Differentiation of Sinoatrial-like Cardiomyocytes as a Biological Pacemaker Model
Abstract
:1. Introduction
2. Pacemaker-like Differentiation Protocols
2.1. hESC Pacemaker-like Differentiation Protocols
2.2. hiPSC Pacemaker-like Differentiation Protocols
Model Used | Key Signaling Pathway and Cytokine Used | Advantages | Limitations | References |
---|---|---|---|---|
hESCs, hiPSCs | BMP4, Activin A, VEGF, SCF, WNT activator CHIR99021, doxycycline MYC transgene, Activin/NODAL/TGF-β inhibitor SB431542, WNT inhibitor XAV939, bFGF, TGF-β1, IGF-1, hedgehog agonist (Hh), SAG. |
|
| [58] |
hESCs | CHIR99021, WNT inhibitor IWR1, The use of CDM3 medium (RPMI1640; BSA; and ascorbic acid). E2A ablation. |
|
| [59] |
hESCs and hiPSCs | BMP4, Activin A, bFGF, WNT inhibitor IWP2, Retinoic acid (RA), SB431542, VEGF, and the FGF signaling inhibitor PD 173074. |
|
| [30] |
hiPSCs | CHIR99021, IWP2, BMP4, PD 173074 and RA inhibitor BMS. |
|
| [31] |
hiPSCs | CHIR99021, IWP2, BMS. |
|
| [66] |
hiPSCs | CHIR99021, IWR1, SB431542. |
|
| [32] |
hiPSCs | BMP4, Activin A, CHIR99021, XAV939, RA, ALK5 inhibitor SB431542, PD173074. |
|
| [68] |
hiPSCs | CHIR99021, IWR1, cadherin-5 (CDH5). |
|
| [70] |
hiPSCs | p38 mitogen-activated protein kinase (MAPK) inhibitor SB 203580, ascorbic acid, Rho-associated protein kinases (ROCK) inhibitor Y-27632 dihydrochlorid, mouse visceral endoderm-like (END-2) cells. |
|
| [71] |
hiPSCs | CHIR99021, IWR1, RA, SB431542. |
|
| [72] |
hiPSCs | CHIR99021, IWP2. |
|
| [73] |
3. Engraftment of SAN-like Cardiomyocytes in Animal Models as a Potential Biological Pacemaker
Animal Model Used | Injected Cells | Findings | References |
---|---|---|---|
Guinea Pig | hESC-derived CMs administered subepicardially using a 21-gauge needle into the LV anterior wall. | Optical mapping of the epicardial surface verified the effective propagation of membrane depolarization from the injection site to the neighboring myocardium. | [81] |
Swine | hESC-CM cell clusters were injected via a left thoracotomy, targeting a site in the posterolateral wall of the LV. | The transplanted hESC-CMs successfully integrated in vivo and effectively paced the hearts of swine exhibiting complete atrioventricular block. This was confirmed through episodes of new ventricular ectopic rhythms observed through 3D-electrophysiological mapping and histopathological analysis. Interestingly, this new rhythm responded to adrenergic stimulation. These findings highlight the potential of hESC-CMs to function as a rate-responsive biological pacemaker and their promise for future myocardial regeneration approaches. | [80] |
Rat | After performing a left thoracotomy, 0.5–2 million SAN-like cardiomyocytes were injected into the LV anterior wall close to the apex using a 28-gauge needle. Cyclosporine A (15 mg/kg/day) and methylprednisolone (2 mg/kg/day) were administered to the animals to prevent rejection of the human cell grafts by the immune system. | Following AV block induction, six out of seven hearts that underwent the SAN-like cardiomyocytes transplant showed ventricular ectopic beats. These ranged from isolated ectopic beats to sustained ectopic pacemaker activity lasting up to 60 s, with an average rate of 137 bpm. Optical mapping confirmed that these ectopic beats originated from the transplantation site at the heart’s apex. The human cell graft within the rat hearts was identified through immunostaining using an antibody that targets human cardiac troponin T (cTNT). | [30] |
Canine | hiPSC-derived EBs were injected into the anterobasal region of the LV through an incision in the fifth left intercostal space. These injections were made approximately 3 to 4 mm deep into the epicardium using a 16-gauge needle, with a total volume of 0.4 to 0.7 mL of phosphate-buffered saline solution. It should be noted that a pacemaker lead (Dextrus model) was also inserted into the RV apex using a jugular venous approach. | The average and maximum biological pacemaker rates were recorded at 45 and 75 bpm, respectively. Histological examination using the vital dye Dil demonstrated the continued presence of injected cells at the administration site. | [83] |
- Generate spontaneous APs from a coupled membrane and calcium clock system, with clock protein expression at levels similar to the native pacemaker.
- Drive pacing over large regions of tissue by overcoming the source-sink ineffective pacing that fails to propagate properly.
- Provide reliable physiological pacing over extended periods with the ability to be self-sustaining and durable over the long term without requiring batteries, leads, electrodes or to be replaced or revised.
- Contain a similar level of heterogeneous pacemaker cell types as found in the SAN.
- Replicate the SAN tissue architecture, considering pacemaker and transitional cell patterning, extracellular matrix composition, and culture substrates.
- Demonstrate autonomic responsiveness, adjusting the pacing rate according to the body’s physiological needs.
4. Cardiac Arrythmias Related to Electronic Pacemaker Dysfunction
4.1. Antidromic Pacemaker-Mediated Reentrant Arrhythmias
4.2. Orthodromic Pacemaker-Mediated Tachycardia
4.3. Repetitive Non-Reentrant VA Synchrony (RNRVAS)
4.4. Tracking of Atrial Arrythmias or Myopotentials
4.5. Sensor-Driven Tachycardia
4.6. Runaway Pacemaker
4.7. Pacemaker-Mediated Arrhythmias in Biventricular Pacing Systems
4.8. Pacing Inducing Atrial or Ventricular Arrhythmias
4.9. Pacemaker Lead Displacement Dysrhythmia
4.10. Pacemaker Syndrome
4.11. Pacemaker Twiddler’s Syndrome
5. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AV | Atrioventricular |
ACh | Acetylcholine |
APs | Action potentials |
APD | Action potential durations |
APA | Action potential amplitudes |
CVD | Cardiovascular disease |
Ca2+ | Calcium |
CCh | Carbachol |
GFP | Green fluorescent protein |
hESCs | Human embryonic stem cells |
hiPSCs | Human induced pluripotent stem cells |
hiPSC-CMs | Human induced pluripotent stem cell-derived cardiomyocytes |
hESC-CMs | Human embryonic stem cell-derived cardiomyocytes |
ISO | Isoproterenol |
LV | Left ventricle |
MDP | Maximum diastolic potential |
PMT | Pacemaker mediated tachycardia |
PVARP | Post-ventricular atrial refractory period |
RV | Right ventricle |
SAN | Sinoatrial node |
VPB | Ventricular premature beat |
VA | Ventriculo-atrial |
References
- Di Cesare, M.; Perel, P.; Taylor, S.; Kabudula, C.; Bixby, H.; Gaziano, T.A.; McGhie, D.V.; Mwangi, J.; Pervan, B.; Narula, J.; et al. The Heart of the World. Glob. Heart 2024, 19, 11. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.S.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.M.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Barone Gibbs, B.; Beaton, A.Z.; Boehme, A.K.; et al. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024, 149, e347–e913. [Google Scholar] [CrossRef] [PubMed]
- Moran, A.E.; Forouzanfar, M.H.; Roth, G.A.; Mensah, G.A.; Ezzati, M.; Flaxman, A.; Murray, C.J.L.; Naghavi, M. The Global Burden of Ischemic Heart Disease in 1990 and 2010 The Global Burden of Disease 2010 Study. Circulation 2014, 129, 1493–1501. [Google Scholar] [CrossRef]
- Bezzerides, V.J.; Zhang, D.; Pu, W.T. Modeling Inherited Arrhythmia Disorders Using Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Circ. J. 2016, 81, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Clauss, S.; Bleyer, C.; Schüttler, D.; Tomsits, P.; Renner, S.; Klymiuk, N.; Wakili, R.; Massberg, S.; Wolf, E.; Kääb, S. Animal models of arrhythmia: Classic electrophysiology to genetically modified large animals. Nat. Rev. Cardiol. 2019, 16, 457–475. [Google Scholar] [CrossRef] [PubMed]
- Rizzi, N.; Liu, N.; Napolitano, C.; Nori, A.; Turcato, F.; Colombi, B.; Bicciato, S.; Arcelli, D.; Spedito, A.; Scelsi, M.; et al. Unexpected structural and functional consequences of the R33Q homozygous mutation in cardiac calsequestrin: A complex arrhythmogenic cascade in a knock in mouse model. Circ. Res. 2008, 103, 298–306. [Google Scholar] [CrossRef]
- Brandão, K.O.; Tabel, V.A.; Atsma, D.E.; Mummery, C.L.; Davis, R.P. Human pluripotent stem cell models of cardiac disease: From mechanisms to therapies. Dis. Model Mech. 2017, 10, 1039–1059. [Google Scholar] [CrossRef]
- Karakikes, I.; Ameen, M.; Termglinchan, V.; Wu, J.C. Human induced pluripotent stem cell-derived cardiomyocytes: Insights into molecular, cellular, and functional phenotypes. Circ. Res. 2015, 117, 80–88. [Google Scholar] [CrossRef]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef]
- Acimovic, I.; Vilotic, A.; Pesl, M.; Lacampagne, A.; Dvorak, P.; Rotrekl, V.; Meli, A.C. Human pluripotent stem cell-derived cardiomyocytes as research and therapeutic tools. Biomed. Res. Int. 2014, 2014, 512831. [Google Scholar] [CrossRef]
- Kayser, A.; Dittmann, S.; van Impel, A.; Šarić, T.; Schulze-Bahr, E. Patient-derived stem cell line UKMi005-A (hiPSC) harboring a non-synonymous heterozygous KCNJ5 gene variant. Stem Cell Res. 2023, 73, 103223. [Google Scholar] [CrossRef] [PubMed]
- Kayser, A.; Dittmann, S.; Hamidi, J.; Laufer, S.D.; Krampe, R.; Mearini, G.; Hansen, A.; Schulze-Bahr, E. Generation of a patient-specific hiPS cell line with heterozygous GNB2 mutation (UKMi003-A) causative for human sinus node dysfunction and a corresponding CRISPR/Cas9-corrected isogenic control (UKMi004-A). Stem Cell Res. 2024, 78, 103446. [Google Scholar] [CrossRef] [PubMed]
- Khudiakov, A.; Perepelina, K.; Klauzen, P.; Zlotina, A.; Gusev, K.; Kaznacheyeva, E.; Malashicheva, A.; Kostareva, A. Generation of two iPSC lines (FAMRCi004-A and FAMRCi004-B) from patient with familial progressive cardiac conduction disorder carrying genetic variant DSP p.His1684Arg. Stem Cell Res. 2020, 43, 101720. [Google Scholar] [CrossRef] [PubMed]
- Sleiman, Y.; Lacampagne, A.; Meli, A.C. “Ryanopathies” and RyR2 dysfunctions: Can we further decipher them using in vitro human disease models? Cell Death Dis. 2021, 12, 1041. [Google Scholar] [CrossRef]
- Acimovic, I.; Refaat, M.M.; Moreau, A.; Salykin, A.; Reiken, S.; Sleiman, Y.; Souidi, M.; Přibyl, J.; Kajava, A.V.; Richard, S.; et al. Post-Translational Modifications and Diastolic Calcium Leak Associated to the Novel RyR2-D3638A Mutation Lead to CPVT in Patient-Specific hiPSC-Derived Cardiomyocytes. J. Clin. Med. 2018, 7, 423. [Google Scholar] [CrossRef]
- Sleiman, Y.; Souidi, M.; Kumar, R.; Yang, E.; Jaffré, F.; Zhou, T.; Bernardin, A.; Reiken, S.; Cazorla, O.; Kajava, A.V.; et al. Modeling polymorphic ventricular tachycardia at rest using patient-specific induced pluripotent stem cell-derived cardiomyocytes. EBioMedicine 2020, 60, 103024. [Google Scholar] [CrossRef]
- Reisqs, J.-B.; Moreau, A.; Charrabi, A.; Sleiman, Y.; Meli, A.C.; Millat, G.; Briand, V.; Beauverger, P.; Richard, S.; Chevalier, P. The PPARγ pathway determines electrophysiological remodelling and arrhythmia risks in DSC2 arrhythmogenic cardiomyopathy. Clin. Transl. Med. 2022, 12, e748. [Google Scholar] [CrossRef]
- Itzhaki, I.; Maizels, L.; Huber, I.; Zwi-Dantsis, L.; Caspi, O.; Winterstern, A.; Feldman, O.; Gepstein, A.; Arbel, G.; Hammerman, H.; et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature 2011, 471, 225–229. [Google Scholar] [CrossRef]
- Reisqs, J.-B.; Moreau, A.; Sleiman, Y.; Charrabi, A.; Delinière, A.; Bessière, F.; Gardey, K.; Richard, S.; Chevalier, P. Spironolactone as a Potential New Treatment to Prevent Arrhythmias in Arrhythmogenic Cardiomyopathy Cell Model. J. Pers. Med. 2023, 13, 335. [Google Scholar] [CrossRef]
- Sleiman, Y.; Reiken, S.; Charrabi, A.; Jaffré, F.; Sittenfeld, L.R.; Pasquié, J.-L.; Colombani, S.; Lerman, B.B.; Chen, S.; Marks, A.R.; et al. Personalized medicine in the dish to prevent calcium leak associated with short-coupled polymorphic ventricular tachycardia in patient-derived cardiomyocytes. Stem Cell Res. Ther. 2023, 14, 266. [Google Scholar] [CrossRef]
- Pierre, M.; Djemai, M.; Chapotte-Baldacci, C.-A.; Pouliot, V.; Puymirat, J.; Boutjdir, M.; Chahine, M. Cardiac involvement in patient-specific induced pluripotent stem cells of myotonic dystrophy type 1: Unveiling the impact of voltage-gated sodium channels. Front. Physiol. 2023, 14, 1258318. [Google Scholar] [CrossRef]
- Poulin, H.; Mercier, A.; Djemai, M.; Pouliot, V.; Deschenes, I.; Boutjdir, M.; Puymirat, J.; Chahine, M. iPSC-derived cardiomyocytes from patients with myotonic dystrophy type 1 have abnormal ion channel functions and slower conduction velocities. Sci. Rep. 2021, 11, 2500. [Google Scholar] [CrossRef]
- Moreau, A.; Reisqs, J.-B.; Delanoe-Ayari, H.; Pierre, M.; Janin, A.; Deliniere, A.; Bessière, F.; Meli, A.C.; Charrabi, A.; Lafont, E.; et al. Deciphering DSC2 arrhythmogenic cardiomyopathy electrical instability: From ion channels to ECG and tailored drug therapy. Clin. Transl. Med. 2021, 11, e319. [Google Scholar] [CrossRef] [PubMed]
- Maizels, L.; Huber, I.; Arbel, G.; Tijsen, A.J.; Gepstein, A.; Khoury, A.; Gepstein, L. Patient-Specific Drug Screening Using a Human Induced Pluripotent Stem Cell Model of Catecholaminergic Polymorphic Ventricular Tachycardia Type 2. Circ. Arrhythm. Electrophysiol. 2017, 10, e004725. [Google Scholar] [CrossRef]
- Torre, E.; Mangoni, M.E.; Lacampagne, A.; Meli, A.C.; Mesirca, P. State-of-the-Art Differentiation Protocols for Patient-Derived Cardiac Pacemaker Cells. Int. J. Mol. Sci. 2024, 25, 3387. [Google Scholar] [CrossRef] [PubMed]
- Burkhard, S.; van Eif, V.; Garric, L.; Christoffels, V.M.; Bakkers, J. On the Evolution of the Cardiac Pacemaker. J. Cardiovasc. Dev. Dis. 2017, 4, 4. [Google Scholar] [CrossRef] [PubMed]
- Li, R. Gene- and cell-based bio-artificial pacemaker: What basic and translational lessons have we learned? Gene Ther. 2012, 19, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, T.; Miguel-dos-Santos, R.; Cingolani, E. Biological Pacemakers: Present and Future. Circ. Res. 2024, 134, 837–841. [Google Scholar] [CrossRef] [PubMed]
- Rosen, M.R.; Brink, P.R.; Cohen, I.S.; Robinson, R.B. Physiological and Other Biological Pacemakers. In Electrical Diseases of the Heart: Genetics, Mechanisms, Treatment, Prevention; Gussak, I., Antzelevitch, C., Wilde, A.A.M., Friedman, P.A., Ackerman, M.J., Shen, W.-K., Eds.; Springer: London, UK, 2008; pp. 316–327. ISBN 978-1-84628-854-8. [Google Scholar]
- Protze, S.I.; Liu, J.; Nussinovitch, U.; Ohana, L.; Backx, P.H.; Gepstein, L.; Keller, G.M. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat. Biotechnol. 2017, 35, 56–68. [Google Scholar] [CrossRef]
- Liu, F.; Fang, Y.; Hou, X.; Yan, Y.; Xiao, H.; Zuo, D.; Wen, J.; Wang, L.; Zhou, Z.; Dang, X.; et al. Enrichment differentiation of human induced pluripotent stem cells into sinoatrial node-like cells by combined modulation of BMP, FGF, and RA signaling pathways. Stem Cell Res. Ther. 2020, 11, 284. [Google Scholar] [CrossRef]
- Yechikov, S.; Kao, H.K.J.; Chang, C.-W.; Pretto, D.; Zhang, X.-D.; Sun, Y.-H.; Smithers, R.; Sirish, P.; Nolta, J.A.; Chan, J.W.; et al. NODAL inhibition promotes differentiation of pacemaker-like cardiomyocytes from human induced pluripotent stem cells. Stem Cell Res. 2020, 49, 102043. [Google Scholar] [CrossRef] [PubMed]
- Ambesh, P.; Kapoor, A. Biological pacemakers: Concepts and techniques. Natl. Med. J. India 2017, 30, 324–326. [Google Scholar] [CrossRef]
- Jost, N.; Virág, L.; Bitay, M.; Takács, J.; Lengyel, C.; Biliczki, P.; Nagy, Z.; Bogáts, G.; Lathrop, D.A.; Papp, J.G.; et al. Restricting excessive cardiac action potential and QT prolongation: A vital role for IKs in human ventricular muscle. Circulation 2005, 112, 1392–1399. [Google Scholar] [CrossRef] [PubMed]
- Näbauer, M.; Kääb, S. Potassium channel down-regulation in heart failure. Cardiovasc. Res. 1998, 37, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Louch, W.E.; Sheehan, K.A.; Wolska, B.M. Methods in cardiomyocyte isolation, culture, and gene transfer. J. Mol. Cell. Cardiol. 2011, 51, 288–298. [Google Scholar] [CrossRef]
- Nguyen, N.; Nguyen, W.; Nguyenton, B.; Ratchada, P.; Page, G.; Miller, P.E.; Ghetti, A.; Abi-Gerges, N. Adult Human Primary Cardiomyocyte-Based Model for the Simultaneous Prediction of Drug-Induced Inotropic and Pro-arrhythmia Risk. Front. Physiol. 2017, 8, 1073. [Google Scholar] [CrossRef]
- Thomson, J.A.; Itskovitz-Eldor, J.; Shapiro, S.S.; Waknitz, M.A.; Swiergiel, J.J.; Marshall, V.S.; Jones, J.M. Embryonic stem cell lines derived from human blastocysts. Science 1998, 282, 1145–1147. [Google Scholar] [CrossRef]
- Kehat, I.; Kenyagin-Karsenti, D.; Snir, M.; Segev, H.; Amit, M.; Gepstein, A.; Livne, E.; Binah, O.; Itskovitz-Eldor, J.; Gepstein, L. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Investig. 2001, 108, 407–414. [Google Scholar] [CrossRef]
- Blazeski, A.; Zhu, R.; Hunter, D.W.; Weinberg, S.H.; Boheler, K.R.; Zambidis, E.T.; Tung, L. Electrophysiological and contractile function of cardiomyocytes derived from human embryonic stem cells. Prog. Biophys. Mol. Biol. 2012, 110, 178–195. [Google Scholar] [CrossRef]
- Ilagan, R.; Abu-Issa, R.; Brown, D.; Yang, Y.-P.; Jiao, K.; Schwartz, R.J.; Klingensmith, J.; Meyers, E.N. Fgf8 is required for anterior heart field development. Development 2006, 133, 2435–2445. [Google Scholar] [CrossRef]
- Park, E.J.; Watanabe, Y.; Smyth, G.; Miyagawa-Tomita, S.; Meyers, E.; Klingensmith, J.; Camenisch, T.; Buckingham, M.; Moon, A.M. An FGF autocrine loop initiated in second heart field mesoderm regulates morphogenesis at the arterial pole of the heart. Development 2008, 135, 3599–3610. [Google Scholar] [CrossRef]
- Schultheiss, T.M.; Burch, J.B.; Lassar, A.B. A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev. 1997, 11, 451–462. [Google Scholar] [CrossRef]
- Mummery, C.L.; Zhang, J.; Ng, E.S.; Elliott, D.A.; Elefanty, A.G.; Kamp, T.J. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: A methods overview. Circ. Res. 2012, 111, 344–358. [Google Scholar] [CrossRef]
- Miake, J.; Marbán, E.; Nuss, H.B. Biological pacemaker created by gene transfer. Nature 2002, 419, 132–133. [Google Scholar] [CrossRef] [PubMed]
- Marbán, E.; Cho, H.C. Biological pacemakers as a therapy for cardiac arrhythmias. Curr. Opin. Cardiol. 2008, 23, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Bucchi, A.; Plotnikov, A.N.; Shlapakova, I.; Danilo, P.; Kryukova, Y.; Qu, J.; Lu, Z.; Liu, H.; Pan, Z.; Potapova, I.; et al. Wild-Type and Mutant HCN Channels in a Tandem Biological-Electronic Cardiac Pacemaker. Circulation 2006, 114, 992–999. [Google Scholar] [CrossRef] [PubMed]
- Ghazizadeh, Z.; Zhu, J.; Fattahi, F.; Tang, A.; Sun, X.; Amin, S.; Tsai, S.-Y.; Khalaj, M.; Zhou, T.; Samuel, R.M.; et al. A dual SHOX2:GFP; MYH6:mCherry knockin hESC reporter line for derivation of human SAN-like cells. iScience 2022, 25, 104153. [Google Scholar] [CrossRef]
- Husse, B.; Franz, W.-M. Generation of cardiac pacemaker cells by programming and differentiation. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2016, 1863, 1948–1952. [Google Scholar] [CrossRef]
- Ionta, V.; Liang, W.; Kim, E.H.; Rafie, R.; Giacomello, A.; Marbán, E.; Cho, H.C. SHOX2 overexpression favors differentiation of embryonic stem cells into cardiac pacemaker cells, improving biological pacing ability. Stem Cell Rep. 2015, 4, 129–142. [Google Scholar] [CrossRef]
- Jung, J.J.; Husse, B.; Rimmbach, C.; Krebs, S.; Stieber, J.; Steinhoff, G.; Dendorfer, A.; Franz, W.-M.; David, R. Programming and isolation of highly pure physiologically and pharmacologically functional sinus-nodal bodies from pluripotent stem cells. Stem Cell Rep. 2014, 2, 592–605. [Google Scholar] [CrossRef]
- Kapoor, N.; Liang, W.; Marbán, E.; Cho, H.C. Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18. Nat. Biotechnol. 2013, 31, 54–62. [Google Scholar] [CrossRef]
- Saito, Y.; Nakamura, K.; Yoshida, M.; Sugiyama, H.; Ohe, T.; Kurokawa, J.; Furukawa, T.; Takano, M.; Nagase, S.; Morita, H.; et al. Enhancement of Spontaneous Activity by HCN4 Overexpression in Mouse Embryonic Stem Cell-Derived Cardiomyocytes-A Possible Biological Pacemaker. PLoS ONE 2015, 10, e0138193. [Google Scholar] [CrossRef]
- Tse, H.-F.; Xue, T.; Lau, C.-P.; Siu, C.-W.; Wang, K.; Zhang, Q.-Y.; Tomaselli, G.F.; Akar, F.G.; Li, R.A. Bioartificial sinus node constructed via in vivo gene transfer of an engineered pacemaker HCN Channel reduces the dependence on electronic pacemaker in a sick-sinus syndrome model. Circulation 2006, 114, 1000–1011. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Gu, J.; Shi, Y.; Li, B.; Gu, X. Disrupting methyl-CpG-binding protein 2 expression induces the transformation of induced pluripotent stem cell cardiomyocytes into pacemaker-like cells by insulin gene enhancer binding protein 1. J. Gene Med. 2023, 25, e3499. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wang, F.; Zhang, W.; Yang, M.; Tang, Y.; Wang, X.; Zhao, Q.; Huang, C. Overexpression of TBX3 in human induced pluripotent stem cells (hiPSCs) increases their differentiation into cardiac pacemaker-like cells. Biomed. Pharmacother. 2020, 130, 110612. [Google Scholar] [CrossRef]
- Zhu, W.-Z.; Xie, Y.; Moyes, K.W.; Gold, J.D.; Askari, B.; Laflamme, M.A. Neuregulin/ErbB signaling regulates cardiac subtype specification in differentiating human embryonic stem cells. Circ. Res. 2010, 107, 776–786. [Google Scholar] [CrossRef] [PubMed]
- Birket, M.J.; Ribeiro, M.C.; Verkerk, A.O.; Ward, D.; Leitoguinho, A.R.; den Hartogh, S.C.; Orlova, V.V.; Devalla, H.D.; Schwach, V.; Bellin, M.; et al. Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells. Nat. Biotechnol. 2015, 33, 970–979. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Gao, F.; Wang, X.; Liang, Q.; Bai, A.; Liu, Z.; Chen, X.; Li, E.; Chen, S.; Lu, C.; et al. E2A ablation enhances proportion of nodal-like cardiomyocytes in cardiac-specific differentiation of human embryonic stem cells. eBioMedicine 2021, 71, 103575. [Google Scholar] [CrossRef] [PubMed]
- Stevens, L.C. Embryonic potency of embryoid bodies derived from a transplantable testicular teratoma of the mouse. Dev. Biol. 1960, 2, 285–297. [Google Scholar] [CrossRef]
- Batalov, I.; Feinberg, A.W. Differentiation of Cardiomyocytes from Human Pluripotent Stem Cells Using Monolayer Culture. Biomark. Insights 2015, 10, 71–76. [Google Scholar] [CrossRef]
- Prondzynski, M.; Berkson, P.; Trembley, M.A.; Tharani, Y.; Shani, K.; Bortolin, R.H.; Sweat, M.E.; Mayourian, J.; Yucel, D.; Cordoves, A.M.; et al. Efficient and reproducible generation of human iPSC-derived cardiomyocytes and cardiac organoids in stirred suspension systems. Nat. Commun. 2024, 15, 5929. [Google Scholar] [CrossRef] [PubMed]
- Souidi, M.; Sleiman, Y.; Acimovic, I.; Pribyl, J.; Charrabi, A.; Baecker, V.; Scheuermann, V.; Pesl, M.; Jelinkova, S.; Skladal, P.; et al. Oxygen Is an Ambivalent Factor for the Differentiation of Human Pluripotent Stem Cells in Cardiac 2D Monolayer and 3D Cardiac Spheroids. Int. J. Mol. Sci. 2021, 22, 662. [Google Scholar] [CrossRef] [PubMed]
- Hirt, M.N.; Hansen, A.; Eschenhagen, T. Cardiac tissue engineering: State of the art. Circ. Res. 2014, 114, 354–367. [Google Scholar] [CrossRef]
- Stoehr, A.; Neuber, C.; Baldauf, C.; Vollert, I.; Friedrich, F.W.; Flenner, F.; Carrier, L.; Eder, A.; Schaaf, S.; Hirt, M.N.; et al. Automated analysis of contractile force and Ca2+ transients in engineered heart tissue. Am. J. Physiol. Heart Circ. Physiol. 2014, 306, H1353–H1363. [Google Scholar] [CrossRef]
- Liu, F.; Long, D.; Huang, W.; Peng, W.; Lan, H.; Zhou, Y.; Dang, X.; Zhou, R. The Biphasic Effect of Retinoic Acid Signaling Pathway on the Biased Differentiation of Atrial-like and Sinoatrial Node-like Cells from hiPSC. Int. J. Stem Cells 2022, 15, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Giannetti, F.; Benzoni, P.; Campostrini, G.; Milanesi, R.; Bucchi, A.; Baruscotti, M.; Dell’Era, P.; Rossini, A.; Barbuti, A. A detailed characterization of the hyperpolarization-activated “funny” current (If) in human-induced pluripotent stem cell (iPSC)–derived cardiomyocytes with pacemaker activity. Pflugers Arch. Eur. J. Physiol. 2021, 473, 1009–1021. [Google Scholar] [CrossRef] [PubMed]
- Wiesinger, A.; Li, J.; Fokkert, L.; Bakker, P.; Verkerk, A.O.; Christoffels, V.M.; Boink, G.J.; Devalla, H.D. A single cell transcriptional roadmap of human pacemaker cell differentiation. eLife 2022, 11, e76781. [Google Scholar] [CrossRef]
- Van Eif, V.W.W.; Stefanovic, S.; van Duijvenboden, K.; Bakker, M.; Wakker, V.; de Gier-de Vries, C.; Zaffran, S.; Verkerk, A.O.; Boukens, B.J.; Christoffels, V.M. Transcriptome analysis of mouse and human sinoatrial node cells reveals a conserved genetic program. Development 2019, 146, dev173161. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, F.; Yin, L.; Tang, Y.; Wang, X.; Huang, C. Cadherin-5 facilitated the differentiation of human induced pluripotent stem cells into sinoatrial node-like pacemaker cells by regulating β-catenin. J. Cell. Physiol. 2024, 239, e31161. [Google Scholar] [CrossRef]
- Schweizer, P.A.; Darche, F.F.; Ullrich, N.D.; Geschwill, P.; Greber, B.; Rivinius, R.; Seyler, C.; Müller-Decker, K.; Draguhn, A.; Utikal, J.; et al. Subtype-specific differentiation of cardiac pacemaker cell clusters from human induced pluripotent stem cells. Stem Cell Res. Ther. 2017, 8, 229. [Google Scholar] [CrossRef]
- Darche, F.F.; Ullrich, N.D.; Huang, Z.; Koenen, M.; Rivinius, R.; Frey, N.; Schweizer, P.A. Improved Generation of Human Induced Pluripotent Stem Cell-Derived Cardiac Pacemaker Cells Using Novel Differentiation Protocols. Int. J. Mol. Sci. 2022, 23, 7318. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Han, P.; Ma, X.; Farah, E.N.; Bloomekatz, J.; Zeng, X.-X.I.; Zhang, R.; Swim, M.M.; Witty, A.D.; Knight, H.G.; et al. Canonical Wnt5b Signaling Directs Outlying Nkx2.5+ Mesoderm into Pacemaker Cardiomyocytes. Dev. Cell 2019, 50, 729–743.e5. [Google Scholar] [CrossRef]
- Koivumäki, J.T.; Naumenko, N.; Tuomainen, T.; Takalo, J.; Oksanen, M.; Puttonen, K.A.; Lehtonen, Š.; Kuusisto, J.; Laakso, M.; Koistinaho, J.; et al. Structural Immaturity of Human iPSC-Derived Cardiomyocytes: In Silico Investigation of Effects on Function and Disease Modeling. Front. Physiol. 2018, 9, 80. [Google Scholar] [CrossRef] [PubMed]
- Scuderi, G.J.; Butcher, J. Naturally Engineered Maturation of Cardiomyocytes. Front. Cell Dev. Biol. 2017, 5, 50. [Google Scholar] [CrossRef] [PubMed]
- Rosen, M.R.; Brink, P.R.; Cohen, I.S.; Robinson, R.B. Genes, stem cells and biological pacemakers. Cardiovasc. Res. 2004, 64, 12–23. [Google Scholar] [CrossRef]
- Martínez-Falguera, D.; Iborra-Egea, O.; Gálvez-Montón, C. iPSC Therapy for Myocardial Infarction in Large Animal Models: Land of Hope and Dreams. Biomedicines 2021, 9, 1836. [Google Scholar] [CrossRef]
- Tsang, H.G.; Rashdan, N.A.; Whitelaw, C.B.A.; Corcoran, B.M.; Summers, K.M.; MacRae, V.E. Large animal models of cardiovascular disease. Cell Biochem. Funct. 2016, 34, 113–132. [Google Scholar] [CrossRef]
- Miake, J.; Marbán, E.; Nuss, H.B. Functional role of inward rectifier current in heart probed by Kir2.1 overexpression and dominant-negative suppression. J. Clin. Investig. 2003, 111, 1529–1536. [Google Scholar] [CrossRef]
- Kehat, I.; Khimovich, L.; Caspi, O.; Gepstein, A.; Shofti, R.; Arbel, G.; Huber, I.; Satin, J.; Itskovitz-Eldor, J.; Gepstein, L. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol. 2004, 22, 1282–1289. [Google Scholar] [CrossRef]
- Xue, T.; Cho, H.C.; Akar, F.G.; Tsang, S.-Y.; Jones, S.P.; Marbán, E.; Tomaselli, G.F.; Li, R.A. Functional Integration of Electrically Active Cardiac Derivatives From Genetically Engineered Human Embryonic Stem Cells With Quiescent Recipient Ventricular Cardiomyocytes. Circulation 2005, 111, 11–20. [Google Scholar] [CrossRef]
- Cho, H.C.; Marbán, E. Biological Therapies for Cardiac Arrhythmias. Circ. Res. 2010, 106, 674–685. [Google Scholar] [CrossRef] [PubMed]
- Chauveau, S.; Anyukhovsky, E.P.; Ben-Ari, M.; Naor, S.; Jiang, Y.-P.; Danilo, P.; Rahim, T.; Burke, S.; Qiu, X.; Potapova, I.A.; et al. Induced Pluripotent Stem Cell–Derived Cardiomyocytes Provide In Vivo Biological Pacemaker Function. Circ. Arrhythmia Electrophysiol. 2017, 10, e004508. [Google Scholar] [CrossRef]
- Komosa, E.R.; Wolfson, D.W.; Bressan, M.; Cho, H.C.; Ogle, B.M. Implementing Biological Pacemakers: Design Criteria for Successful Transition From Concept to Clinic. Circ. Arrhythmia Electrophysiol. 2021, 14, e009957. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-M.; Chen, Y.-C.; Hu, Y.-F. Harnessing cell reprogramming for cardiac biological pacing. J. Biomed. Sci. 2023, 30, 74. [Google Scholar] [CrossRef]
- Cingolani, E.; Goldhaber, J.I.; Marbán, E. Next-generation pacemakers: From small devices to biological pacemakers. Nat. Rev. Cardiol. 2018, 15, 139–150. [Google Scholar] [CrossRef]
- Nelson, G.D. A brief history of cardiac pacing. Tex. Heart Inst. J. 1993, 20, 12–18. [Google Scholar] [PubMed]
- Liaquat, M.T.; Ahmed, I.; Alzahrani, T. Pacemaker Malfunction. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Nguyên, U.C.; Crijns, H.J.G.M. Undersensing, asynchronous pacing, and ventricular fibrillation. Europace 2019, 21, 1078. [Google Scholar] [CrossRef]
- Furman, S. Pacemaker sensing. Pacing Clin. Electrophysiol. 1986, 9, 157. [Google Scholar] [CrossRef]
- Topf, A.; Motloch, L.J.; Kraus, J.; Danmayr, F.; Mirna, M.; Schernthaner, C.; Hoppe, U.C.; Strohmer, B. Exercise-related T-wave oversensing: An underestimated cause of reduced exercise capacity in a pacemaker-dependent patient-a case report and review of the literature. J. Interv. Card. Electrophysiol. 2020, 59, 67–70. [Google Scholar] [CrossRef]
- Sabbagh, E.; Abdelfattah, T.; Karim, M.M.; Farah, A.; Grubb, B.; Karim, S. Causes of Failure to Capture in Pacemakers and Implantable Cardioverter-defibrillators. J. Innov. Card. Rhythm. Manag. 2020, 11, 4013–4017. [Google Scholar] [CrossRef]
- Atlee, J.L.; Bernstein, A.D. Cardiac rhythm management devices (part II): Perioperative management. Anesthesiology 2001, 95, 1492–1506. [Google Scholar] [CrossRef]
- Abu-haniyeh, A.; Hajouli, S. Pacemaker Mediated Tachycardia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Barold, S.S. Repetitive reentrant and non-reentrant ventriculoatrial synchrony in dual chamber pacing. Clin. Cardiol. 1991, 14, 754–763. [Google Scholar] [CrossRef]
- Blanc, J.J.; Fatemi, M. A new cause of pacemaker-mediated tachycardia in patients implanted with a biventricular device. Pacing Clin. Electrophysiol. 2001, 24, 1711–1712. [Google Scholar] [CrossRef]
- Monteil, B.; Ploux, S.; Eschalier, R.; Ritter, P.; Haissaguerre, M.; Koneru, J.N.; Ellenbogen, K.A.; Bordachar, P. Pacemaker-Mediated Tachycardia: Manufacturer Specifics and Spectrum of Cases. Pacing Clin. Electrophysiol. 2015, 38, 1489–1498. [Google Scholar] [CrossRef] [PubMed]
- Alasti, M.; Machado, C.; Rangasamy, K.; Bittinger, L.; Healy, S.; Kotschet, E.; Adam, D.; Alison, J. Pacemaker-mediated arrhythmias. J. Arrhythm. 2018, 34, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Richter, S.; Muessigbrodt, A.; Salmas, J.; Doering, M.; Wetzel, U.; Arya, A.; Hindricks, G.; Brugada, P.; Israel, C.W. Ventriculoatrial conduction and related pacemaker-mediated arrhythmias in patients implanted for atrioventricular block: An old problem revisited. Int. J. Cardiol. 2013, 168, 3300–3308. [Google Scholar] [CrossRef] [PubMed]
- Ellenbogen, K.A.; Wilkoff, B.L.; Kay, G.N.; Lau, C.P. Clinical Cardiac Pacing, Defibrillation and Resynchronization Therapy E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2011; ISBN 978-1-4377-3790-5. [Google Scholar]
- Ellenbogen, K.A.; Wilkoff, B.L.; Kay, G.N.; Lau, C.-P.; Auricchio, A. Clinical Cardiac Pacing, Defibrillation, and Resynchronization Therapy, 5th. ed.; Elsevier: Philadelphia, PA, USA, 2017; ISBN 978-0-323-37804-8. [Google Scholar]
- Alcalde, Ó.; Fuertes, M.; Villuendas, R.; Pereferrer, D. Atypical pacemaker-mediated tachycardia from the atrial channel: What is the mechanism? Heart Rhythm. 2011, 8, 636–638. [Google Scholar] [CrossRef] [PubMed]
- Ozeke, O.; Cay, S.; Ozcan, F.; Topaloglu, S.; Aras, D. Pin-port misconnection induced endless loop tachycardia. J. Arrhythm. 2018, 34, 213–215. [Google Scholar] [CrossRef]
- Yoo, H.S.; Albino, E.; Fernandez, P.; Etcheverry, D.; Tepper, R.; Garro, H.; Pastori, J.; Acunzo, R. Pacemaker-mediated tachycardia with narrow QRS complexes. Clin. Case Rep. 2018, 6, 1040–1044. [Google Scholar] [CrossRef]
- Barold, S.S.; Levine, P.A. Pacemaker repetitive nonreentrant ventriculoatrial synchronous rhythm. A review. J. Interv. Card. Electrophysiol. 2001, 5, 45–58. [Google Scholar] [CrossRef]
- Sharma, P.S.; Kaszala, K.; Tan, A.Y.; Koneru, J.N.; Shepard, R.; Ellenbogen, K.A.; Huizar, J.F. Repetitive nonreentrant ventriculoatrial synchrony: An underrecognized cause of pacemaker-related arrhythmia. Heart Rhythm. 2016, 13, 1739–1747. [Google Scholar] [CrossRef] [PubMed]
- Barold, S.S.; Falkoff, M.D.; Ong, L.S.; Heinle, R.A. Magnet unresponsive pacemaker endless loop tachycardia. Am. Heart J. 1988, 116, 726–732. [Google Scholar] [CrossRef]
- Toyoshima, Y.; Inoue, K.; Kimura, R.; Doi, A.; Masuda, M.; Sotomi, Y.; Iwakura, K.; Fujii, K. A case of repetitive nonreentrant ventriculoatrial synchrony exacerbating heart failure in dilated cardiomyopathy. J. Arrhythmia 2012, 28, 297–299. [Google Scholar] [CrossRef]
- Bohm, A.; Kiss, R.; Dorian, P.; Pinter, A. Single-chamber, rate-responsive pacemaker-mediated tachycardia. Can. J. Cardiol. 2010, 26, e340. [Google Scholar] [CrossRef] [PubMed]
- Ortega, D.F.; Sammartino, M.V.; Pellegrino, G.M.M.; Barja, L.D.; Albina, G.; Segura, E.V.; Balado, R.; Laiño, R.; Giniger, A.G. Runaway pacemaker: A forgotten phenomenon? Europace 2005, 7, 592–597. [Google Scholar] [CrossRef] [PubMed]
- Barold, S.S.; Delnoy, P.P.; Kucher, A. Interventricular Pacemaker-Mediated Tachycardia during Biventricular Pacing. Pacing Clin. Electrophysiol. 2015, 38, 645–650. [Google Scholar] [CrossRef]
- Herczku, C.; Clemens, M.; Edes, I.; Csanadi, Z. Pacemaker-mediated tachycardia over the upper rate limit in a biventricular pacemaker system: What is the mechanism? Pacing Clin. Electrophysiol. 2010, 33, 1421–1424. [Google Scholar] [CrossRef]
- Berruezo, A.; Mont, L.; Scalise, A.; Brugada, J. Orthodromic pacemaker-mediated tachycardia in a biventricular system without an atrial electrode. J. Cardiovasc. Electrophysiol. 2004, 15, 1100–1102. [Google Scholar] [CrossRef]
- Barold, S.S.; Byrd, C.L. Cross-ventricular endless loop tachycardia during biventricular pacing. Pacing Clin. Electrophysiol. 2001, 24, 1821–1823. [Google Scholar] [CrossRef]
- Van Gelder, B.M.; Bracke, F.A.; Meijer, A. Pacemaker-mediated tachycardia in a biventricular pacing system. Pacing Clin. Electrophysiol. 2001, 24, 1819–1820. [Google Scholar] [CrossRef]
- Alasti, M.; Rangasamy, K.; Healy, S.; Adam, D.; Kotschet, E. Loss of cardiac resynchronization therapy in a patient with a biventricular implantable cardioverter-defibrillator. J. Arrhythm 2017, 33, 652–654. [Google Scholar] [CrossRef] [PubMed]
- Barold, S.S.; Mello Porto, F.; Kucher, A. Pacemaker rhythm recorded by a cardiac resynchronization device capable of left ventricular sensing. Pacing Clin. Electrophysiol. 2014, 37, 904–908. [Google Scholar] [CrossRef]
- Barold, S.S.; Kucher, A. Understanding the timing cycles of a cardiac resynchronization device designed with left ventricular sensing. Pacing Clin. Electrophysiol. 2014, 37, 1324–1337. [Google Scholar] [CrossRef]
- Lefroy, D.C.; Crake, T.; Davies, D.W. Ventricular tachycardia: An unusual pacemaker-mediated tachycardia. Br. Heart J. 1994, 71, 481–483. [Google Scholar] [CrossRef]
- Morin, D.P. An uncommon cause of pacemaker-mediated ventricular tachycardia. J. Cardiovasc. Electrophysiol. 2014, 25, 107–109. [Google Scholar] [CrossRef] [PubMed]
- Fuertes, B.; Toquero, J.; Arroyo-Espliguero, R.; Lozano, I.F. Pacemaker Lead Displacement: Mechanisms And Management. Indian Pacing Electrophysiol. J. 2003, 3, 231–238. [Google Scholar] [PubMed]
- Iqbal, A.M.; Jamal, S.F. Pacemaker Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- William, J.N.; Kathryn, A.T. Tilkemeier Peter Twiddler’s Syndrome. N. Engl. J. Med. 2003, 348, 1726–1727. [Google Scholar] [CrossRef]
- Schmidt, C.; Deyett, A.; Ilmer, T.; Haendeler, S.; Torres Caballero, A.; Novatchkova, M.; Netzer, M.A.; Ceci Ginistrelli, L.; Mancheno Juncosa, E.; Bhattacharya, T.; et al. Multi-chamber cardioids unravel human heart development and cardiac defects. Cell 2023, 186, 5587–5605.e27. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sleiman, Y.; Reisqs, J.-B.; Boutjdir, M. Differentiation of Sinoatrial-like Cardiomyocytes as a Biological Pacemaker Model. Int. J. Mol. Sci. 2024, 25, 9155. https://doi.org/10.3390/ijms25179155
Sleiman Y, Reisqs J-B, Boutjdir M. Differentiation of Sinoatrial-like Cardiomyocytes as a Biological Pacemaker Model. International Journal of Molecular Sciences. 2024; 25(17):9155. https://doi.org/10.3390/ijms25179155
Chicago/Turabian StyleSleiman, Yvonne, Jean-Baptiste Reisqs, and Mohamed Boutjdir. 2024. "Differentiation of Sinoatrial-like Cardiomyocytes as a Biological Pacemaker Model" International Journal of Molecular Sciences 25, no. 17: 9155. https://doi.org/10.3390/ijms25179155
APA StyleSleiman, Y., Reisqs, J. -B., & Boutjdir, M. (2024). Differentiation of Sinoatrial-like Cardiomyocytes as a Biological Pacemaker Model. International Journal of Molecular Sciences, 25(17), 9155. https://doi.org/10.3390/ijms25179155