Applications of Biological Therapy for Latent Infections: Benefits and Risks
Abstract
:1. Introduction
2. Mycobacterium Tuberculosis (MTB)
2.1. Pathogenesis and Latency
2.2. Biologics and Reactivation
3. HBV
3.1. Pathogenesis and Latency
3.2. Biologics and Reactivation
4. Hepatitis C Virus
4.1. Pathogenesis and Latency
4.2. Biologics and Reactivation
5. Herpesviruses
5.1. Pathogenesis and Latency
5.2. Biologics and Reactivation
6. Cytomegalovirus (CMV)
6.1. Pathogenesis and Latency
6.2. Biologics and Reactivation
7. Other Herpesviruses
8. Polyomaviridae Family
8.1. Pathogenesis and Latency
8.2. Biologics and Reactivation
9. Retroviruses
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cai, Z.; Wang, S.; Li, J. Treatment of Inflammatory Bowel Disease: A Comprehensive Review. Front. Med. 2021, 8, 2681. [Google Scholar] [CrossRef] [PubMed]
- Walsh, G. Biopharmaceuticals, an overview. In Biopharmaceuticals, an Industrial Perspective; Walsh, G., Murphy, B., Eds.; Springer: Dordrecht, The Netherlands, 1999; pp. 1–34. [Google Scholar]
- Hansel, T.T.; Kropshofer, H.; Singer, T.; Mitchell, J.A.; George, A.J.T. The safety and side effects of monoclonal antibodies. Nat. Rev. Drug Discov. 2010, 9, 325–338. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.C.; Adams, A.C.; Hufford, M.M.; de la Torre, I.; Winthrop, K.; Gottlieb, R.L. Neutralizing monoclonal antibodies for treatment of COVID-19. Nat. Rev. Immunol. 2021, 21, 382–393. [Google Scholar] [CrossRef]
- Winthrop, K.L. The emerging safety profile of JAK inhibitors in rheumatic disease. Nat. Rev. Rheumatol. 2017, 13, 234–243. [Google Scholar] [CrossRef]
- Anvari, S.; Tsoi, K. Hepatitis B Virus Reactivation with Immunosuppression: A Hidden Threat? J. Clin. Med. 2024, 13, 393. [Google Scholar] [CrossRef]
- Gentile, G.; Foà, R. Viral infections associated with the clinical use of monoclonal antibodies. Clin. Microbiol. Infect. 2011, 17, 1769–1775. [Google Scholar] [CrossRef]
- Noreña, I.; Fernández-Ruiz, M.; Aguado, J.M. Viral infections in the biologic therapy era. Expert Rev. Anti-Infect. Ther. 2018, 16, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Cantini, F.; Nannini, C.; Niccoli, L.; Petrone, L.; Ippolito, G.; Goletti, D. Risk of Tuberculosis Reactivation in Patients with Rheumatoid Arthritis, Ankylosing Spondylitis, and Psoriatic Arthritis Receiving Non-Anti-TNF-Targeted Biologics. Mediat. Inflamm. 2017, 2017, 8909834. [Google Scholar] [CrossRef]
- Mastorino, L.; Dapavo, P.; Trunfio, M.; Avallone, G.; Rubatto, M.; Calcagno, A.; Ribero, S.; Quaglino, P. Risk of Reactivation of Latent Tuberculosis in Psoriasis Patients on Biologic Therapies: A Retrospective Cohort from a Tertiary Care Centre in Northern Italy. Acta Derm. Venereol. 2022, 102, adv00821. [Google Scholar] [CrossRef]
- Torres, T.; Chiricozzi, A.; Puig, L.; Lé, A.M.; Marzano, A.V.; Dapavo, P.; Dauden, E.; Carrascosa, J.-M.; Lazaridou, E.; Duarte, G.; et al. Treatment of Psoriasis Patients with Latent Tuberculosis Using IL-17 and IL-23 Inhibitors: A Retrospective, Multinational, Multicentre Study. Am. J. Clin. Dermatol. 2024, 25, 333–342. [Google Scholar] [CrossRef]
- Gupta, A.; Kaul, A.; Tsolaki, A.G.; Kishore, U.; Bhakta, S. Mycobacterium tuberculosis: Immune evasion, latency and reactivation. Immunobiology 2012, 217, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Langan, E.A.; Graetz, V.; Allerheiligen, J.; Zillikens, D.; Rupp, J.; Terheyden, P. Immune checkpoint inhibitors and tuberculosis: An old disease in a new context. Lancet Oncol. 2020, 21, e55–e65. [Google Scholar] [CrossRef] [PubMed]
- Robert, M.; Miossec, P. Reactivation of latent tuberculosis with TNF inhibitors: Critical role of the beta 2 chain of the IL-12 receptor. Cell. Mol. Immunol. 2021, 18, 1644–1651. [Google Scholar] [CrossRef] [PubMed]
- Sodenkamp, J.; Waetzig, G.H.; Scheller, J.; Seegert, D.; Grötzinger, J.; Rose-John, S.; Ehlers, S.; Hölscher, C. Therapeutic targeting of interleukin-6 trans-signaling does not affect the outcome of experimental tuberculosis. Immunobiology 2012, 217, 996–1004. [Google Scholar] [CrossRef]
- Gómez-Reino, J.J.; Carmona, L.; Valverde, V.R.; Mola, E.M.; Montero, M.D. Treatment of rheumatoid arthritis with tumor necrosis factor inhibitors may predispose to significant increase in tuberculosis risk: A multicenter active-surveillance report. Arthritis Rheum. 2003, 48, 2122–2127. [Google Scholar] [CrossRef]
- Long, R.; Gardam, M. Tumour necrosis factor-α inhibitors and the reactivation of latent tuberculosis infection. Can. Med. Assoc. J. 2003, 168, 1153. [Google Scholar]
- Reichmann, M.T.; Marshall, B.G.; Cummings, F.; Elkington, P.T. Tuberculosis and TNF-inhibitors: History of exposure should outweigh investigations. BMJ Case Rep. 2014, 2014, bcr2013202127. [Google Scholar] [CrossRef]
- Sánchez-Moya, A.I.; García-Doval, I.; Carretero, G.; Sánchez-Carazo, J.; Ferrandiz, C.; Herrera Ceballos, E.; Alsina, M.; Ferrán, M.; López-Estebaranz, J.L.; Gómez-García, F.; et al. Latent tuberculosis infection and active tuberculosis in patients with psoriasis: A study on the incidence of tuberculosis and the prevalence of latent tuberculosis disease in patients with moderate-severe psoriasis in Spain. BIOBADADERM registry. J. Eur. Acad. Dermatol. Venereol. 2013, 27, 1366–1374. [Google Scholar] [CrossRef]
- Cataño, J.; Morales, M. Isoniazid toxicity and TB development during biological therapy of patients with psoriasis in Colombia. J. Dermatol. Treat. 2016, 27, 414–417. [Google Scholar] [CrossRef]
- Gaffen, S.L.; Jain, R.; Garg, A.V.; Cua, D.J. The IL-23-IL-17 immune axis: From mechanisms to therapeutic testing. Nat. Rev. Immunol. 2014, 14, 585–600. [Google Scholar] [CrossRef]
- Ruggiero, A.; Picone, V.; Martora, F.; Fabbrocini, G.; Megna, M. Guselkumab, Risankizumab, and Tildrakizumab in the Management of Psoriasis: A Review of the Real-World Evidence. Clin. Cosmet. Investig. Dermatol. 2022, 15, 1649–1658. [Google Scholar] [CrossRef]
- Blauvelt, A.; Reich, K.; Papp, K.A.; Kimball, A.B.; Gooderham, M.; Tyring, S.K.; Sinclair, R.; Thaçi, D.; Li, Q.; Cichanowitz, N.; et al. Safety of tildrakizumab for moderate-to-severe plaque psoriasis: Pooled analysis of three randomized controlled trials. Br. J. Dermatol. 2018, 179, 615–622. [Google Scholar] [CrossRef]
- Megna, M.; Patruno, C.; Bongiorno, M.R.; Gambardella, A.; Guarneri, C.; Foti, C.; Lembo, S.; Loconsole, F.; Fabbrocini, G. Lack of reactivation of tuberculosis in patients with psoriasis treated with secukinumab in a real-world setting of latent tuberculosis infection. J. Dermatol. Treat. 2022, 33, 2629–2633. [Google Scholar] [CrossRef]
- Huang, Y.-W.; Tsai, T.-F. A drug safety evaluation of risankizumab for psoriasis. Expert Opin. Drug Saf. 2020, 19, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.F.; Chiu, H.Y.; Song, M.; Chan, D. A case of latent tuberculosis reactivation in a patient treated with ustekinumab without concomitant isoniazid chemoprophylaxis in the PEARL trial. Br. J. Dermatol. 2013, 168, 444–446. [Google Scholar] [CrossRef] [PubMed]
- Lynch, M.; Roche, L.; Horgan, M.; Ahmad, K.; Hackett, C.; Ramsay, B. Peritoneal tuberculosis in the setting of ustekinumab treatment for psoriasis. JAAD Case Rep. 2017, 3, 230–232. [Google Scholar] [CrossRef] [PubMed]
- Enzo, E.; Angelo, P. Latent tuberculosis reactivation in a patient with erythrodermic psoriasis under treatment with ustekinumab and a low dose steroid, despite isoniazid chemoprophylaxis. Eur. J. Dermatol. 2014, 24, 508–509. [Google Scholar]
- Tsai, T.F.; Ho, V.; Song, M.; Szapary, P.; Kato, T.; Wasfi, Y.; Li, S.; Shen, Y.K.; Leonardi, C.; on behalf of the PHOENIX 1, PHOENIX 2, ACCEPT, PEARL; et al. The safety of ustekinumab treatment in patients with moderate-to-severe psoriasis and latent tuberculosis infection. Br. J. Dermatol. 2012, 167, 1145–1152. [Google Scholar] [CrossRef] [PubMed]
- Manzanares, N.; Vilarrasa, E.; López, A.; Alonso, M.L.; Velasco, M.; Riera, J.; del Alcázar, E.; Carrascosa, J.M.; Azón, A.; Rivera, R.; et al. No tuberculosis reactivations in psoriasis patients initiating new generation biologics despite untreated latent tuberculosis infection: Multicenter case series of 35 patients. J. Eur. Acad. Dermatol. Venereol. 2024, 38, e26–e28. [Google Scholar] [CrossRef]
- Choy, E.H.; De Benedetti, F.; Takeuchi, T.; Hashizume, M.; John, M.R.; Kishimoto, T. Translating IL-6 biology into effective treatments. Nat. Rev. Rheumatol. 2020, 16, 335–345. [Google Scholar] [CrossRef]
- Tokuda, H.; Harigai, M.; Kameda, H.; Tomono, K.; Takayanagi, N.; Watanabe, A.; Tasaka, S.; Suda, T.; Tateda, K.; Kadota, J. Consensus statements for medical practice: Biological agents and lung disease [Abridged English translation by the Japanese Respiratory Society]. Respir. Investig. 2017, 55, 229–251. [Google Scholar] [CrossRef] [PubMed]
- Koike, T.; Harigai, M.; Inokuma, S.; Ishiguro, N.; Ryu, J.; Takeuchi, T.; Takei, S.; Tanaka, Y.; Ito, K.; Yamanaka, H. Postmarketing surveillance of tocilizumab for rheumatoid arthritis in Japan: Interim analysis of 3881 patients. Ann. Rheum. Dis 2011, 70, 2148–2151. [Google Scholar] [CrossRef] [PubMed]
- Schiff, M.H.; Kremer, J.M.; Jahreis, A.; Vernon, E.; Isaacs, J.D.; van Vollenhoven, R.F. Integrated safety in tocilizumab clinical trials. Arthritis Res. Ther. 2011, 13, R141. [Google Scholar] [CrossRef]
- Itagaki, M.; Iketani, O.; Enoki, Y.; Chuang, V.T.G.; Taguchi, K.; Uno, S.; Uchida, S.; Namkoong, H.; Uwamino, Y.; Takano, Y.; et al. Analysis of Risk Factors for Developing Tuberculosis in Patients Who Received Prophylactic Latent Tuberculosis Infection Treatment with Experience of Biologic Medications. Biol. Pharm. Bull. 2023, 46, 1832–1837. [Google Scholar] [CrossRef]
- Noh, S.; Dronavalli, G. Active TB after the Use of Tocilizumab for COVID-19 Infection. Chest 2021, 160, A289. [Google Scholar] [CrossRef]
- Winthrop, K.L.; Park, S.H.; Gul, A.; Cardiel, M.H.; Gomez-Reino, J.J.; Tanaka, Y.; Kwok, K.; Lukic, T.; Mortensen, E.; Ponce de Leon, D.; et al. Tuberculosis and other opportunistic infections in tofacitinib-treated patients with rheumatoid arthritis. Ann. Rheum. Dis. 2016, 75, 1133–1138. [Google Scholar] [CrossRef]
- Maiga, M.; Lun, S.; Guo, H.; Winglee, K.; Ammerman, N.C.; Bishai, W.R. Risk of Tuberculosis Reactivation with Tofacitinib (CP-690550). J. Infect. Dis. 2012, 205, 1705–1708. [Google Scholar] [CrossRef]
- Bonelli, M.; Scheinecker, C. How does abatacept really work in rheumatoid arthritis? Curr. Opin. Rheumatol. 2018, 30, 295–300. [Google Scholar] [CrossRef]
- Bernal-Fernandez, G.; Espinosa-Cueto, P.; Leyva-Meza, R.; Mancilla, N.; Mancilla, R. Decreased expression of T-cell costimulatory molecule CD28 on CD4 and CD8 T cells of mexican patients with pulmonary tuberculosis. Tuberc. Res. Treat. 2010, 2010, 517547. [Google Scholar] [CrossRef]
- Martín Mola, E.; Balsa, A.; Martínez Taboada, V.; Sanmartí, R.; Marenco, J.L.; Navarro Sarabia, F.; Gómez-Reino, J.; Álvaro-Gracia, J.M.; Román Ivorra, J.A.; Lojo, L.; et al. Abatacept Use in Rheumatoid Arthritis: Evidence Review and Recommendations. Reumatol. Clínica 2013, 9, 5–17. [Google Scholar] [CrossRef]
- Shi, Y.; Zheng, M. Hepatitis B virus persistence and reactivation. BMJ 2020, 370, m2200. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.C.; Huang, D.Q.; Nguyen, M.H. Global burden of hepatitis B virus: Current status, missed opportunities and a call for action. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 524–537. [Google Scholar] [CrossRef]
- Clerico, M.; Dogliotti, I.; Ghione, P.; Zilioli, V.R.; Merli, F.; Botto, B.; Al Essa, W.; Battaglini, M.; Grimaldi, D.; Cervi, L.; et al. HBV Reactivation in Patients with Past Infection Affected by Non-Hodgkin Lymphoma and Treated with Anti-CD20 Antibody Based Immuno-Chemotherapy: A Multicenter Experience. J. Pers. Med. 2022, 12, 285. [Google Scholar] [CrossRef]
- Chiu, H.Y.; Chiu, Y.M.; Chang Liao, N.F.; Chi, C.C.; Tsai, T.F.; Hsieh, C.Y.; Hsieh, T.Y.; Lai, K.L.; Chiu, T.M.; Wu, N.L.; et al. Predictors of hepatitis B and C virus reactivation in patients with psoriasis treated with biologic agents: A 9-year multicenter cohort study. J. Am. Acad. Dermatol. 2021, 85, 337–344. [Google Scholar] [CrossRef]
- Lau, G.; Yu, M.-L.; Wong, G.; Thompson, A.; Ghazinian, H.; Hou, J.-L.; Piratvisuth, T.; Jia, J.-D.; Mizokami, M.; Cheng, G.; et al. APASL clinical practice guideline on hepatitis B reactivation related to the use of immunosuppressive therapy. Hepatol. Int. 2021, 15, 1031–1048. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Wang, Y.; Li, P.; Huang, W.; Lu, X.; Lu, H. HBV Reactivation during the Treatment of Non-Hodgkin Lymphoma and Management Strategies. Front. Oncol. 2021, 11, 68570. [Google Scholar] [CrossRef] [PubMed]
- Evens, A.M.; Jovanovic, B.D.; Su, Y.C.; Raisch, D.W.; Ganger, D.; Belknap, S.M.; Dai, M.S.; Chiu, B.C.; Fintel, B.; Cheng, Y.; et al. Rituximab-associated hepatitis B virus (HBV) reactivation in lymphoproliferative diseases: Meta-analysis and examination of FDA safety reports. Ann. Oncol. 2011, 22, 1170–1180. [Google Scholar] [CrossRef]
- Paul, S.; Dickstein, A.; Saxena, A.; Terrin, N.; Viveiros, K.; Balk, E.M.; Wong, J.B. Role of surface antibody in hepatitis B reactivation in patients with resolved infection and hematologic malignancy: A meta-analysis. Hepatology 2017, 66, 379–388. [Google Scholar] [CrossRef]
- Kusumoto, S.; Arcaini, L.; Hong, X.; Jin, J.; Kim, W.S.; Kwong, Y.L.; Peters, M.G.; Tanaka, Y.; Zelenetz, A.D.; Kuriki, H.; et al. Risk of HBV reactivation in patients with B-cell lymphomas receiving obinutuzumab or rituximab immunochemotherapy. Blood 2019, 133, 137–146. [Google Scholar] [CrossRef]
- Di Bisceglie, A.M.; Lok, A.S.; Martin, P.; Terrault, N.; Perrillo, R.P.; Hoofnagle, J.H. Recent US Food and Drug Administration warnings on hepatitis B reactivation with immune-suppressing and anticancer drugs: Just the tip of the iceberg? Hepatology 2015, 61, 703–711. [Google Scholar] [CrossRef]
- Herbein, G.; O’Brien, W.A. Tumor necrosis factor (TNF)-alpha and TNF receptors in viral pathogenesis. Proc. Soc. Exp. Biol. Med. 2000, 223, 241–257. [Google Scholar] [CrossRef] [PubMed]
- Kasahara, S.; Ando, K.; Saito, K.; Sekikawa, K.; Ito, H.; Ishikawa, T.; Ohnishi, H.; Seishima, M.; Kakumu, S.; Moriwaki, H. Lack of tumor necrosis factor alpha induces impaired proliferation of hepatitis B virus-specific cytotoxic T lymphocytes. J. Virol. 2003, 77, 2469–2476. [Google Scholar] [CrossRef]
- Pérez-Alvarez, R.; Díaz-Lagares, C.; García-Hernández, F.; Lopez-Roses, L.; Brito-Zerón, P.; Pérez-de-Lis, M.; Retamozo, S.; Bové, A.; Bosch, X.; Sanchez-Tapias, J.M.; et al. Hepatitis B virus (HBV) reactivation in patients receiving tumor necrosis factor (TNF)-targeted therapy: Analysis of 257 cases. Medicine 2011, 90, 359–371. [Google Scholar] [CrossRef]
- Terrault, N.A.; Lok, A.S.F.; McMahon, B.J.; Chang, K.M.; Hwang, J.P.; Jonas, M.M.; Brown, R.S., Jr.; Bzowej, N.H.; Wong, J.B. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. Hepatology 2018, 67, 1560–1599. [Google Scholar] [CrossRef] [PubMed]
- Mezzacappa, C.; Lim, J.K. Management of HBV reactivation: Challenges and opportunities. Clin. Liver Dis. 2024, 23, e0143. [Google Scholar] [CrossRef]
- Wang, S.; Jayarangaiah, A.; Malone, M.; Elrafei, T.; Steinberg, L.; Kumar, A. Risk of hepatitis B reactivation and cytomegalovirus related infections with Mogamulizumab: A retrospective study of international pharmacovigilance database. eClinicalMedicine 2020, 28, 100601. [Google Scholar] [CrossRef]
- Harigai, M.; Winthrop, K.; Takeuchi, T.; Hsieh, T.-Y.; Chen, Y.-M.; Smolen, J.S.; Burmester, G.; Walls, C.; Wu, W.-S.; Dickson, C.; et al. Evaluation of hepatitis B virus in clinical trials of baricitinib in rheumatoid arthritis. RMD Open 2020, 6, e001095. [Google Scholar] [CrossRef]
- Chen, Y.-M.; Huang, W.-N.; Wu, Y.-D.; Lin, C.-T.; Chen, Y.-H.; Chen, D.-Y.; Hsieh, T.-Y. Reactivation of hepatitis B virus infection in patients with rheumatoid arthritis receiving tofacitinib: A real-world study. Ann. Rheum. Dis. 2018, 77, 780–782. [Google Scholar] [CrossRef] [PubMed]
- Papatheodoridis, G.V.; Lekakis, V.; Voulgaris, T.; Lampertico, P.; Berg, T.; Chan, H.L.Y.; Kao, J.-H.; Terrault, N.; Lok, A.S.; Reddy, K.R. Hepatitis B virus reactivation associated with new classes of immunosuppressants and immunomodulators: A systematic review, meta-analysis, and expert opinion. J. Hepatol. 2022, 77, 1670–1689. [Google Scholar] [CrossRef]
- Mustafayev, K.; Torres, H. Hepatitis B virus and hepatitis C virus reactivation in cancer patients receiving novel anticancer therapies. Clin. Microbiol. Infect. 2022, 28, 1321–1327. [Google Scholar] [CrossRef]
- Torres, H.A.; Hosry, J.; Mahale, P.; Economides, M.P.; Jiang, Y.; Lok, A.S. Hepatitis C virus reactivation in patients receiving cancer treatment: A prospective observational study. Hepatology 2018, 67, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Mahale, P.; Kontoyiannis, D.P.; Chemaly, R.F.; Jiang, Y.; Hwang, J.P.; Davila, M.; Torres, H.A. Acute exacerbation and reactivation of chronic hepatitis C virus infection in cancer patients. J. Hepatol. 2012, 57, 1177–1185. [Google Scholar] [CrossRef] [PubMed]
- Asthana, A.K.; Lubel, J.S. Reactivation of latent viruses after treatment with biological therapies. Virus Adapt. Treat. 2014, 6, 1–10. [Google Scholar] [CrossRef]
- Raychaudhuri, S.P.; Nguyen, C.T.; Raychaudhuri, S.K.; Gershwin, M.E. Incidence and nature of infectious disease in patients treated with anti-TNF agents. Autoimmun. Rev. 2009, 9, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Ho, D.Y.; Enriquez, K.; Multani, A. Herpesvirus Infections Potentiated by Biologics. Infect. Dis. Clin. N. Am. 2020, 34, 311–339. [Google Scholar] [CrossRef]
- Tayyar, R.; Ho, D. Herpes Simplex Virus and Varicella Zoster Virus Infections in Cancer Patients. Viruses 2023, 15, 439. [Google Scholar] [CrossRef]
- Strangfeld, A.; Listing, J.; Herzer, P.; Liebhaber, A.; Rockwitz, K.; Richter, C.; Zink, A. Risk of herpes zoster in patients with rheumatoid arthritis treated with anti-TNF-alpha agents. JAMA 2009, 301, 737–744. [Google Scholar] [CrossRef]
- Galloway, J.B.; Mercer, L.K.; Moseley, A.; Dixon, W.G.; Ustianowski, A.P.; Helbert, M.; Watson, K.D.; Lunt, M.; Hyrich, K.L.; Symmons, D.P.M. Risk of skin and soft tissue infections (including shingles) in patients exposed to anti-tumour necrosis factor therapy: Results from the British Society for Rheumatology Biologics Register. Ann. Rheum. Dis. 2013, 72, 229. [Google Scholar] [CrossRef]
- García-Doval, I.; Pérez-Zafrilla, B.; Descalzo, M.Á.; Roselló, R.; Hernández, M.V.; Gómez-Reino, J.J.; Carmona, L. Incidence and risk of hospitalisation due to shingles and chickenpox in patients with rheumatic diseases treated with TNF antagonists. Ann. Rheum. Dis. 2010, 69, 1751. [Google Scholar] [CrossRef]
- McDonald, J.R.; Zeringue, A.L.; Caplan, L.; Ranganathan, P.; Xian, H.; Burroughs, T.E.; Fraser, V.J.; Cunningham, F.; Eisen, S.A. Herpes zoster risk factors in a national cohort of veterans with rheumatoid arthritis. Clin. Infect. Dis. 2009, 48, 1364–1371. [Google Scholar] [CrossRef]
- Winthrop, K.L.; Baddley, J.W.; Chen, L.; Liu, L.; Grijalva, C.G.; Delzell, E.; Beukelman, T.; Patkar, N.M.; Xie, F.; Saag, K.G.; et al. Association Between the Initiation of Anti–Tumor Necrosis Factor Therapy and the Risk of Herpes Zoster. JAMA 2013, 309, 887–895. [Google Scholar] [CrossRef]
- Baddley, J.W.; Cantini, F.; Goletti, D.; Gómez-Reino, J.J.; Mylonakis, E.; San-Juan, R.; Fernández-Ruiz, M.; Torre-Cisneros, J. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: An infectious diseases perspective (Soluble immune effector molecules [I]: Anti-tumor necrosis factor-α agents). Clin. Microbiol. Infect. 2018, 24, S10–S20. [Google Scholar] [CrossRef] [PubMed]
- Marcus, R.; Davies, A.; Ando, K.; Klapper, W.; Opat, S.; Owen, C.; Phillips, E.; Sangha, R.; Schlag, R.; Seymour, J.F.; et al. Obinutuzumab for the First-Line Treatment of Follicular Lymphoma. N. Engl. J. Med. 2017, 377, 1331–1344. [Google Scholar] [CrossRef] [PubMed]
- Ohmachi, K.; Tobinai, K.; Kinoshita, T.; Ishikawa, T.; Hatake, K.; Ichikawa, S.; Ohmine, K.; Kamitsuji, Y.; Choi, I.; Chou, T.; et al. Efficacy and safety of obinutuzumab in patients with previously untreated follicular lymphoma: A subgroup analysis of patients enrolled in Japan in the randomized phase III GALLIUM trial. Int. J. Hematol. 2018, 108, 499–509. [Google Scholar] [CrossRef]
- Vannucchi, A.M.; Kiladjian, J.J.; Griesshammer, M.; Masszi, T.; Durrant, S.; Passamonti, F.; Harrison, C.N.; Pane, F.; Zachee, P.; Mesa, R.; et al. Ruxolitinib versus Standard Therapy for the Treatment of Polycythemia Vera. N. Engl. J. Med. 2015, 372, 426–435. [Google Scholar] [CrossRef]
- Al-Ali, H.K.; Griesshammer, M.; le Coutre, P.; Waller, C.F.; Liberati, A.M.; Schafhausen, P.; Tavares, R.; Giraldo, P.; Foltz, L.; Raanani, P.; et al. Safety and efficacy of ruxolitinib in an open-label, multicenter, single-arm phase 3b expanded-access study in patients with myelofibrosis: A snapshot of 1144 patients in the JUMP trial. Haematologica 2016, 101, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Lussana, F.; Cattaneo, M.; Rambaldi, A.; Squizzato, A. Ruxolitinib-associated infections: A systematic review and meta-analysis. Am. J. Hematol. 2018, 93, 339–347. [Google Scholar] [CrossRef]
- Yun, H.; Xie, F.; Delzell, E.; Chen, L.; Levitan, E.B.; Lewis, J.D.; Saag, K.G.; Beukelman, T.; Winthrop, K.; Baddley, J.W.; et al. Risks of herpes zoster in patients with rheumatoid arthritis according to biologic disease-modifying therapy. Arthritis Care Res. 2015, 67, 731–736. [Google Scholar] [CrossRef] [PubMed]
- Kampouri, E.; Ibrahimi, S.S.; Xie, H.; Wong, E.R.; Hecht, J.B.; Sekhon, M.K.; Vo, A.; Stevens-Ayers, T.L.; Green, D.J.; Gauthier, J.; et al. Cytomegalovirus (CMV) Reactivation and CMV-Specific Cell-Mediated Immunity after Chimeric Antigen Receptor T-Cell Therapy. Clin. Infect. Dis. 2023, 78, 1022–1032. [Google Scholar] [CrossRef]
- Zuhair, M.; Smit, G.S.A.; Wallis, G.; Jabbar, F.; Smith, C.; Devleesschauwer, B.; Griffiths, P. Estimation of the worldwide seroprevalence of cytomegalovirus: A systematic review and meta-analysis. Rev. Med. Virol. 2019, 29, e2034. [Google Scholar] [CrossRef]
- Zhang, J.; Kamoi, K.; Zong, Y.; Yang, M.; Ohno-Matsui, K. Cytomegalovirus Anterior Uveitis: Clinical Manifestations, Diagnosis, Treatment, and Immunological Mechanisms. Viruses 2023, 15, 185. [Google Scholar] [CrossRef] [PubMed]
- Dadwal, S.S.; Papanicolaou, G.A.; Boeckh, M. How I prevent viral reactivation in high-risk patients. Blood 2023, 141, 2062–2074. [Google Scholar] [CrossRef]
- Eichau, S.; López Ruiz, R.; Castón Osorio, J.J.; Ramírez, E.; Domínguez-Mayoral, A.; Izquierdo, G. Primoinfección por citomegalovirus en un paciente con esclerosis múltiple recurrente-remitente tratado con alemtuzumab. Neurología 2020, 35, 440–443. [Google Scholar] [CrossRef]
- Philippen, L.; Schub, N.; Günther, A.; Cario, G.; Schrappe, M.; Repp, R.; Gramatzki, M. Alemtuzumab treatment for steroid-refractory acute graft-versus-host disease leads to severe immunosuppression but not to relapse of malignant disease. Bone Marrow Transplant. 2024, 59, 153–155. [Google Scholar] [CrossRef] [PubMed]
- Lavagna, A.; Bergallo, M.; Daperno, M.; Sostegni, R.; Costa, C.; Leto, R.; Crocellà, L.; Molinaro, G.; Rocca, R.; Cavallo, R.; et al. Infliximab and the risk of latent viruses reactivation in active Crohn’s disease. Inflamm. Bowel Dis. 2007, 13, 896–902. [Google Scholar] [CrossRef] [PubMed]
- Torre-Cisneros, J.; Del Castillo, M.; Castón, J.J.; Castro, M.C.; Pérez, V.; Collantes, E. Infliximab does not activate replication of lymphotropic herpesviruses in patients with refractory rheumatoid arthritis. Rheumatology 2005, 44, 1132–1135. [Google Scholar] [CrossRef] [PubMed]
- Shale, M.J. The implications of anti-tumour necrosis factor therapy for viral infection in patients with inflammatory bowel disease. Br. Med. Bull. 2009, 92, 61–77. [Google Scholar] [CrossRef]
- Bernal, K.D.E.; Whitehurst, C.B. Incidence of Epstein-Barr virus reactivation is elevated in COVID-19 patients. Virus Res. 2023, 334, 199157. [Google Scholar] [CrossRef]
- Atallah-Yunes, S.A.; Salman, O.; Robertson, M.J. Post-transplant lymphoproliferative disorder: Update on treatment and novel therapies. Br. J. Haematol. 2023, 201, 383–395. [Google Scholar] [CrossRef]
- Martin, S.T.; Powell, J.T.; Patel, M.; Tsapepas, D. Risk of posttransplant lymphoproliferative disorder associated with use of belatacept. Am. J. Health-Syst. Pharm. 2013, 70, 1977–1983. [Google Scholar] [CrossRef]
- Bradford, R.D.; Pettit, A.C.; Wright, P.W.; Mulligan, M.J.; Moreland, L.W.; McLain, D.A.; Gnann, J.W.; Bloch, K.C. Herpes Simplex Encephalitis during Treatment with Tumor Necrosis Factor-α Inhibitors. Clin. Infect. Dis. 2009, 49, 924–927. [Google Scholar] [CrossRef] [PubMed]
- Justice, E.A.; Khan, S.Y.; Logan, S.; Jobanputra, P. Disseminated cutaneous Herpes Simplex Virus-1 in a woman with rheumatoid arthritis receiving Infliximab: A case report. J. Med. Case Rep. 2008, 2, 282. [Google Scholar] [CrossRef] [PubMed]
- Crusio, R.H.J.; Singson, S.V.; Haroun, F.; Mehta, H.H.; Parenti, D.M. Herpes simplex virus encephalitis during treatment with etanercept. Scand. J. Infect. Dis. 2014, 46, 152–154. [Google Scholar] [CrossRef]
- Scheinpflug, K.; Schalk, E.; Reschke, K.; Franke, A.; Mohren, M. Diabetes Insipidus Due to Herpes Encephalitis in a Patient with Diffuse Large Cell Lymphoma. A Case Report. Exp. Clin. Endocrinol. Diabetes 2006, 114, 31–34. [Google Scholar] [CrossRef]
- Montalban, X.; Hauser, S.L.; Kappos, L.; Arnold, D.L.; Bar-Or, A.; Comi, G.; Seze, J.D.; Giovannoni, G.; Hartung, H.-P.; Hemmer, B.; et al. Ocrelizumab versus Placebo in Primary Progressive Multiple Sclerosis. N. Engl. J. Med. 2017, 376, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.F.; You, J. Regulation of Polyomavirus Transcription by Viral and Cellular Factors. Viruses 2020, 12, 1072. [Google Scholar] [CrossRef]
- Hildreth, J.E.K.; Alcendor, D.J. JC Polyomavirus and Transplantation: Implications for Virus Reactivation after Immunosuppression in Transplant Patients and the Occurrence of PML Disease. Transplantology 2021, 2, 37–48. [Google Scholar] [CrossRef]
- Zhou, X.; Zhu, C.; Li, H. BK polyomavirus: Latency, reactivation, diseases and tumorigenesis. Front. Cell. Infect. Microbiol. 2023, 13, 1263983. [Google Scholar] [CrossRef]
- Chalkley, J.J.; Berger, J.R. Progressive multifocal leukoencephalopathy in multiple sclerosis. Curr. Neurol. Neurosci. Rep. 2013, 13, 408. [Google Scholar] [CrossRef]
- Monaco, M.C.; Major, E.O. The link between VLA-4 and JC virus reactivation. Expert. Rev. Clin. Immunol. 2012, 8, 63–72. [Google Scholar] [CrossRef]
- Chen, Y.; Bord, E.; Tompkins, T.; Miller, J.; Tan, C.S.; Kinkel, R.P.; Stein, M.C.; Viscidi, R.P.; Ngo, L.H.; Koralnik, I.J. Asymptomatic Reactivation of JC Virus in Patients Treated with Natalizumab. N. Engl. J. Med. 2009, 361, 1067–1074. [Google Scholar] [CrossRef] [PubMed]
- Keene, D.L.; Legare, C.; Taylor, E.; Gallivan, J.; Cawthorn, G.M.; Vu, D. Monoclonal antibodies and progressive multifocal leukoencephalopathy. Can. J. Neurol. Sci. 2011, 38, 565–571. [Google Scholar] [CrossRef]
- Fleischmann, R.M. Progressive multifocal leukoencephalopathy following rituximab treatment in a patient with rheumatoid arthritis. Arthritis Rheum. 2009, 60, 3225–3228. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.L.; Focosi, D.; Socal, M.P.; Bian, J.C.; Nabhan, C.; Hrushesky, W.J.; Bennett, A.C.; Schoen, M.W.; Berger, J.R.; Armitage, J.O. Progressive multifocal leukoencephalopathy in patients treated with rituximab: A 20-year review from the Southern Network on Adverse Reactions. Lancet Haematol. 2021, 8, e593–e604. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Bucay, A.; Ramirez-Andrade, S.E.; Gordon, C.E.; Francis, J.M.; Chitalia, V.C. Advances in BK Virus Complications in Organ Transplantation and Beyond. Kidney Med. 2020, 2, 771–786. [Google Scholar] [CrossRef]
- Yang, M.; Kamoi, K.; Zong, Y.; Zhang, J.; Ohno-Matsui, K. Human Immunodeficiency Virus and Uveitis. Viruses 2023, 15, 444. [Google Scholar] [CrossRef]
- Zong, Y.; Kamoi, K.; Kurozumi-Karube, H.; Zhang, J.; Yang, M.; Ohno-Matsui, K. Safety of intraocular anti-VEGF antibody treatment under in vitro HTLV-1 infection. Front. Immunol. 2023, 13, 1089286. [Google Scholar] [CrossRef]
- Yang, M.; Kamoi, K.; Zong, Y.; Zhang, J.; Zou, Y.; Ohno-Matsui, K. Ocular Manifestations of Human Immunodeficiency Virus Infection in the Combination Antiretroviral Therapy Era. Pathogens 2023, 12, 1417. [Google Scholar] [CrossRef]
- Zong, Y.; Kamoi, K.; Ando, N.; Kurozumi-Karube, H.; Ohno-Matsui, K. Mechanism of Secondary Glaucoma Development in HTLV-1 Uveitis. Front. Microbiol. 2022, 13, 738742. [Google Scholar] [CrossRef]
- Bekker, L.-G.; Beyrer, C.; Mgodi, N.; Lewin, S.R.; Delany-Moretlwe, S.; Taiwo, B.; Masters, M.C.; Lazarus, J.V. HIV infection. Nat. Rev. Dis. Primers 2023, 9, 42. [Google Scholar] [CrossRef]
- Bang, A.S.; Hakimi, M.; Tahir, P.; Bhutani, T.; Leslie, K.S. Biologic Therapies in HIV/AIDS Patients with Inflammatory Diseases: A Systematic Review of the Literature. AIDS Patient Care STDs 2023, 37, 215–242. [Google Scholar] [CrossRef] [PubMed]
- Kamoi, K.; Watanabe, T.; Uchimaru, K.; Okayama, A.; Kato, S.; Kawamata, T.; Kurozumi-Karube, H.; Horiguchi, N.; Zong, Y.; Yamano, Y.; et al. Updates on HTLV-1 Uveitis. Viruses 2022, 14, 794. [Google Scholar] [CrossRef]
- Zhang, J.; Kamoi, K.; Zong, Y.; Yang, M.; Zou, Y.; Ohno-Matsui, K. Evaluating tocilizumab safety and immunomodulatory effects under ocular HTLV-1 infection in vitro. Int. Immunopharmacol. 2024, 137, 112460. [Google Scholar] [CrossRef]
- Kamoi, K.; Horiguchi, N.; Kurozumi-Karube, H.; Hamaguchi, I.; Yamano, Y.; Uchimaru, K.; Tojo, A.; Watanabe, T.; Ohno-Matsui, K. Horizontal transmission of HTLV-1 causing uveitis. Lancet Infect. Dis. 2021, 21, 578. [Google Scholar] [CrossRef]
- Kamoi, K.; Uchimaru, K.; Tojo, A.; Watanabe, T.; Ohno-Matsui, K. HTLV-1 uveitis and Graves’ disease presenting with sudden onset of blurred vision. Lancet 2022, 399, 60. [Google Scholar] [CrossRef]
- Kamoi, K. HTLV-1 in Ophthalmology. Front. Microbiol. 2020, 11, 388. [Google Scholar] [CrossRef] [PubMed]
- Kamoi, K.; Mochizuki, M. HTLV infection and the eye. Curr. Opin. Ophthalmol. 2012, 23, 557–561. [Google Scholar] [CrossRef]
- Fukui, S.; Nakamura, H.; Takahashi, Y.; Iwamoto, N.; Hasegawa, H.; Yanagihara, K.; Nakamura, T.; Okayama, A.; Kawakami, A. Tumor necrosis factor alpha inhibitors have no effect on a human T-lymphotropic virus type-I (HTLV-I)-infected cell line from patients with HTLV-I-associated myelopathy. BMC Immunol. 2017, 18, 7. [Google Scholar] [CrossRef] [PubMed]
- Umekita, K.; Umeki, K.; Miyauchi, S.; Ueno, S.; Kubo, K.; Kusumoto, N.; Takajo, I.; Nagatomo, Y.; Okayama, A. Use of anti-tumor necrosis factor biologics in the treatment of rheumatoid arthritis does not change human T-lymphotropic virus type 1 markers: A case series. Mod. Rheumatol. 2015, 25, 794–797. [Google Scholar] [CrossRef]
- Kurozumi-Karube, H.; Kamoi, K.; Ando, N.; Uchida, M.; Hamaguchi, I.; Ohno-Matsui, K. In vitro Evaluation of the Safety of Adalimumab for the Eye Under HTLV-1 Infection Status: A Preliminary Study. Front. Microbiol. 2020, 11, 522579. [Google Scholar] [CrossRef]
- Uchida, M.; Kamoi, K.; Ando, N.; Wei, C.; Karube, H.; Ohno-Matsui, K. Safety of Infliximab for the Eye Under Human T-Cell Leukemia Virus Type 1 Infectious Conditions in vitro. Front. Microbiol. 2019, 10, 2148. [Google Scholar] [CrossRef]
- Nagao, T.; Takahashi, N.; Saitoh, H.; Noguchi, S.; Guo, Y.-M.; Ito, M.; Watanabe, A.; Fujishima, N.; Kameoka, Y.; Tagawa, H.; et al. [Adult T-cell leukemia-lymphoma developed from an HTLV-1 carrier during treatment of B-cell lymphoma-associated hemophagocytic syndrome]. Rinsho Ketsueki 2012, 53, 2008–2012. [Google Scholar] [PubMed]
- Nakamura, H.; Ueki, Y.; Saito, S.; Horai, Y.; Suzuki, T.; Naoe, T.; Eguchi, K.; Kawakami, A. Development of adult T-cell leukemia in a patient with rheumatoid arthritis treated with tocilizumab. Intern. Med. 2013, 52, 1983–1986. [Google Scholar] [CrossRef] [PubMed]
- Terada, Y.; Kamoi, K.; Ohno-Matsui, K.; Miyata, K.; Yamano, C.; Coler-Reilly, A.; Yamano, Y. Treatment of rheumatoid arthritis with biologics may exacerbate HTLV-1-associated conditions: A case report. Medicine 2017, 96, e6021. [Google Scholar] [CrossRef] [PubMed]
Category | Representative Drugs | Primary Target | Immunosuppressive Mechanism | Clinical Applications | |
---|---|---|---|---|---|
Autoimmunity Diseases | Cancers | ||||
TNF-α Inhibitors | Infliximab (Remicade), Adalimumab (Humira), Etanercept (Enbrel) | TNF-α | Inhibits TNF-α, reducing inflammation | Rheumatoid arthritis, Crohn’s disease, Psoriasis | - |
B-Cell Targeting Agents | Rituximab (Rituxan), Obinutuzumab (Gazyva), Ofatumumab (Arzerra) | CD20 | Depletes B cells, impairing humoral immune response | Rheumatoid arthritis, Systemic lupus erythematosus, Vasculitis | Non-Hodgkin lymphoma, Chronic lymphocytic leukemia |
Checkpoint Inhibitors | Pembrolizumab (Keytruda), Nivolumab (Opdivo), Ipilimumab (Yervoy) | PD-1, PD-L1, CTLA-4 | Activates the immune system, potentially causing immune dysregulation | - | Melanoma, Lung cancer, Renal cell carcinoma, Hodgkin’s lymphoma, Head and neck squamous cell carcinoma |
IL-6 Inhibitors | Tocilizumab (Actemra), Sarilumab (Kevzara) | IL-6 | Inhibits IL-6, affecting acute phase response and systemic immune reactions | Rheumatoid arthritis, Giant cell arteritis, Systemic juvenile idiopathic arthritis | - |
IL-17 Inhibitors | Secukinumab (Cosentyx), Ixekizumab (Taltz) | IL-17 | Inhibits IL-17, affecting neutrophil recruitment and function | Psoriasis, Psoriatic arthritis, Ankylosing spondylitis | - |
JAK Inhibitors | Tofacitinib (Xeljanz), Baricitinib (Olumiant), Upadacitinib (Rinvoq) | JAK-STAT signaling pathway | Inhibits multiple cytokines signaling pathways, broadly suppressing the immune system | Rheumatoid arthritis, Psoriatic arthritis, Ulcerative colitis | - |
CCR4 Inhibitors | Mogamulizumab (Poteligeo) | CCR4 | Depletes Tregs and Th2 cells, impairing immune regulatory functions | - | Adult T-cell leukemia/lymphoma, Cutaneous T-cell lymphoma |
IL-23 Inhibitors | Guselkumab (Tremfya), Risankizumab (Skyrizi), Tildrakizumab (Ilumya) | IL-23 | Inhibits IL-23, affecting Th17 cell functions | Psoriasis, Crohn’s disease | - |
CD38 Inhibitors | Daratumumab (Darzalex), Isatuximab (Sarclisa) | CD38 | Broadly depletes CD38-positive cells, impairing immune surveillance | - | Multiple myeloma |
T-Cell Costimulation Blockers | Abatacept (Orencia) Belatacept (Nulojix) | CD80/CD86 | Inhibits T-cell costimulatory signals, weakening T-cell-mediated immune responses | Rheumatoid arthritis, Organ transplantation, Psoriasis, Psoriatic arthritis | - |
IL-1 Inhibitors | Anakinra (Kineret), Canakinumab (Ilaris) | IL-1 | Inhibits IL-1, reducing inflammation | Rheumatoid arthritis, Neutrophilic dermatoses | Multiple myeloma |
IL-12/IL-23 Inhibitors | Ustekinumab (Stelara) | IL-12/IL-23 p40 subunit | Inhibits IL-12 and IL-23, reducing Th1 and Th17 responses | Psoriasis, Crohn’s disease | - |
IL-4/IL-13 Inhibitors | Dupilumab (Dupixent) | IL-4Rα | Inhibits IL-4 and IL-13 signaling, reducing inflammation | Atopic dermatitis, Eosinophilic esophagitis, Asthma | - |
IL-5 Inhibitors | Mepolizumab (Nucala), Reslizumab (Cinqair), Benralizumab (Fasenra) | IL-5 | Inhibits IL-5, reducing eosinophil activity | Eosinophilic asthma | - |
Complement Inhibitors | Eculizumab (Soliris) | C5 | Inhibits complement component C5, preventing complement-mediated damage | Paroxysmal nocturnal hemoglobinuria, Atypical hemolytic uremic syndrome | - |
Integrin Inhibitors | Natalizumab (Tysabri), Vedolizumab (Entyvio) | α4-integrin, α4β7-integrin | Inhibits integrin-mediated cell adhesion, reducing immune cell infiltration | Multiple sclerosis, Crohn’s disease, Ulcerative colitis | - |
CD52 Inhibitors | Alemtuzumab (Lemtrada) | CD52 | Depletes CD52-positive cells, broadly suppressing the immune system | Multiple sclerosis | Chronic lymphocytic leukemia |
GM-CSF Inhibitors | Sargramostim (Leukine) | GM-CSF | Modulates GM-CSF signaling, affecting immune cell activation | Bone marrow transplantation | Chronic myelogenous leukemia |
IL-2 Receptor Antagonists | Basiliximab (Simulect), Daclizumab (Zinbryta) | IL-2Rα (CD25) | Blocks IL-2 signaling, reducing T-cell proliferation | Prevention of organ transplant rejection, Multiple sclerosis | - |
RANKL Inhibitors | Denosumab (Prolia, Xgeva) | RANKL | Inhibits RANKL, reducing osteoclast activity | Osteoporosis | Bone metastases |
Anti-VEGF Antibodies | Bevacizumab (Avastin), Ranibizumab (Lucentis) | VEGF | Inhibits VEGF, reducing angiogenesis | Age-related macular degeneration | Metastatic colorectal cancer, Non-small cell lung cancer, Glioblastoma, Ovarian cancer, Renal cell carcinoma |
Category | HBsAg+ Risk | HBsAg-/Anti-HBc+ Risk |
---|---|---|
Anti-CD20 | High | Moderate |
Anti-TNF | High | Low |
Anti-IL-6 | High | Moderate |
Other cytokine inhibitors | High | Moderate |
Anti-CCR4 | Moderate | Moderate |
Immune checkpoint inhibitors | High | Low |
JAK inhibitors | High | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zong, Y.; Kamoi, K.; Miyagaki, M.; Zhang, J.; Yang, M.; Zou, Y.; Ohno-Matsui, K. Applications of Biological Therapy for Latent Infections: Benefits and Risks. Int. J. Mol. Sci. 2024, 25, 9184. https://doi.org/10.3390/ijms25179184
Zong Y, Kamoi K, Miyagaki M, Zhang J, Yang M, Zou Y, Ohno-Matsui K. Applications of Biological Therapy for Latent Infections: Benefits and Risks. International Journal of Molecular Sciences. 2024; 25(17):9184. https://doi.org/10.3390/ijms25179184
Chicago/Turabian StyleZong, Yuan, Koju Kamoi, Miki Miyagaki, Jing Zhang, Mingming Yang, Yaru Zou, and Kyoko Ohno-Matsui. 2024. "Applications of Biological Therapy for Latent Infections: Benefits and Risks" International Journal of Molecular Sciences 25, no. 17: 9184. https://doi.org/10.3390/ijms25179184
APA StyleZong, Y., Kamoi, K., Miyagaki, M., Zhang, J., Yang, M., Zou, Y., & Ohno-Matsui, K. (2024). Applications of Biological Therapy for Latent Infections: Benefits and Risks. International Journal of Molecular Sciences, 25(17), 9184. https://doi.org/10.3390/ijms25179184