinical trial on the safety and efficacy of TQB3909 tablets in patients with recurrent or refractory CLL/SLL (China) | Phase Ib/II: chronic lymphocytic leukemia/small lymphocytic lymphoma | NCT05959694 | |||
A Phase 1a/1b open-label dose escalation and expansion study of Bcl-2 inhibitor BGB-11417 in patients with mature B-cell malignancies (United States) | Sonrotoclax (BGB-11417) or Sontroclax in combination with zanubrutinib and obinutuzumab | BCL-2 inhibitor | Phase Ia/Ib: mature B-cell malignancies | NCT04277637 | [120] |
A Phase I study of venetoclax in combination with cytotoxic chemotherapy, including calaspargase pegol, for children, adolescents and young adults with high-risk hematologic malignancies (United States) | Venetoclax in combination with azacitidine cytarabine, methotrexate, hydrocortisone, leucovorin, dexamethasone, vincristine, doxorubicin, dexrazoxane, calaspargase, pegol, erwinia asparaginase | Acute myeloid leukemia/chronic lymphocytic leukemia Phase I: hematologic malignancies | FDA-approved NCT05292664 | ||
A Phase 1 study of triplet therapy with navitoclax, venetoclax, and decitabine for high-risk myeloid malignancies (United States) | Venetoclax in combination with navitoclax and decitabine | Phase I: myeloid malignancy | NCT05455294 | ||
Phase 1 study of venetoclax, a BCL2 antagonist, for patients with blastic plasmacytoid dendritic cell neoplasm (BPDCN) (United States) | Venetoclax | Phase I: dendritic cell neoplasm | NCT03485547 | ||
A Phase 1b study of palbociclib, letrozole and venetoclax in ER and BCL-2 positive locally advanced or metastatic breast cancer (Australia) | Venetoclax in combination with palbociclib and letrozole | Phase Ib: breast cancer | NCT03900884 | ||
Phase Ib/II study of enzalutamide with venetoclax (ABT-199) in patients with metastatic castrate resistant prostate cancer (mCRPC) (United States) | Venetoclax in combination with enzalutamide | Phase Ib/II: prostate cancer | NCT03751436 | ||
A Phase 1b study of venetoclax in combination with pembrolizumab in subjects with previously untreated NSCLC whose tumors have high PD-L1 expression (United States) | Venetoclax in combination with pembrolizumab | Phase Ib: non-small-cell lung cancer | |||
A Phase 1 study of oral LOXO-338, a selective BCL-2 inhibitor, in patients with advanced hematologic malignancies (United States) | LOXO-338 | Phase I: advanced hematologic malignancies | NCT05024045 | [121] | |
A Phase 1 study investigating the safety, tolerability, pharmacokinetics, pharmacodynamics, and preliminary antitumor activity of second mitochondrial-derived activator of caspases mimetic BGB-24714 as monotherapy and with combination therapies in patients with solid tumors | BGB-24714 or BGB-24714 in combination with paclitaxel, carboplatin, docetaxel | SMAC (mitochondrial-derived activator of caspases) mimetic and inhibitor of apoptosis protein | Phase I: solid tumors | NCT05381909 | [122] |
A randomized, double-blind placebo-controlled, Phase 3 study of Debio 1143 in combination with platinum-based chemotherapy and standard fractionation intensity-modulated radiotherapy in patients with locally advanced squamous cell carcinoma of the head and neck, suitable for definitive chemoradiotherapy (TrilynX) (United States) | Xevinapant (Debio 1143) in combination with chemotherapy | Second mitochondrial-derived activator of caspases | Phase III: advanced squamous cell carcinoma of the head and neck | NCT04459715 | [123] |
A Phase 1b study of the OxPhos inhibitor ME-344 combined with bevacizumab in previously treated metastatic colorectal cancer (United States) | Me-344 combined with bevacizumab | OxPhos pathway inhibitor; purine biosynthesis inhibitor | Phase Ib: previously treated metastatic colorectal cancer | NCT05824559 | [124] |
A Phase 1 open-label, dose-escalation, safety, pharmacokinetic, and pharmacodynamic study of Minnelide™ capsules given alone or in combination with paclitaxel in patients with advanced gastric cancer (Republic of Korea) | Minnelide (triptolide) | SIRT3 regulator; c-myc down-regulator | Phase I: gastric cancer | NCT05566834 | [125] |
A Phase II trial of the superenhancer inhibitor minnelide in advanced refractory adenosquamous carcinoma of the pancreas (ASCP) (United States) | Phase II: advanced refractory adenosquamous carcinoma of the pancreas | NCT04896073 | |||
A Phase 1b open-label, dose-escalation, safety, and pharmacodynamic study of Minnelide™ capsules given in combination with osimertinib in patients with EGFR mutated NSCLC (United States) | Minnelide in combination with osimertinib | Phase Ib: lung cancer | NCT05166616 | ||
A Phase 1b, open-label, safety, pharmacokinetic, and pharmacodynamic study of an anti-super-enhancer Minnelide given along with abraxane plus gemcitabine in patients with metastatic adenocarcinoma of the pancreas (Republic of Korea) | Minnelide in combination with Abraxane and gemcitabine | Phase Ib: metastatic adenocarcinoma of the pancreas | NCT05557851 | ||
A Phase 1, multi-center, open-label, dose-escalation, safety, pharmacokinetic, and pharmacodynamic study of minnelide™ capsules given alone or in combination with protein-bound paclitaxel in patients with advanced solid tumors (United States) | Minnelide in combination with paclitaxel | Phase I: advanced solid tumors | NCT03129139 | ||
Targeting mitochondrial metabolism | |||||
A Phase I trial targeting mitochondrial metabolism with papaverine in combination with chemoradiation for stage II-III non-small cell lung cancer (United States) | Papaverine in combination with chemoradiation and immunotherapy | Mitochondrial Complex I inhibitor | Phase I: Stage II–III non-small-cell lung cancer | NCT05136846 | [126] |
Phase I trial of phenformin with patients with combination BRAF inhibitor/MEK inhibitor in patients with BRAFV600E/K-mutated melanoma (United States) | Phenformin in combination with dabrafenib and phenformin | Mitochondrial complex I inhibitor | Phase I: melanoma | NCT03026517 | [68] |
Phase II clinical trial repurposing atovaquone for the treatment of platinum-resistant ovarian cancer (United States) | Atovaquone (Mepron) | Mitochondrial complex III inhibitor | Phase II: ovarian cancer | NCT05998135 | [127] |
A Trial of atovaquone (Mepron®) combined with conventional chemotherapy for de novo acute myeloid leukemia (AML) adolescents, and young adults (ATACC AML) (United States) | Atovaquone in combination with conventional chemotherapy (cytarabine, daunorubicin, etoposide, gemtuzumab ozogamicin) | Mitochondrial complex III inhibitor | Phase I: acute myeloid leukemia | NCT03568994 | |
A Phase I study of oral carboxyamidotriazole orotate (CTO) titrated as a single agent in patients with advanced or metastatic solid tumors and titrated in combination therapy with temodar® for patients with glioblastoma and other recurrent malignant gliomas or in combination with temodar® and radiation therapy for patients with newly diagnosed glioblastoma and malignant gliomas (United States) | Carboxyamidotriazole orotate or in combination with temodar/radiation therapy | Non-voltage-dependent calcium channel inhibitor | Phase I: advanced or metastatic solid tumors Phase I: glioblastoma, malignant gliomas | NCT01107522 | [128] |
A Phase II clinical trial of CPI-613 in patients with relapsed or refractory Burkitt lymphoma/leukemia or high-grade B-cell lymphoma with rearrangements of MYC and BCL2 and/or BCL6 (United States) | Devimistat (CPI-613) | Pyruvate dehydrogenase and α-ketoglutarate dehydrogenase/2-oxoglutarate dehydrogenase | Phase II: relapsed/refractory Burkitt’s Lymphoma/leukemia or high-grade B-cell lymphoma with rearrangements of MYC and BCL2 and/or BCL6 | NCT03793140 | [129] |
A Phase II/I open-label clinical trial of CPI-613 in combination with modified FOLFIRINOX in patients with locally advanced pancreatic cancer and good performance status (United States) | Devimistat in combination with modified FOLFIRINOX (oxaliplatin, irinotecan, 5-flurouracil, and folinic acid) | Phase II/I: advanced pancreatic cancer | NCT03699319 | ||
A Phase I dose-escalation study of CPI-613 (Devimistat) in combination with chemoradiation in patients with pancreatic adenocarcinoma (United States) | Devimistat in combination with chemoradiation | Phase I: pancreatic adenocarcinoma | NCT05325281 | ||
Phase II open-label multi-cohort study evaluating CPI-613 (Devimistat) in combination with hydroxychloroquine and 5-fluorouracil or gemcitabine in patients with advanced chemorefractory colorectal, pancreatic, or other solid cancers (United States) | Devimistat in combination with hydroxychloroquine 5-fluorouracil or gemcitabine | Phase II: advanced chemorefractory colorectal, pancreatic or solid tumors | NCT05733000 | ||
Phase II study of AG-120 in people with IDH1 mutant chondrosarcoma (United States) | Ivosidenib (AG-120) | IDH1 inhibitor | Acute myeloid leukemia Phase II: Chondrosarcoma | FDA-approved NCT04278781 | [130] |
A Phase I, multicenter, open-label, dose-escalation and expansion, safety, pharmacokinetic, pharmacodynamic, and clinical activity study of orally administered AG-120 in subjects with advanced hematologic malignancies with an IDH1 mutation (United States) | Phase I: advanced hematologic malignancies | NCT02074839 | |||
Phase Ib/II investigator initiated study of the IDH1-mutant inhibitor ivosidenib (AG120) with the BCL2 inhibitor venetoclax +/- azacitidine in IDH1-mutated hematologic malignancies (United States) | Ivosidenib in combination with venetoclax +/- azacitidine | Phase Ib/II: IDH1-mutated hematologic malignancies | NCT03471260 | ||
Phase II study of enasidenib in IDH2-mutated malignant sinonasal and skull base tumors (United States) | Enasidenib | IDH2 inhibitor | FDA-approved for acute myeloid leukemia Phase II: malignant sinonasal and skull base tumors | NCT06176989 | [131] |
Trial of dichloroacetate (DCA) in glioblastoma multiforme (GBM) (United States) | Dichloracetate | Pyruvate dehydrogenase complex inhibitor | Phase IIA: glioblastoma | NCT05120284 | [132] |
Targeting autophagy | |||||
LIMIT melanoma: (lysosomal inhibition + melanoma immunotherapy) a Phase 1/2 open label trial of nivolumab and hydroxychloroquine or nivolumab/ipilimumab and hydroxychloroquine in patients with advanced melanoma (United States) | Hydroxychloroquine in combination with nivolumab/ipilimumab | Lysosomal acidification inhibitor; Disrupt the fusion of autophagosome with lysosome | Phase I/II: melanoma | NCT04464759 | [81,133] |
THREAD: A Phase I trial of trametinib and hydroxychloroquine in patients with advanced pancreatic cancer (United States) | Hydroxychloroquine in combination with trametinib | Phase I: advanced pancreatic cancer | NCT03825289 | ||
Binimetinib plus hydroxychloroquine in KRAS mutant metastatic pancreatic cancer (United States) | Hydroxychloroquine in combination with binimetinib | Phase I: KRAS mutant metastatic pancreatic cancer | NCT04132505 | ||
Modulation of sorafenib induced autophagy using hydroxychloroquine in hepatocellular cancer (United States) | Hydroxychloroquine in combination with sorafenib | Phase II: advanced hepatocellular cancer | NCT03037437 | ||
A Phase I trial of MK-2206 and hydroxychloroquine in solid tumors, melanoma, renal and prostate cancer to examine the role of autophagy in tumorigenesis (United States) | Hydroxychloroquine in combination with Akt inhibitor MK2206 | Phase I: advanced solid tumors, melanoma, prostate, kidney cancer | NCT01480154 | ||
Treatment of adults with newly diagnosed glioblastoma with partial brain radiation therapy plus temozolomide and chloroquine followed by tumor treating fields plus temozolomide and chloroquine—a pilot study (United States) | Chloroquine in combination with radiotherapy or tumor-treating fields therapy | Phase I: glioblastoma | NCT04397679 | ||
Phase II study of oral metformin for intravesical treatment of non-muscle-invasive bladder cancer (Netherlands) | Metformin | AMPK activator; mTOR inhibitor; STAT3-mediated pathway inhibitor; autophagy inducer (decreases p62, increases LC3-II); Complex I inhibitor | Phase II: non-muscle-invasive bladder cancer | NCT03379909 | [134,135,136] |
STOP-LEUKEMIA: Repurposing metformin as a leukemia-preventive drug in CCUS and LR-MDS (Denmark) | Metformin | Phase II: clonal cytopenia, myelodysplastic neoplasms | NCT04741945 | ||
Clinical effects of metformin on fertility-sparing treatment for early endometrial cancer (Republic of Korea) | Phase III: endometrial cancer | NCT04792749 | |||
Profiling and reversing metabolic insufficiency in the tumor microenvironment in advanced melanoma: a trial of pembrolizumab and metformin versus pembrolizumab alone in advanced melanoma (United States) | Metformin in combination with pembrolizumab | Phase I: advanced melanoma | NCT03311308 | ||
Phase 2A pilot trial of metformin, digoxin, simvastatin (C3) in combination with gemcitabine in subjects with recurrent/refractory metastatic advanced pancreatic cancer) (United States) | Metformin in combination with simvastatin, and digoxin +/- gemcitabine | Phase I/II: metastatic advanced pancreatic cancer | NCT06030622 | ||
Effect of metformin plus tyrosine kinase inhibitors compared with tyrosine kinase inhibitors alone for patients with advanced non-small cell lung cancer and EGFR mutations: Phase 3 randomized clinical trial (Mexico) | Metformin in combination with tyrosine kinase inhibitors | Phase II: advanced non-small-cell lung cancer | NCT05445791 | ||
A Phase 0, single-center, open-label, dose-escalating trial using super-selective intra-arterial infusion of a single dose of temsirolimus for the treatment of recurrent high-grade glioma (United states) | Temsirolimus (CCI-779) | Autophagy in-ducer; mTOR inhibitor | Advanced renal cell carcinoma Early phase 0: glioma, glioblastoma | FDA-approved NCT05773326 | [137] |
Phase II trial of encapsulated rapamycin (eRapa) for bladder cancer prevention (United States) | Rapamycin (Sirolimus) | Autophagy inducer; mTOR inhibitor | Phase II: bladder cancer | NCT04375813 | [138] |
A Phase I trial of sirolimus or everolimus or temsirolimus (mTOR inhibitor) and vorinostat (histone deacetylase inhibitor) in advanced cancer (United States) | Rapamycin in combination with vorinostat | Phase I: advanced cancer | NCT01087554 | ||
Combination of autophagy selective therapeutics (COAST) in advanced solid tumors or relapsed prostate cancer, a Phase I/II Trial (United States) | Rapamycin in combination with hydroxychloroquine, metformin or dasatanib or nelfinavir | Phase I/II: advanced solid tumors, relapsed prostate cancer | NCT05036226 | ||
Everolimus (afinitor) | Autophagy in-ducer; mTOR inhibitor | HER2-negative advanced breast cancer, pancreatic neuroendocrine tumors, renal cell carcinoma, angiomyolipoma | FDA-approved | [139,140] | |
Efficacy and safety of epigallocatechin-3-gallate, an important polyphenolic that originates from tea, in patients with esophageal squamous cancer: a Phase II trial (China) | Epigallocatechin gallate (EGCG) | Autophagy activator through ROS elevation, Beclin-1- and LC3B-increasing | Phase II: esophageal squamous cancer | NCT06398405 | [87] |
5. Challenges Faced in Relation to Therapies Targeting Mitochondrial and Autophagic Processes
6. Autophagy-Related Genes Hold Potential as Prognostic and Diagnostic Biomarkers for Cancer
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
13OD | 13-oxyingenol-dodecanoate |
ACD | autophagic cell death |
AJCC | American Joint Committee on Cancer |
AKT1 | AKT serine/threonine kinase 1 |
AMBRA1 | the activating molecule in BECLIN1-regulated autophagy 1 |
AMPK | AMP-activated protein kinase |
ATP | adenosine triphosphate |
ATP5F1A | ATP synthase F1 subunit alpha |
BAG1 | Bcl2-associated athanogene 1 protein |
BCL-2 | B-cell lymphoma-2 |
BCL2L13 | BCL2-Like 13 |
Beclin1 | Bcl-2-interacting myosin-like coiled-coil |
BIF1 | Bax-interacting factor 1 |
BMAL1 | basic helix–loop–helix ARNT-like 1 |
BNIP3 | BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 |
CALCOCO2/NDP52 | calcium-binding and coiled-coil domain 2 |
CAT | catalase |
CHIP | carboxyl terminus of hsc70-interacting protein |
CHMP2 | charged multivesicular body protein 2 |
CL | cardiolipin |
CLEAR | coordinated lysosomal expression and regulation |
CMA | chaperone-mediated autophagy |
COX IV | cytochrome c oxidase subunit 4 |
DAPK | death-associated protein kinase |
DAPK | death-associated protein kinase |
DJ-1 | nucleic acid deglycase |
DNAJB1 | DnaJ heat shock protein family (Hsp40) member B1 |
DRAM | damage-regulated autophagy modulator |
DUB | deubiquitinase |
DYNC1LI2 | Dynein Cytoplasmic 1 Light Intermediate Chain 2 |
EF1α | elongation factor 1-α |
EGCG | epigallocatechin gallate |
ER | endoplasmic reticulum |
ESCRT | endosomal sorting complex required for transport |
ETC | electron transport chain |
FKBP8 | FKBP Prolyl Isomerase 8 |
FUNDC1 | FUN14 Domain-Containing 1 |
GABARAP | GABA type A receptor-associated protein |
GFAP | glial fibrillary acidic protein |
GP78 | glycoprotein 78 |
GSH | glutathione |
GSH-Px | glutathione peroxidase |
GTEx | genotype-tissue expression |
GTP | guanosine triphosphate |
HMT | horizontal mitochondrial transfer |
HOP | hsp70-hsp90 organizing protein |
HOPS | homotypic fusion and protein sorting |
Hsp40 | heat shock protein 40 |
Hsp70 | heat shock protein 70 |
IMM | inner mitochondrial membrane |
KGDH | α-ketoglutarate dehydrogenase |
LAMP-2A | lysosome-associated membrane protein type 2A |
LC3 | microtubule-associated protein 1 light chain 3 |
LIR | LC3-interacting region |
MAM | mitochondria-associated membrane |
MAP1LC3/LC3 | microtubule associated protein 1 light chain 3 |
MFN2 | Mitofusin-2 |
Miro | mitochondrial Rho GTPase |
MMP | mitochondrial membrane potential |
MTCH1 | mitochondrial carrier 1 |
mTORC1 | mechanistic target of rapamycin complex 1 |
mTORC2 | mammalian target of rapamycin complex 2 |
mtROS | mitochondrial reactive oxygen species |
MUL1 | mitochondrial E3 ubiquitin ligase 1 |
NBR1 | neighbor of BRCA1 gene 1 protein |
NFAT1 | nuclear factor of activated T cells |
NFE2L2 | NFE2 Like BZIP transcription factor 2 |
NF-kB | nuclear factor kappa-light-chain-enhancer of activated B cells |
NOX | NADPH oxidase |
Nrf2 | nuclear factor erythroid 2-related factor 2 |
OMM | outer mitochondrial membrane |
OPTN | optineurin |
OSCC | oral squamous cell carcinoma |
OXPHOS | oxidative phosphorylation |
PAS | pre-autophagosomal structure |
PDH | pyruvate dehydrogenase |
PE | phosphatidylethanolamine |
PER1/2 | period circadian protein homolog 1/2 |
PGAM5 | mitochondrial serine/threonine protein phosphatase |
PHB2 | prohibitin 2 |
PHLPP1 | PH Domain And Leucine Rich Repeat Protein Phosphatase 1 |
PI3K | phosphatidylinositol 3-kinase |
PI3P | phosphoinositide 3-phosphate |
PINK1 | PTEN-induced putative kinase 1 |
PLEKHM1 | pleckstrin homology domain-containing family M member 1 |
PPT1 | palmitoyl-protein thioesterase 1 |
PTEN | phosphatase and tensin homolog |
Rab-7A | Ras-related protein Rab-7A |
RARα | retinoic acid receptor alpha |
RHOT1 | Ras homolog family member T1 |
RILP | Rab-interacting lysosomal protein |
ROS | reactive oxygen species |
SIAH1 | seven in absentia homolog 1 |
SMAC | mitochondrial-derived activator of caspases |
SNARE | soluble N-ethylmaleimide-sensitive attachment protein receptors |
SOD | superoxide dismutase |
SQSTM1/p62 | sequestosome 1 |
TAX1BP1 | Tax1 binding protein 1 |
TBK1 | TANK binding kinase 1 |
TCA | tricarboxylic acid |
TCGA | The Cancer Genome Atlas |
TFEB | transcription factor EB |
TLR | toll-like receptor |
TNFa | tumor necrosis factor α |
Tom20 | mitochondrial import receptor subunit TOM20 homolog |
TOMM7 | translocase of outer mitochondrial membrane 7 |
TRAF6 | tumor-necrosis-factor-receptor-associated factor 6 |
TRX | reduced thioredoxin |
TRX-Px | thioredoxin peroxidase |
TSC1/2 | tuberous sclerosis protein 1 and 2 |
ULK | Unc-51-like kinase |
ULK1/2 | serine/threonine Unc-51 like kinase ½ |
UVRAG | UV radiation resistance-associated |
VDAC-1 | voltage-dependent anion channel-1 |
VPS34 | vacuolar protein sorting 34 |
WIPI2 | WD-repeat domain phosphoinositide-interacting 2 |
References
- Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417, 1–13. [Google Scholar] [CrossRef]
- Cheung, E.C.; Vousden, K.H. The role of ROS in tumour development and progression. Nat. Rev. Cancer 2022, 22, 280–297. [Google Scholar] [CrossRef]
- Dong, L.F.; Rohlena, J.; Zobalova, R.; Nahacka, Z.; Rodriguez, A.M.; Berridge, M.V.; Neuzil, J. Mitochondria on the move: Horizontal mitochondrial transfer in disease and health. J. Cell Biol. 2023, 222, e202211044. [Google Scholar] [CrossRef] [PubMed]
- Mailloux, R.J. Mitochondrial Antioxidants and the Maintenance of Cellular Hydrogen Peroxide Levels. Oxid. Med. Cell. Longev. 2018, 2018, 7857251. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Zhang, Y.; Jin, K.; Lu, Z.; Zeng, Z.; Xiong, W. Communication between mitochondria and other organelles: A brand-new perspective on mitochondria in cancer. Cell Biosci. 2019, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Jiang, J.; Zhou, L.; Huang, Z.; Nice, E.C.; Huang, C.; Fu, L. Mitochondrial adaptation in cancer drug resistance: Prevalence, mechanisms, and management. J. Hematol. Oncol. 2022, 15, 97. [Google Scholar] [CrossRef] [PubMed]
- Kopinski, P.K.; Singh, L.N.; Zhang, S.; Lott, M.T.; Wallace, D.C. Mitochondrial DNA variation and cancer. Nat. Rev. Cancer 2021, 21, 431–445. [Google Scholar] [CrossRef]
- Sainero-Alcolado, L.; Liano-Pons, J.; Ruiz-Perez, M.V.; Arsenian-Henriksson, M. Targeting mitochondrial metabolism for precision medicine in cancer. Cell Death Differ. 2022, 29, 1304–1317. [Google Scholar] [CrossRef]
- Mukherjee, S.; Bhatti, G.K.; Chhabra, R.; Reddy, P.H.; Bhatti, J.S. Targeting mitochondria as a potential therapeutic strategy against chemoresistance in cancer. Biomed. Pharmacother. 2023, 160, 114398. [Google Scholar] [CrossRef]
- Missiroli, S.; Perrone, M.; Genovese, I.; Pinton, P.; Giorgi, C. Cancer metabolism and mitochondria: Finding novel mechanisms to fight tumours. eBioMedicine 2020, 59, 102943. [Google Scholar] [CrossRef]
- Rakesh, R.; PriyaDharshini, L.C.; Sakthivel, K.M.; Rasmi, R.R. Role and regulation of autophagy in cancer. Biochim. Biophys. Acta Mol. Basis Dis. 2022, 1868, 166400. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi-Dehlaghi, F.; Mohammadi, P.; Valipour, E.; Pournaghi, P.; Kiani, S.; Mansouri, K. Autophagy: A challengeable paradox in cancer treatment. Cancer Med. 2023, 12, 11542–11569. [Google Scholar] [CrossRef]
- Noguchi, M.; Hirata, N.; Tanaka, T.; Suizu, F.; Nakajima, H.; Chiorini, J.A. Autophagy as a modulator of cell death machinery. Cell Death Dis. 2020, 11, 517. [Google Scholar] [CrossRef]
- Rangel, M.; Kong, J.; Bhatt, V.; Khayati, K.; Guo, J.Y. Autophagy and tumorigenesis. FEBS J. 2022, 289, 7177–7198. [Google Scholar] [CrossRef]
- Yamamoto, H.; Zhang, S.; Mizushima, N. Autophagy genes in biology and disease. Nat. Rev. Genet. 2023, 24, 382–400. [Google Scholar] [CrossRef] [PubMed]
- Amaravadi, R.K.; Kimmelman, A.C.; Debnath, J. Targeting Autophagy in Cancer: Recent Advances and Future Directions. Cancer Discov. 2019, 9, 1167–1181. [Google Scholar] [CrossRef]
- Ichimiya, T.; Yamakawa, T.; Hirano, T.; Yokoyama, Y.; Hayashi, Y.; Hirayama, D.; Wagatsuma, K.; Itoi, T.; Nakase, H. Autophagy and Autophagy-Related Diseases: A Review. Int. J. Mol. Sci. 2020, 21, 8974. [Google Scholar] [CrossRef] [PubMed]
- Alers, S.; Loffler, A.S.; Wesselborg, S.; Stork, B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: Cross talk, shortcuts, and feedbacks. Mol. Cell. Biol. 2012, 32, 2–11. [Google Scholar] [CrossRef]
- Martens, S.; Fracchiolla, D. Activation and targeting of ATG8 protein lipidation. Cell Discov. 2020, 6, 23. [Google Scholar] [CrossRef]
- Agrotis, A.; von Chamier, L.; Oliver, H.; Kiso, K.; Singh, T.; Ketteler, R. Human ATG4 autophagy proteases counteract attachment of ubiquitin-like LC3/GABARAP proteins to other cellular proteins. J. Biol. Chem. 2019, 294, 12610–12621. [Google Scholar] [CrossRef]
- Chavez-Dominguez, R.; Perez-Medina, M.; Lopez-Gonzalez, J.S.; Galicia-Velasco, M.; Aguilar-Cazares, D. The Double-Edge Sword of Autophagy in Cancer: From Tumor Suppression to Pro-tumor Activity. Front. Oncol. 2020, 10, 578418. [Google Scholar] [CrossRef]
- Hernandez, G.A.; Perera, R.M. Autophagy in cancer cell remodeling and quality control. Mol. Cell 2022, 82, 1514–1527. [Google Scholar] [CrossRef] [PubMed]
- Yim, W.W.; Mizushima, N. Lysosome biology in autophagy. Cell Discov. 2020, 6, 6. [Google Scholar] [CrossRef]
- Ferro, F.; Servais, S.; Besson, P.; Roger, S.; Dumas, J.F.; Brisson, L. Autophagy and mitophagy in cancer metabolic remodelling. Semin. Cell Dev. Biol. 2020, 98, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Doblado, L.; Lueck, C.; Rey, C.; Samhan-Arias, A.K.; Prieto, I.; Stacchiotti, A.; Monsalve, M. Mitophagy in Human Diseases. Int. J. Mol. Sci. 2021, 22, 3903. [Google Scholar] [CrossRef] [PubMed]
- Choubey, V.; Zeb, A.; Kaasik, A. Molecular Mechanisms and Regulation of Mammalian Mitophagy. Cells 2021, 11, 38. [Google Scholar] [CrossRef]
- Yan, C.; Gong, L.; Chen, L.; Xu, M.; Abou-Hamdan, H.; Tang, M.; Desaubry, L.; Song, Z. PHB2 (prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis. Autophagy 2020, 16, 419–434. [Google Scholar] [CrossRef]
- Ajoolabady, A.; Chiong, M.; Lavandero, S.; Klionsky, D.J.; Ren, J. Mitophagy in cardiovascular diseases: Molecular mechanisms, pathogenesis, and treatment. Trends Mol. Med. 2022, 28, 836–849. [Google Scholar] [CrossRef]
- Zuo, Z.; Jing, K.; Wu, H.; Wang, S.; Ye, L.; Li, Z.; Yang, C.; Pan, Q.; Liu, W.J.; Liu, H.F. Mechanisms and Functions of Mitophagy and Potential Roles in Renal Disease. Front. Physiol. 2020, 11, 935. [Google Scholar] [CrossRef]
- Vara-Perez, M.; Felipe-Abrio, B.; Agostinis, P. Mitophagy in Cancer: A Tale of Adaptation. Cells 2019, 8, 493. [Google Scholar] [CrossRef]
- Montava-Garriga, L.; Ganley, I.G. Outstanding Questions in Mitophagy: What We Do and Do Not Know. J. Mol. Biol. 2020, 432, 206–230. [Google Scholar] [CrossRef] [PubMed]
- Teresak, P.; Lapao, A.; Subic, N.; Boya, P.; Elazar, Z.; Simonsen, A. Regulation of PRKN-independent mitophagy. Autophagy 2022, 18, 24–39. [Google Scholar] [CrossRef]
- Sanchez-Martin, P.; Saito, T.; Komatsu, M. p62/SQSTM1: ‘Jack of all trades’ in health and cancer. FEBS J. 2019, 286, 8–23. [Google Scholar] [CrossRef]
- Boyle, K.B.; Ravenhill, B.J.; Randow, F. CALCOCO2/NDP52 initiates selective autophagy through recruitment of ULK and TBK1 kinase complexes. Autophagy 2019, 15, 1655–1656. [Google Scholar] [CrossRef] [PubMed]
- Padman, B.S.; Nguyen, T.N.; Uoselis, L.; Skulsuppaisarn, M.; Nguyen, L.K.; Lazarou, M. LC3/GABARAPs drive ubiquitin-independent recruitment of Optineurin and NDP52 to amplify mitophagy. Nat. Commun. 2019, 10, 408. [Google Scholar] [CrossRef]
- Cerda-Troncoso, C.; Varas-Godoy, M.; Burgos, P.V. Pro-Tumoral Functions of Autophagy Receptors in the Modulation of Cancer Progression. Front. Oncol. 2020, 10, 619727. [Google Scholar] [CrossRef]
- Fan, Y.; Cheng, Z.; Mao, L.; Xu, G.; Li, N.; Zhang, M.; Weng, P.; Zheng, L.; Dong, X.; Hu, S.; et al. PINK1/TAX1BP1-directed mitophagy attenuates vascular endothelial injury induced by copper oxide nanoparticles. J. Nanobiotechnol. 2022, 20, 149. [Google Scholar] [CrossRef] [PubMed]
- Sandoval, H.; Thiagarajan, P.; Dasgupta, S.K.; Schumacher, A.; Prchal, J.T.; Chen, M.; Wang, J. Essential role for Nix in autophagic maturation of erythroid cells. Nature 2008, 454, 232–235. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Lin, C.; Wu, K.; Jiang, L.; Wang, X.; Li, W.; Zhuang, H.; Zhang, X.; Chen, H.; Li, S.; et al. FUNDC1 regulates mitochondrial dynamics at the ER-mitochondrial contact site under hypoxic conditions. EMBO J. 2016, 35, 1368–1384. [Google Scholar] [CrossRef]
- Nakazawa, M.; Matsubara, H.; Matsushita, Y.; Watanabe, M.; Vo, N.; Yoshida, H.; Yamaguchi, M.; Kataoka, T. The Human Bcl-2 Family Member Bcl-rambo Localizes to Mitochondria and Induces Apoptosis and Morphological Aberrations in Drosophila. PLoS ONE 2016, 11, e0157823. [Google Scholar] [CrossRef]
- Bai, X.; Ma, D.; Liu, A.; Shen, X.; Wang, Q.J.; Liu, Y.; Jiang, Y. Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38. Science 2007, 318, 977–980. [Google Scholar] [CrossRef] [PubMed]
- Cecconi, F.; Di Bartolomeo, S.; Nardacci, R.; Fuoco, C.; Corazzari, M.; Giunta, L.; Romagnoli, A.; Stoykova, A.; Chowdhury, K.; Fimia, G.M.; et al. A novel role for autophagy in neurodevelopment. Autophagy 2007, 3, 506–508. [Google Scholar] [CrossRef]
- Li, X.X.; Tsoi, B.; Li, Y.F.; Kurihara, H.; He, R.R. Cardiolipin and its different properties in mitophagy and apoptosis. J. Histochem. Cytochem. 2015, 63, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Andrade-Tomaz, M.; de Souza, I.; Rocha, C.R.R.; Gomes, L.R. The Role of Chaperone-Mediated Autophagy in Cell Cycle Control and Its Implications in Cancer. Cells 2020, 9, 2140. [Google Scholar] [CrossRef]
- Jafari, M.; McCabe, M.; Cuervo, A.M. Chaperone-mediated autophagy: Mechanisms and physiological relevance. Curr. Opin. Physiol. 2022, 30, 100597. [Google Scholar] [CrossRef]
- Agarraberes, F.A.; Dice, J.F. A molecular chaperone complex at the lysosomal membrane is required for protein translocation. J. Cell Sci. 2001, 114, 2491–2499. [Google Scholar] [CrossRef]
- Kaushik, S.; Cuervo, A.M. The coming of age of chaperone-mediated autophagy. Nat. Rev. Mol. Cell Biol. 2018, 19, 365–381. [Google Scholar] [CrossRef]
- Kanno, H.; Handa, K.; Murakami, T.; Aizawa, T.; Ozawa, H. Chaperone-Mediated Autophagy in Neurodegenerative Diseases and Acute Neurological Insults in the Central Nervous System. Cells 2022, 11, 1205. [Google Scholar] [CrossRef]
- Hubert, V.; Weiss, S.; Rees, A.J.; Kain, R. Modulating Chaperone-Mediated Autophagy and Its Clinical Applications in Cancer. Cells 2022, 11, 2562. [Google Scholar] [CrossRef]
- Zhang, J.; Johnson, J.L.; He, J.; Napolitano, G.; Ramadass, M.; Rocca, C.; Kiosses, W.B.; Bucci, C.; Xin, Q.; Gavathiotis, E.; et al. Cystinosin, the small GTPase Rab11, and the Rab7 effector RILP regulate intracellular trafficking of the chaperone-mediated autophagy receptor LAMP2A. J. Biol. Chem. 2017, 292, 10328–10346. [Google Scholar] [CrossRef] [PubMed]
- Pajares, M.; Rojo, A.I.; Arias, E.; Diaz-Carretero, A.; Cuervo, A.M.; Cuadrado, A. Transcription factor NFE2L2/NRF2 modulates chaperone-mediated autophagy through the regulation of LAMP2A. Autophagy 2018, 14, 1310–1322. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Shen, H.M.; Lim, L.H.K. The Role of Autophagy in Liver Cancer: Crosstalk in Signaling Pathways and Potential Therapeutic Targets. Pharmaceuticals 2020, 13, 432. [Google Scholar] [CrossRef]
- Jain, V.; Singh, M.P.; Amaravadi, R.K. Recent advances in targeting autophagy in cancer. Trends Pharmacol. Sci. 2023, 44, 290–302. [Google Scholar] [CrossRef] [PubMed]
- Yun, C.W.; Jeon, J.; Go, G.; Lee, J.H.; Lee, S.H. The Dual Role of Autophagy in Cancer Development and a Therapeutic Strategy for Cancer by Targeting Autophagy. Int. J. Mol. Sci. 2020, 22, 179. [Google Scholar] [CrossRef]
- Movahhed, P.; Saberiyan, M.; Safi, A.; Arshadi, Z.; Kazerouni, F.; Teimori, H. The impact of DAPK1 and mTORC1 signaling association on autophagy in cancer. Mol. Biol. Rep. 2022, 49, 4959–4964. [Google Scholar] [CrossRef]
- Hu, Y.J.; Zhong, J.T.; Gong, L.; Zhang, S.C.; Zhou, S.H. Autophagy-Related Beclin 1 and Head and Neck Cancers. OncoTargets Ther. 2020, 13, 6213–6227. [Google Scholar] [CrossRef]
- Usman, R.M.; Razzaq, F.; Akbar, A.; Farooqui, A.A.; Iftikhar, A.; Latif, A.; Hassan, H.; Zhao, J.; Carew, J.S.; Nawrocki, S.T.; et al. Role and mechanism of autophagy-regulating factors in tumorigenesis and drug resistance. Asia Pac. J. Clin. Oncol. 2021, 17, 193–208. [Google Scholar] [CrossRef]
- Ying, H.; Qu, D.; Liu, C.; Ying, T.; Lv, J.; Jin, S.; Xu, H. Chemoresistance is associated with Beclin-1 and PTEN expression in epithelial ovarian cancers. Oncol. Lett. 2015, 9, 1759–1763. [Google Scholar] [CrossRef]
- Debnath, J.; Gammoh, N.; Ryan, K.M. Autophagy and autophagy-related pathways in cancer. Nat. Rev. Mol. Cell Biol. 2023, 24, 560–575. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Li, X.; Xue, W.; Pang, J.; Meng, Y.; Shen, Y.; Xu, Q. TP53INP2-related basal autophagy is involved in the growth and malignant progression in human liposarcoma cells. Biomed. Pharmacother. 2017, 88, 562–568. [Google Scholar] [CrossRef]
- Pan, J.; Lu, C.; Jun, W.; Wu, Y.; Shi, X.; Ding, Y. The up-regulation of P62 levels is associated with resistance of sorafenib in hepatocarcinoma cells. Int. J. Clin. Exp. Pathol. 2019, 12, 2622–2630. [Google Scholar] [PubMed]
- Shin, D.W. Dual Roles of Autophagy and Their Potential Drugs for Improving Cancer Therapeutics. Biomol. Ther. 2020, 28, 503–511. [Google Scholar] [CrossRef]
- Panigrahi, D.P.; Praharaj, P.P.; Bhol, C.S.; Mahapatra, K.K.; Patra, S.; Behera, B.P.; Mishra, S.R.; Bhutia, S.K. The emerging, multifaceted role of mitophagy in cancer and cancer therapeutics. Semin. Cancer Biol. 2020, 66, 45–58. [Google Scholar] [CrossRef]
- Fendt, S.M.; Frezza, C.; Erez, A. Targeting Metabolic Plasticity and Flexibility Dynamics for Cancer Therapy. Cancer Discov. 2020, 10, 1797–1807. [Google Scholar] [CrossRef] [PubMed]
- Parida, P.K.; Marquez-Palencia, M.; Ghosh, S.; Khandelwal, N.; Kim, K.; Nair, V.; Liu, X.Z.; Vu, H.S.; Zacharias, L.G.; Gonzalez-Ericsson, P.I.; et al. Limiting mitochondrial plasticity by targeting DRP1 induces metabolic reprogramming and reduces breast cancer brain metastases. Nat. Cancer 2023, 4, 893–907. [Google Scholar] [CrossRef]
- Wang, X.; Ji, Y.; Qi, J.; Zhou, S.; Wan, S.; Fan, C.; Gu, Z.; An, P.; Luo, Y.; Luo, J. Mitochondrial carrier 1 (MTCH1) governs ferroptosis by triggering the FoxO1-GPX4 axis-mediated retrograde signaling in cervical cancer cells. Cell Death Dis. 2023, 14, 508. [Google Scholar] [CrossRef]
- Yap, T.A.; Daver, N.; Mahendra, M.; Zhang, J.; Kamiya-Matsuoka, C.; Meric-Bernstam, F.; Kantarjian, H.M.; Ravandi, F.; Collins, M.E.; Francesco, M.E.D.; et al. Complex I inhibitor of oxidative phosphorylation in advanced solid tumors and acute myeloid leukemia: Phase I trials. Nat. Med. 2023, 29, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Di Magno, L.; Manni, S.; Di Pastena, F.; Coni, S.; Macone, A.; Cairoli, S.; Sambucci, M.; Infante, P.; Moretti, M.; Petroni, M.; et al. Phenformin Inhibits Hedgehog-Dependent Tumor Growth through a Complex I-Independent Redox/Corepressor Module. Cell Rep. 2020, 30, 1735–1752.e7. [Google Scholar] [CrossRef]
- Skwarski, M.; McGowan, D.R.; Belcher, E.; Di Chiara, F.; Stavroulias, D.; McCole, M.; Derham, J.L.; Chu, K.Y.; Teoh, E.; Chauhan, J.; et al. Mitochondrial Inhibitor Atovaquone Increases Tumor Oxygenation and Inhibits Hypoxic Gene Expression in Patients with Non-Small Cell Lung Cancer. Clin. Cancer Res. 2021, 27, 2459–2469. [Google Scholar] [CrossRef]
- Gowans, F.A.; Thach, D.Q.; Wang, Y.; Altamirano Poblano, B.E.; Dovala, D.; Tallarico, J.A.; McKenna, J.M.; Schirle, M.; Maimone, T.J.; Nomura, D.K. Ophiobolin A Covalently Targets Complex IV Leading to Mitochondrial Metabolic Collapse in Cancer Cells. bioRxiv 2023. [Google Scholar] [CrossRef]
- Fiorillo, M.; Scatena, C.; Naccarato, A.G.; Sotgia, F.; Lisanti, M.P. Bedaquiline, an FDA-approved drug, inhibits mitochondrial ATP production and metastasis in vivo, by targeting the gamma subunit (ATP5F1C) of the ATP synthase. Cell Death Differ. 2021, 28, 2797–2817. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Chen, Q.; Zhao, L.; Hu, P. Targeting ATP Synthase by Bedaquiline as a Therapeutic Strategy to Sensitize Ovarian Cancer to Cisplatin. Nutr. Cancer 2023, 75, 1271–1280. [Google Scholar] [CrossRef] [PubMed]
- Mohan, A.; Griffith, K.A.; Wuchu, F.; Zhen, D.B.; Kumar-Sinha, C.; Crysler, O.; Hsiehchen, D.; Enzler, T.; Dippman, D.; Gunchick, V.; et al. Devimistat in Combination with Gemcitabine and Cisplatin in Biliary Tract Cancer: Preclinical Evaluation and Phase Ib Multicenter Clinical Trial (BilT-04). Clin. Cancer Res. 2023, 29, 2394–2400. [Google Scholar] [CrossRef] [PubMed]
- Deeks, E.D. Venetoclax: First Global Approval. Drugs 2016, 76, 979–987. [Google Scholar] [CrossRef]
- Xu, J.; Dong, X.; Huang, D.C.S.; Xu, P.; Zhao, Q.; Chen, B. Current Advances and Future Strategies for BCL-2 Inhibitors: Potent Weapons against Cancers. Cancers 2023, 15, 4957. [Google Scholar] [CrossRef]
- Ploumaki, I.; Triantafyllou, E.; Koumprentziotis, I.A.; Karampinos, K.; Drougkas, K.; Karavolias, I.; Trontzas, I.; Kotteas, E.A. Bcl-2 pathway inhibition in solid tumors: A review of clinical trials. Clin. Transl. Oncol. 2023, 25, 1554–1578. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Y.; Meng, S.; Xu, P.; Li, S.; Li, Y.; Hu, X.; Ouyang, L.; Wang, G. Selective autophagy in cancer: Mechanisms, therapeutic implications, and future perspectives. Mol. Cancer 2024, 23, 22. [Google Scholar] [CrossRef]
- Chen, J.L.; Wu, X.; Yin, D.; Jia, X.H.; Chen, X.; Gu, Z.Y.; Zhu, X.M. Autophagy inhibitors for cancer therapy: Small molecules and nanomedicines. Pharmacol. Ther. 2023, 249, 108485. [Google Scholar] [CrossRef]
- Chang, H.; Zou, Z. Targeting autophagy to overcome drug resistance: Further developments. J. Hematol. Oncol. 2020, 13, 159. [Google Scholar] [CrossRef] [PubMed]
- Zeh, H.J.; Bahary, N.; Boone, B.A.; Singhi, A.D.; Miller-Ocuin, J.L.; Normolle, D.P.; Zureikat, A.H.; Hogg, M.E.; Bartlett, D.L.; Lee, K.K.; et al. A Randomized Phase II Preoperative Study of Autophagy Inhibition with High-Dose Hydroxychloroquine and Gemcitabine/Nab-Paclitaxel in Pancreatic Cancer Patients. Clin. Cancer Res. 2020, 26, 3126–3134. [Google Scholar] [CrossRef]
- Ferreira, P.M.P.; Sousa, R.W.R.; Ferreira, J.R.O.; Militao, G.C.G.; Bezerra, D.P. Chloroquine and hydroxychloroquine in antitumor therapies based on autophagy-related mechanisms. Pharmacol. Res. 2021, 168, 105582. [Google Scholar] [CrossRef] [PubMed]
- Rebecca, V.W.; Nicastri, M.C.; Fennelly, C.; Chude, C.I.; Barber-Rotenberg, J.S.; Ronghe, A.; McAfee, Q.; McLaughlin, N.P.; Zhang, G.; Goldman, A.R.; et al. PPT1 Promotes Tumor Growth and Is the Molecular Target of Chloroquine Derivatives in Cancer. Cancer Discov. 2019, 9, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.L.; Wustenberg, R.; Rubsam, A.; Schmitz-Salue, C.; Warnecke, G.; Bucker, E.M.; Pettkus, N.; Speidel, D.; Rohde, V.; Schulz-Schaeffer, W.; et al. Chloroquine activates the p53 pathway and induces apoptosis in human glioma cells. Neuro Oncol. 2010, 12, 389–400. [Google Scholar] [CrossRef]
- Schrezenmeier, E.; Dorner, T. Mechanisms of action of hydroxychloroquine and chloroquine: Implications for rheumatology. Nat. Rev. Rheumatol. 2020, 16, 155–166. [Google Scholar] [CrossRef]
- Buzun, K.; Gornowicz, A.; Lesyk, R.; Bielawski, K.; Bielawska, A. Autophagy Modulators in Cancer Therapy. Int. J. Mol. Sci. 2021, 22, 5804. [Google Scholar] [CrossRef]
- Elshazly, A.M.; Elzahed, A.A.; Gewirtz, D.A. The Cytoprotective and Cytotoxic Functions of Autophagy in Response to mTOR Inhibitors. Front. Biosci. 2024, 29, 231. [Google Scholar] [CrossRef]
- Ferrari, E.; Bettuzzi, S.; Naponelli, V. The Potential of Epigallocatechin Gallate (EGCG) in Targeting Autophagy for Cancer Treatment: A Narrative Review. Int. J. Mol. Sci. 2022, 23, 6075. [Google Scholar] [CrossRef]
- Shankar, S.; Suthakar, G.; Srivastava, R.K. Epigallocatechin-3-gallate inhibits cell cycle and induces apoptosis in pancreatic cancer. Front. Biosci. 2007, 12, 5039–5051. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Fu, M.; Wang, J.; Huang, F.; Liu, H.; Huangfu, M.; Yu, D.; Liu, H.; Li, X.; Guan, X.; et al. PTEN/AKT/mTOR signaling mediates anticancer effects of epigallocatechin-3-gallate in ovarian cancer. Oncol. Rep. 2020, 43, 1885–1896. [Google Scholar] [CrossRef]
- Yin, Z.; Li, J.; Kang, L.; Liu, X.; Luo, J.; Zhang, L.; Li, Y.; Cai, J. Epigallocatechin-3-gallate induces autophagy-related apoptosis associated with LC3B II and Beclin expression of bladder cancer cells. J. Food Biochem. 2021, 45, e13758. [Google Scholar] [CrossRef]
- Yoshida, J.; Ohishi, T.; Abe, H.; Ohba, S.I.; Inoue, H.; Usami, I.; Amemiya, M.; Oriez, R.; Sakashita, C.; Dan, S.; et al. Mitochondrial complex I inhibitors suppress tumor growth through concomitant acidification of the intra- and extracellular environment. iScience 2021, 24, 103497. [Google Scholar] [CrossRef] [PubMed]
- Schockel, L.; Glasauer, A.; Basit, F.; Bitschar, K.; Truong, H.; Erdmann, G.; Algire, C.; Hagebarth, A.; Willems, P.H.; Kopitz, C.; et al. Targeting mitochondrial complex I using BAY 87-2243 reduces melanoma tumor growth. Cancer Metab. 2015, 3, 11. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.F.; Jameson, V.J.; Tilly, D.; Cerny, J.; Mahdavian, E.; Marin-Hernandez, A.; Hernandez-Esquivel, L.; Rodriguez-Enriquez, S.; Stursa, J.; Witting, P.K.; et al. Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. J. Biol. Chem. 2011, 286, 3717–3728. [Google Scholar] [CrossRef]
- Cheng, G.; Hardy, M.; Topchyan, P.; Zander, R.; Volberding, P.; Cui, W.; Kalyanaraman, B. Potent inhibition of tumour cell proliferation and immunoregulatory function by mitochondria-targeted atovaquone. Sci. Rep. 2020, 10, 17872. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, T.; Ding, X.; Chang, Y.; Liu, C.; Zhang, Y.; Hao, S.; Yin, Q.; Jiang, B. Inhibition of mitochondrial complex III induces differentiation in acute myeloid leukemia. Biochem. Biophys. Res. Commun. 2021, 547, 162–168. [Google Scholar] [CrossRef]
- Reisbeck, L.; Linder, B.; Tascher, G.; Bozkurt, S.; Weber, K.J.; Herold-Mende, C.; van Wijk, S.J.L.; Marschalek, R.; Schaefer, L.; Munch, C.; et al. The iron chelator and OXPHOS inhibitor VLX600 induces mitophagy and an autophagy-dependent type of cell death in glioblastoma cells. Am. J. Physiol. Cell Physiol. 2023, 325, C1451–C1469. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, Q.; Xiao, G.; Yang, S.; Di, C.; Si, J.; Zhou, R.; Ye, Y.; Zhang, Y.; Zhang, H. Selective ATP hydrolysis inhibition in F1Fo ATP synthase enhances radiosensitivity in non-small-cell lung cancer cells (A549). Oncotarget 2017, 8, 53602–53612. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.T.; Blake, K.; Ma, D.; Gabra, M.B.I.; Hernandez, G.A.; Phung, A.T.; Yang, Y.; Maurer, D.; Lefebvre, A.; Alshetaiwi, H.; et al. Transcriptional diversity and bioenergetic shift in human breast cancer metastasis revealed by single-cell RNA sequencing. Nat. Cell Biol. 2020, 22, 310–320. [Google Scholar] [CrossRef]
- He, J.D.; Wang, Z.; Li, S.P.; Xu, Y.J.; Yu, Y.; Ding, Y.J.; Yu, W.L.; Zhang, R.X.; Zhang, H.M.; Du, H.Y. Vitexin suppresses autophagy to induce apoptosis in hepatocellular carcinoma via activation of the JNK signaling pathway. Oncotarget 2016, 7, 84520–84532. [Google Scholar] [CrossRef]
- Song, L.; Wang, Z.; Wang, Y.; Guo, D.; Yang, J.; Chen, L.; Tan, N. Natural Cyclopeptide RA-XII, a New Autophagy Inhibitor, Suppresses Protective Autophagy for Enhancing Apoptosis through AMPK/mTOR/P70S6K Pathways in HepG2 Cells. Molecules 2017, 22, 1934. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Yu, M.; Ma, K.; Ning, L. Inhibition of autophagy by 3-methyladenine promotes migration and invasion of colon cancer cells through epithelial mesenchymal transformation. Transl. Cancer Res. 2022, 11, 2834–2842. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Huang, C.; Su, Y.; Yang, C.; Xia, Q.; Xu, D.J. Astragaloside II sensitizes human hepatocellular carcinoma cells to 5-fluorouracil via suppression of autophagy. J. Pharm. Pharmacol. 2017, 69, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Yuan, N.; Song, L.; Zhang, S.; Lin, W.; Cao, Y.; Xu, F.; Fang, Y.; Wang, Z.; Zhang, H.; Li, X.; et al. Bafilomycin A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute lymphoblastic leukemia. Haematologica 2015, 100, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Pasquier, B. SAR405, a PIK3C3/Vps34 inhibitor that prevents autophagy and synergizes with MTOR inhibition in tumor cells. Autophagy 2015, 11, 725–726. [Google Scholar] [CrossRef]
- Petroni, G.; Bagni, G.; Iorio, J.; Duranti, C.; Lottini, T.; Stefanini, M.; Kragol, G.; Becchetti, A.; Arcangeli, A. Clarithromycin inhibits autophagy in colorectal cancer by regulating the hERG1 potassium channel interaction with PI3K. Cell Death Dis. 2020, 11, 161. [Google Scholar] [CrossRef]
- Liu, M.; Bamodu, O.A.; Huang, W.C.; Zucha, M.A.; Lin, Y.K.; Wu, A.T.H.; Huang, C.C.; Lee, W.H.; Yuan, C.C.; Hsiao, M.; et al. 4-Acetylantroquinonol B suppresses autophagic flux and improves cisplatin sensitivity in highly aggressive epithelial cancer through the PI3K/Akt/mTOR/p70S6K signaling pathway. Toxicol. Appl. Pharmacol. 2017, 325, 48–60. [Google Scholar] [CrossRef]
- Liu, Y.; Hao, Y.; Li, Y.; Zheng, Y.; Dai, J.; Zhong, F.; Wei, W.; Fang, Z. Salinomycin induces autophagic cell death in salinomycin-sensitive melanoma cells through inhibition of autophagic flux. Sci. Rep. 2020, 10, 18515. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Ding, N.; Ge, J.; Wang, Y.; Wang, L.; Wu, N.; Wei, Q.; Xu, S.; Liu, X.; Zhou, G. Esomeprazole overcomes paclitaxel-resistance and enhances anticancer effects of paclitaxel by inducing autophagy in A549/Taxol cells. Cell Biol. Int. 2021, 45, 177–187. [Google Scholar] [CrossRef]
- Zai, W.; Chen, W.; Han, Y.; Wu, Z.; Fan, J.; Zhang, X.; Luan, J.; Tang, S.; Jin, X.; Fu, X.; et al. Targeting PARP and autophagy evoked synergistic lethality in hepatocellular carcinoma. Carcinogenesis 2020, 41, 345–357. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Ma, H.; Chen, X.; Liu, T.; Jiao, Z.; He, W.; Wang, F.; Liu, X.; Zeng, X. Protective role of autophagy in matrine-induced gastric cancer cell death. Int. J. Oncol. 2013, 42, 1417–1426. [Google Scholar] [CrossRef]
- Sun, X.; Li, L.; Ma, H.G.; Sun, P.; Wang, Q.L.; Zhang, T.T.; Shen, Y.M.; Zhu, W.M.; Li, X. Bisindolylmaleimide alkaloid BMA-155Cl induces autophagy and apoptosis in human hepatocarcinoma HepG-2 cells through the NF-kappaB p65 pathway. Acta Pharmacol. Sin. 2017, 38, 524–538. [Google Scholar] [CrossRef]
- Morselli, E.; Marino, G.; Bennetzen, M.V.; Eisenberg, T.; Megalou, E.; Schroeder, S.; Cabrera, S.; Benit, P.; Rustin, P.; Criollo, A.; et al. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J. Cell Biol. 2011, 192, 615–629. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Nie, H.; Zhao, X.; Qin, Y.; Gong, X. Bicyclol induces cell cycle arrest and autophagy in HepG2 human hepatocellular carcinoma cells through the PI3K/AKT and Ras/Raf/MEK/ERK pathways. BMC Cancer 2016, 16, 742. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Lv, G.; Li, R.; Liu, W.T.; Zong, C.; Ye, F.; Li, X.Y.; Yang, X.; Jiang, J.H.; Hou, X.J.; et al. Glycochenodeoxycholate promotes hepatocellular carcinoma invasion and migration by AMPK/mTOR dependent autophagy activation. Cancer Lett. 2019, 454, 215–223. [Google Scholar] [CrossRef]
- Chen, Y.J.; Fang, L.W.; Su, W.C.; Hsu, W.Y.; Yang, K.C.; Huang, H.L. Lapatinib induces autophagic cell death and differentiation in acute myeloblastic leukemia. OncoTargets Ther. 2016, 9, 4453–4464. [Google Scholar] [CrossRef]
- Yu, H.; Qiu, Y.; Pang, X.; Li, J.; Wu, S.; Yin, S.; Han, L.; Zhang, Y.; Jin, C.; Gao, X.; et al. Lycorine Promotes Autophagy and Apoptosis via TCRP1/Akt/mTOR Axis Inactivation in Human Hepatocellular Carcinoma. Mol. Cancer Ther. 2017, 16, 2711–2723. [Google Scholar] [CrossRef]
- Lin, C.; Tsai, S.C.; Tseng, M.T.; Peng, S.F.; Kuo, S.C.; Lin, M.W.; Hsu, Y.M.; Lee, M.R.; Amagaya, S.; Huang, W.W.; et al. AKT serine/threonine protein kinase modulates baicalin-triggered autophagy in human bladder cancer T24 cells. Int. J. Oncol. 2013, 42, 993–1000. [Google Scholar] [CrossRef]
- Zhou, J.; Farah, B.L.; Sinha, R.A.; Wu, Y.; Singh, B.K.; Bay, B.H.; Yang, C.S.; Yen, P.M. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, stimulates hepatic autophagy and lipid clearance. PLoS ONE 2014, 9, e87161. [Google Scholar] [CrossRef] [PubMed]
- D’Aguanno, S.; Brignone, M.; Scalera, S.; Chiacchiarini, M.; Di Martile, M.; Valentini, E.; De Nicola, F.; Ricci, A.; Pelle, F.; Botti, C.; et al. Bcl-2 dependent modulation of Hippo pathway in cancer cells. Cell Commun. Signal 2024, 22, 277. [Google Scholar] [CrossRef]
- Bruzzese, A.; Martino, E.A.; Labanca, C.; Mendicino, F.; Lucia, E.; Olivito, V.; Neri, A.; Morabito, F.; Vigna, E.; Gentile, M. Potential of BGB-11417, a BCL2 inhibitor, in hematological malignancies. Expert. Opin. Investig. Drugs 2024, 33, 73–77. [Google Scholar] [CrossRef]
- Alencar, A.J.; Roeker, L.E.; Hoffmann, M.; Murthy, G.S.G.; Patel, V.; Ku, N.C.; Pauff, J.M.; Eyre, T.A.; Jurczak, W.; Le Gouill, S. A First-in-Human Phase 1 Study of Oral LOXO-338, a Selective BCL2 Inhibitor, in Patients with Advanced Hematologic Malignancies (Trial in Progress). Blood 2021, 138, 2424. [Google Scholar] [CrossRef]
- Li, J.; Hu, N.; Zhang, Y.; Yang, X.; Deng, M.; Gong, W.; Yin, L.; Liu, Y.; Gao, Y.; Wei, W.; et al. Abstract 6158: BGB-24714, a novel oral IAP antagonist, displayed significant anti-tumor activities in preclinical models as a monotherapy and in combination with paclitaxel. Cancer Res. 2023, 83, 6158. [Google Scholar] [CrossRef]
- Bourhis, J.; Burtness, B.; Licitra, L.F.; Nutting, C.; Schoenfeld, J.D.; Omar, M.; Bouisset, F.; Nauwelaerts, H.; Urfer, Y.; Zanna, C.; et al. Xevinapant or placebo plus chemoradiotherapy in locally advanced squamous cell carcinoma of the head and neck: TrilynX phase III study design. Future Oncol. 2022, 18, 1669–1678. [Google Scholar] [CrossRef]
- Hurrish, K.H.; Su, Y.; Patel, S.; Ramage, C.L.; Zhao, J.; Temby, B.R.; Carter, J.L.; Edwards, H.; Buck, S.A.; Wiley, S.E.; et al. Enhancing anti-AML activity of venetoclax by isoflavone ME-344 through suppression of OXPHOS and/or purine biosynthesis in vitro. Biochem. Pharmacol. 2024, 220, 115981. [Google Scholar] [CrossRef]
- Kumar, A.; Corey, C.; Scott, I.; Shiva, S.; D’Cunha, J. Minnelide/Triptolide Impairs Mitochondrial Function by Regulating SIRT3 in P53-Dependent Manner in Non-Small Cell Lung Cancer. PLoS ONE 2016, 11, e0160783. [Google Scholar] [CrossRef]
- Benej, M.; Hong, X.; Vibhute, S.; Scott, S.; Wu, J.; Graves, E.; Le, Q.T.; Koong, A.C.; Giaccia, A.J.; Yu, B.; et al. Papaverine and its derivatives radiosensitize solid tumors by inhibiting mitochondrial metabolism. Proc. Natl. Acad. Sci. USA 2018, 115, 10756–10761. [Google Scholar] [CrossRef]
- Rodriguez-Berriguete, G.; Puliyadi, R.; Machado, N.; Barberis, A.; Prevo, R.; McLaughlin, M.; Buffa, F.M.; Harrington, K.J.; Higgins, G.S. Antitumour effect of the mitochondrial complex III inhibitor Atovaquone in combination with anti-PD-L1 therapy in mouse cancer models. Cell Death Dis. 2024, 15, 32. [Google Scholar] [CrossRef] [PubMed]
- Omuro, A.; Beal, K.; McNeill, K.; Young, R.J.; Thomas, A.; Lin, X.; Terziev, R.; Kaley, T.J.; DeAngelis, L.M.; Daras, M.; et al. Multicenter Phase IB Trial of Carboxyamidotriazole Orotate and Temozolomide for Recurrent and Newly Diagnosed Glioblastoma and Other Anaplastic Gliomas. J. Clin. Oncol. 2018, 36, 1702–1709. [Google Scholar] [CrossRef]
- Zachar, Z.; Marecek, J.; Maturo, C.; Gupta, S.; Stuart, S.D.; Howell, K.; Schauble, A.; Lem, J.; Piramzadian, A.; Karnik, S.; et al. Non-redox-active lipoate derivates disrupt cancer cell mitochondrial metabolism and are potent anticancer agents in vivo. J. Mol. Med. 2011, 89, 1137–1148. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Macarulla, T.; Javle, M.M.; Kelley, R.K.; Lubner, S.J.; Adeva, J.; Cleary, J.M.; Catenacci, D.V.; Borad, M.J.; Bridgewater, J.; et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): A multicentre, randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2020, 21, 796–807. [Google Scholar] [CrossRef]
- Thol, F.; Ganser, A. Treatment of Relapsed Acute Myeloid Leukemia. Curr. Treat. Options Oncol. 2020, 21, 66. [Google Scholar] [CrossRef]
- Schoenmann, N.; Tannenbaum, N.; Hodgeman, R.M.; Raju, R.P. Regulating mitochondrial metabolism by targeting pyruvate dehydrogenase with dichloroacetate, a metabolic messenger. Biochim. Biophys. Acta Mol. Basis Dis. 2023, 1869, 166769. [Google Scholar] [CrossRef] [PubMed]
- Manic, G.; Obrist, F.; Kroemer, G.; Vitale, I.; Galluzzi, L. Chloroquine and hydroxychloroquine for cancer therapy. Mol. Cell. Oncol. 2014, 1, e29911. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, X.; He, D.; Jin, X.; Guo, P. Metformin sensitizes human bladder cancer cells to TRAIL-induced apoptosis through mTOR/S6K1-mediated downregulation of c-FLIP. Anticancer Drugs 2014, 25, 887–897. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.; Yang, G.L.; Yang, J.H.; Lin, S.L.; Liu, N.; Liu, S.S.; Liu, M.Y.; Zhang, L.H.; Huang, Y.R.; Shen, R.L.; et al. Metformin can block precancerous progression to invasive tumors of bladder through inhibiting STAT3-mediated signaling pathways. J. Exp. Clin. Cancer Res. 2015, 34, 77. [Google Scholar] [CrossRef] [PubMed]
- Agius, L.; Ford, B.E.; Chachra, S.S. The Metformin Mechanism on Gluconeogenesis and AMPK Activation: The Metabolite Perspective. Int. J. Mol. Sci. 2020, 21, 3240. [Google Scholar] [CrossRef]
- Schulze, M.; Stock, C.; Zaccagnini, M.; Teber, D.; Rassweiler, J.J. Temsirolimus. Recent. Results Cancer Res. 2014, 201, 393–403. [Google Scholar] [CrossRef]
- Benjamin, D.; Colombi, M.; Moroni, C.; Hall, M.N. Rapamycin passes the torch: A new generation of mTOR inhibitors. Nat. Rev. Drug Discov. 2011, 10, 868–880. [Google Scholar] [CrossRef]
- Hasskarl, J. Everolimus. Recent. Results Cancer Res. 2018, 211, 101–123. [Google Scholar] [CrossRef]
- Saran, U.; Foti, M.; Dufour, J.F. Cellular and molecular effects of the mTOR inhibitor everolimus. Clin. Sci. 2015, 129, 895–914. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Pezzani, R.; Redaelli, M.; Zorzan, M.; Imran, M.; Ahmed Khalil, A.; Salehi, B.; Sharopov, F.; Cho, W.C.; Sharifi-Rad, J. Preclinical Pharmacological Activities of Epigallocatechin-3-gallate in Signaling Pathways: An Update on Cancer. Molecules 2020, 25, 467. [Google Scholar] [CrossRef]
- Zhang, S.; Cao, M.; Fang, F. The Role of Epigallocatechin-3-Gallate in Autophagy and Endoplasmic Reticulum Stress (ERS)-Induced Apoptosis of Human Diseases. Med. Sci. Monit. 2020, 26, e924558. [Google Scholar] [CrossRef]
- Zhao, B.; Luo, J.; Yu, T.; Zhou, L.; Lv, H.; Shang, P. Anticancer mechanisms of metformin: A review of the current evidence. Life Sci. 2020, 254, 117717. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Wang, Y.J.; Guo, B.W.; Hou, Z.L.; Zhang, G.X.; Han, Z.; Liu, Q.; Yao, G.D.; Song, S.J. 13-Oxyingenol-dodecanoate inhibits the growth of non-small cell lung cancer cells by targeting ULK1. Bioorg. Chem. 2024, 147, 107367. [Google Scholar] [CrossRef]
- Formisano, L.; Napolitano, F.; Rosa, R.; D’Amato, V.; Servetto, A.; Marciano, R.; De Placido, P.; Bianco, C.; Bianco, R. Mechanisms of resistance to mTOR inhibitors. Crit. Rev. Oncol. Hematol. 2020, 147, 102886. [Google Scholar] [CrossRef] [PubMed]
- Low, L.E.; Kong, C.K.; Yap, W.H.; Siva, S.P.; Gan, S.H.; Siew, W.S.; Ming, L.C.; Lai-Foenander, A.S.; Chang, S.K.; Lee, W.L.; et al. Hydroxychloroquine: Key therapeutic advances and emerging nanotechnological landscape for cancer mitigation. Chem. Biol. Interact. 2023, 386, 110750. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Xu, A.; Huang, Y.; Cao, J.; Zhu, H.; Yang, B.; Shao, X.; He, Q.; Ying, M. The role of autophagy in targeted therapy for acute myeloid leukemia. Autophagy 2021, 17, 2665–2679. [Google Scholar] [CrossRef]
- Cao, Q.; Wu, X.; Zhang, Q.; Gong, J.; Chen, Y.; You, Y.; Shen, J.; Qiang, Y.; Cao, G. Mechanisms of action of the BCL-2 inhibitor venetoclax in multiple myeloma: A literature review. Front. Pharmacol. 2023, 14, 1291920. [Google Scholar] [CrossRef]
- Zarei, M.; Hue, J.J.; Hajihassani, O.; Graor, H.J.; Katayama, E.S.; Loftus, A.W.; Bajor, D.; Rothermel, L.D.; Vaziri-Gohar, A.; Winter, J.M. Clinical development of IDH1 inhibitors for cancer therapy. Cancer Treat. Rev. 2022, 103, 102334. [Google Scholar] [CrossRef]
- Tang, D.Y.; Ellis, R.A.; Lovat, P.E. Prognostic Impact of Autophagy Biomarkers for Cutaneous Melanoma. Front. Oncol. 2016, 6, 236. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Xu, Y.; Wu, H.; Wei, Z.; Cao, Y. The expression of the autophagy gene beclin-1 mRNA and protein in ectopic and eutopic endometrium of patients with endometriosis. Int. J. Fertil. Steril. 2015, 8, 429–436. [Google Scholar] [CrossRef]
- Cheng, Y.; Qi, F.; Li, L.; Qin, Z.; Li, X.; Wang, X. Autophagy-related genes are potential diagnostic and prognostic biomarkers in prostate cancer. Transl. Androl. Urol. 2020, 9, 2616–2628. [Google Scholar] [CrossRef]
- Huang, G.Z.; Lu, Z.Y.; Rao, Y.; Gao, H.; Lv, X.Z. Screening and identification of autophagy-related biomarkers for oral squamous cell carcinoma (OSCC) via integrated bioinformatics analysis. J. Cell Mol. Med. 2021, 25, 4444–4454. [Google Scholar] [CrossRef]
- Cao, Q.H.; Liu, F.; Yang, Z.L.; Fu, X.H.; Yang, Z.H.; Liu, Q.; Wang, L.; Wan, X.B.; Fan, X.J. Prognostic value of autophagy related proteins ULK1, Beclin 1, ATG3, ATG5, ATG7, ATG9, ATG10, ATG12, LC3B and p62/SQSTM1 in gastric cancer. Am. J. Transl. Res. 2016, 8, 3831–3847. [Google Scholar]
- Meng, D.; Jin, H.; Zhang, X.; Yan, W.; Xia, Q.; Shen, S.; Xie, S.; Cui, M.; Ding, B.; Gu, Y.; et al. Identification of autophagy-related risk signatures for the prognosis, diagnosis, and targeted therapy in cervical cancer. Cancer Cell Int. 2021, 21, 362. [Google Scholar] [CrossRef]
- Feng, Q.; Wang, J.; Cui, N.; Liu, X.; Wang, H. Autophagy-related long non-coding RNA signature for potential prognostic biomarkers of patients with cervical cancer: A study based on public databases. Ann. Transl. Med. 2021, 9, 1668. [Google Scholar] [CrossRef]
- Lin, W.; Sun, Y.; Qiu, X.; Huang, Q.; Kong, L.; Lu, J.J. VMP1, a novel prognostic biomarker, contributes to glioma development by regulating autophagy. J. Neuroinflamm. 2021, 18, 165. [Google Scholar] [CrossRef]
- Zhou, C.; Li, A.H.; Liu, S.; Sun, H. Identification of an 11-Autophagy-Related-Gene Signature as Promising Prognostic Biomarker for Bladder Cancer Patients. Biology 2021, 10, 375. [Google Scholar] [CrossRef]
- Du, H.; Xie, S.; Guo, W.; Che, J.; Zhu, L.; Hang, J.; Li, H. Development and validation of an autophagy-related prognostic signature in esophageal cancer. Ann. Transl. Med. 2021, 9, 317. [Google Scholar] [CrossRef]
- Mustafa, M.F.; Saliluddin, S.M.; Fakurazi, S.; Laim, N.M.S.T.; Pauzi, S.H.M.; Yahya, N.H.N.; Gopal, N.S.R.; Abdullah, M.A.; Maniam, S. Expression of Autophagy and Mitophagy Markers in Breast Cancer Tissues. Front. Oncol. 2021, 11, 612009. [Google Scholar] [CrossRef]
- Yang, J.; Wang, C.; Zhang, Y.; Cheng, S.; Wu, M.; Gu, S.; Xu, S.; Wu, Y.; Wang, Y. A novel autophagy-related gene signature associated with prognosis and immune microenvironment in ovarian cancer. J. Ovarian Res. 2023, 16, 86. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.H.; Zhang, T.S.; Wang, X.W.; Wang, M.Y.; Zhao, W.X.; Zhou, H.M.; Zhang, C.H.; Cai, M.L.; Chen, X.F.; Zhao, W.L.; et al. Mitochondria autophagy: A potential target for cancer therapy. J. Drug Target. 2021, 29, 576–591. [Google Scholar] [CrossRef] [PubMed]
- Yun, C.W.; Lee, S.H. The Roles of Autophagy in Cancer. Int. J. Mol. Sci. 2018, 19, 3466. [Google Scholar] [CrossRef]
- Mohsen, S.; Sobash, P.T.; Algwaiz, G.F.; Nasef, N.; Al-Zeidaneen, S.A.; Karim, N.A. Autophagy Agents in Clinical Trials for Cancer Therapy: A Brief Review. Curr. Oncol. 2022, 29, 1695–1708. [Google Scholar] [CrossRef]
Title | Type of Study | Autophagy Markers/Evaluation | Type of Cancer | ClinicalTrials.gov ID |
---|---|---|---|---|
Investigation of autophagy markers in endometrial polyps (Turkey) | Observational | Beclin 1 LC3A/B P62/ Immunohistochemistry ELISA | Endometrial polyp | NCT04706000 |
Association of autophagy-related genes, LncRNA and SNPs with colorectal cancer in egyptian population (Egypt) | Observational | In PBMC and tissue, the levels of expression of EIF4EBP1, HOTTIP and serum SNP HOTTIP rs1859168 | Colorectal cancer | NCT04729855 |
Identification of novel autophagy markers in bladder cancer patients (Egypt) | Observational | Atg7 (RTPCR) LC3A (immunohistochemistry) | Bladder cancer | NCT03254888 |
Immunohistochemical assessment of programmed death ligand 1 PDL-1 and autophagy marker LC3B in glioblastoma (Egypt) | Observational | LC3B (immunohistochemistry) | Glioblastoma | NCT04284306 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdanowicz, A.; Grosicka-Maciąg, E. The Interplay between Autophagy and Mitochondria in Cancer. Int. J. Mol. Sci. 2024, 25, 9143. https://doi.org/10.3390/ijms25179143
Zdanowicz A, Grosicka-Maciąg E. The Interplay between Autophagy and Mitochondria in Cancer. International Journal of Molecular Sciences. 2024; 25(17):9143. https://doi.org/10.3390/ijms25179143
Chicago/Turabian StyleZdanowicz, Aleksandra, and Emilia Grosicka-Maciąg. 2024. "The Interplay between Autophagy and Mitochondria in Cancer" International Journal of Molecular Sciences 25, no. 17: 9143. https://doi.org/10.3390/ijms25179143
APA StyleZdanowicz, A., & Grosicka-Maciąg, E. (2024). The Interplay between Autophagy and Mitochondria in Cancer. International Journal of Molecular Sciences, 25(17), 9143. https://doi.org/10.3390/ijms25179143