The Contribution of Mast Cells to the Regulation of Elastic Fiber Tensometry in the Skin Dermis of Children with Marfan Syndrome
Abstract
:1. Introduction
2. Results
2.1. Normal Skin
2.2. Skin in Patients with Marfan Syndrome
3. Discussion
4. Materials and Methods
4.1. Case Selection
4.2. Tissue Probe Staining
4.3. Immunohistochemistry and Histochemistry
4.4. Image Acquisition
4.5. Quantitative Analysis
4.6. Controls
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MFS | Marfan syndrome |
MCs | Mast cells |
ECM | Extracellular matrix |
TGF-β | Transforming growth factor-beta |
CPA3 | Carboxypeptidase A3 |
α-SMA | Alpha smooth muscle actin |
VEGF | Vascular endothelial growth factor |
IL | Interleukins |
bFGF | Basic fibroblast growth factor |
NGF | Nerve growth factor |
PDGF | Platelet-derived growth factor |
References
- Pyeritz, R.E. Recent progress in understanding the natural and clinical histories of the Marfan syndrome. Trends Cardiovasc. Med. 2016, 26, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, J.B.; Ikonomidis, J.S.; Jones, J.A. Connective Tissue Disorders and Cardiovascular Complications: The Indomitable Role of Transforming Growth Factor-beta Signaling. Adv. Exp. Med. Biol. 2021, 1348, 161–184. [Google Scholar] [CrossRef] [PubMed]
- Kielty, C.M. Fell-Muir Lecture: Fibrillin microfibrils: Structural tensometers of elastic tissues? Int. J. Exp. Pathol. 2017, 98, 172–190. [Google Scholar] [CrossRef]
- Wagenseil, J.E.; Mecham, R.P. New insights into elastic fiber assembly. Birth Defects Res. C Embryo Today 2007, 81, 229–240. [Google Scholar] [CrossRef]
- Godfrey, M. From fluorescence to the gene: The skin in the Marfan syndrome. J. Investig. Dermatol. 1994, 103, 58S–62S. [Google Scholar] [CrossRef] [PubMed]
- Milewicz, D.M.; Pyeritz, R.E.; Crawford, E.S.; Byers, P.H. Marfan syndrome: Defective synthesis, secretion, and extracellular matrix formation of fibrillin by cultured dermal fibroblasts. J. Clin. Investig. 1992, 89, 79–86. [Google Scholar] [CrossRef]
- Ramirez, F.; Sakai, L.Y.; Dietz, H.C.; Rifkin, D.B. Fibrillin microfibrils: Multipurpose extracellular networks in organismal physiology. Physiol. Genom. 2004, 19, 151–154. [Google Scholar] [CrossRef]
- Ramirez, F.; Sakai, L.Y. Biogenesis and function of fibrillin assemblies. Cell Tissue Res. 2010, 339, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Fu, M.; Wang, M.; Wei, Y.; Wei, X. Targeting TGF-beta signal transduction for fibrosis and cancer therapy. Mol. Cancer 2022, 21, 104. [Google Scholar] [CrossRef]
- Klein, O.; Sagi-Eisenberg, R. Anaphylactic Degranulation of Mast Cells: Focus on Compound Exocytosis. J. Immunol. Res. 2019, 2019, 9542656. [Google Scholar] [CrossRef]
- Shefler, I.; Salamon, P.; Mekori, Y.A. Extracellular Vesicles as Emerging Players in Intercellular Communication: Relevance in Mast Cell-Mediated Pathophysiology. Int. J. Mol. Sci. 2021, 22, 9176. [Google Scholar] [CrossRef] [PubMed]
- Elieh Ali Komi, D.; Kuebler, W.M. Significance of Mast Cell Formed Extracellular Traps in Microbial Defense. Clin. Rev. Allergy Immunol. 2022, 62, 160–179. [Google Scholar] [CrossRef] [PubMed]
- Theoharides, T.C.; Kavalioti, M.; Tsilioni, I. Mast Cells, Stress, Fear and Autism Spectrum Disorder. Int. J. Mol. Sci. 2019, 20, 3611. [Google Scholar] [CrossRef] [PubMed]
- Elieh Ali Komi, D.; Wohrl, S.; Bielory, L. Mast Cell Biology at Molecular Level: A Comprehensive Review. Clin. Rev. Allergy Immunol. 2020, 58, 342–365. [Google Scholar] [CrossRef] [PubMed]
- Lyons, J.J.; Metcalfe, D.D. Targeting Mast Cells with Biologics. Immunol. Allergy Clin. N. Am. 2020, 40, 667–685. [Google Scholar] [CrossRef]
- Hugle, T. Beyond allergy: The role of mast cells in fibrosis. Swiss Med. Wkly. 2014, 144, w13999. [Google Scholar] [CrossRef] [PubMed]
- Bradding, P.; Pejler, G. The controversial role of mast cells in fibrosis. Immunol. Rev. 2018, 282, 198–231. [Google Scholar] [CrossRef] [PubMed]
- Atiakshin, D.; Buchwalow, I.; Tiemann, M. Mast cells and collagen fibrillogenesis. Histochem. Cell Biol. 2020, 154, 21–40. [Google Scholar] [CrossRef] [PubMed]
- Mukai, K.; Tsai, M.; Saito, H.; Galli, S.J. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol. Rev. 2018, 282, 121–150. [Google Scholar] [CrossRef]
- Galli, S.J.; Gaudenzio, N.; Tsai, M. Mast Cells in Inflammation and Disease: Recent Progress and Ongoing Concerns. Annu. Rev. Immunol. 2020, 38, 49–77. [Google Scholar] [CrossRef]
- Fimiani, M.; Mazzatenta, C.; Alessandrini, C.; Paola, M.; Paola, C.; Andreassi, L. Mid-dermal elastolysis: An ultrastructural and biochemical study. Arch. Dermatol. Res. 1995, 287, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Sheu, H.M.; Yu, H.S.; Chang, C.H. Mast cell degranulation and elastolysis in the early stage of striae distensae. J. Cutan. Pathol. 1991, 18, 410–416. [Google Scholar] [CrossRef]
- Gudmann, N.S.; Manon-Jensen, T.; Sand, J.M.B.; Diefenbach, C.; Sun, S.; Danielsen, A.; Karsdal, M.A.; Leeming, D.J. Lung tissue destruction by proteinase 3 and cathepsin G mediated elastin degradation is elevated in chronic obstructive pulmonary disease. Biochem. Biophys. Res. Commun. 2018, 503, 1284–1290. [Google Scholar] [CrossRef] [PubMed]
- Schmelzer, C.E.; Jung, M.C.; Wohlrab, J.; Neubert, R.H.; Heinz, A. Does human leukocyte elastase degrade intact skin elastin? FEBS J. 2012, 279, 4191–4200. [Google Scholar] [CrossRef] [PubMed]
- Boudier, C.; Godeau, G.; Hornebeck, W.; Robert, L.; Bieth, J.G. The elastolytic activity of cathepsin G: An ex vivo study with dermal elastin. Am. J. Respir. Cell Mol. Biol. 1991, 4, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, M.; Fu, Z.; Albat, E.; Akula, S.; de Garavilla, L.; Kervinen, J.; Hellman, L. Extended cleavage specificities of mast cell proteases 1 and 2 from golden hamster: Classical chymase and an elastolytic protease comparable to rat and mouse MCP-5. PLoS ONE 2018, 13, e0207826. [Google Scholar] [CrossRef]
- Xing, W.; Austen, K.F.; Gurish, M.F.; Jones, T.G. Protease phenotype of constitutive connective tissue and of induced mucosal mast cells in mice is regulated by the tissue. Proc. Natl. Acad. Sci. USA 2011, 108, 14210–14215. [Google Scholar] [CrossRef]
- Blanco, I.; Beritze, N.; Arguelles, M.; Carcaba, V.; Fernandez, F.; Janciauskiene, S.; Oikonomopoulou, K.; de Serres, F.J.; Fernandez-Bustillo, E.; Hollenberg, M.D. Abnormal overexpression of mastocytes in skin biopsies of fibromyalgia patients. Clin. Rheumatol. 2010, 29, 1403–1412. [Google Scholar] [CrossRef]
- Holbrook, K.A.; Byers, P.H. Skin is a window on heritable disorders of connective tissue. Am. J. Med. Genet. 1989, 34, 105–121. [Google Scholar] [CrossRef]
- Cui, J.Z.; Tehrani, A.Y.; Jett, K.A.; Bernatchez, P.; van Breemen, C.; Esfandiarei, M. Quantification of aortic and cutaneous elastin and collagen morphology in Marfan syndrome by multiphoton microscopy. J. Struct. Biol. 2014, 187, 242–253. [Google Scholar] [CrossRef]
- Atiakshin, D.; Soboleva, M.; Nikityuk, D.; Alexeeva, N.; Klochkova, S.; Kostin, A.; Shishkina, V.; Buchwalow, I.; Tiemann, M. Mast Cells in Regeneration of the Skin in Burn Wound with Special Emphasis on Molecular Hydrogen Effect. Pharmaceuticals 2023, 16, 348. [Google Scholar] [CrossRef] [PubMed]
- Mayer, G.; Hamelin, J.; Asselin, M.C.; Pasquato, A.; Marcinkiewicz, E.; Tang, M.; Tabibzadeh, S.; Seidah, N.G. The regulated cell surface zymogen activation of the proprotein convertase PC5A directs the processing of its secretory substrates. J. Biol. Chem. 2008, 283, 2373–2384. [Google Scholar] [CrossRef]
- Herrera-Heredia, S.A.; Hsu, H.P.; Kao, C.Y.; Tsai, Y.H.; Yamaguchi, Y.; Roers, A.; Hsu, C.L.; Dzhagalov, I.L. Heparin is required for the formation of granules in connective tissue mast cells. Front. Immunol. 2022, 13, 1000405. [Google Scholar] [CrossRef] [PubMed]
- Shriver, Z.; Capila, I.; Venkataraman, G.; Sasisekharan, R. Heparin and heparan sulfate: Analyzing structure and microheterogeneity. In Heparin—A Century of Progress; Springer Nature: Berlin/Heidelberg, Germany, 2012; pp. 159–176. [Google Scholar] [CrossRef]
- Meneghetti, M.C.; Hughes, A.J.; Rudd, T.R.; Nader, H.B.; Powell, A.K.; Yates, E.A.; Lima, M.A. Heparan sulfate and heparin interactions with proteins. J. R. Soc. Interface 2015, 12, 0589. [Google Scholar] [CrossRef] [PubMed]
- Maccarana, M.; Jia, J.; Li, H.; Zhang, X.; Vlodavsky, I.; Li, J.P. Implications of Heparanase on Heparin Synthesis and Metabolism in Mast Cells. Int. J. Mol. Sci. 2022, 23, 4821. [Google Scholar] [CrossRef] [PubMed]
- Tomaz da Silva, M.; Santos, A.R.; Koike, T.E.; Nascimento, T.L.; Rozanski, A.; Bosnakovski, D.; Pereira, L.V.; Kumar, A.; Kyba, M.; Miyabara, E.H. The fibrotic niche impairs satellite cell function and muscle regeneration in mouse models of Marfan syndrome. Acta Physiol. 2023, 237, e13889. [Google Scholar] [CrossRef]
- Karur, G.R.; Pagano, J.J.; Bradley, T.; Lam, C.Z.; Seed, M.; Yoo, S.J.; Grosse-Wortmann, L. Diffuse Myocardial Fibrosis in Children and Adolescents With Marfan Syndrome and Loeys-Dietz Syndrome. J. Am. Coll. Cardiol. 2018, 72, 2279–2281. [Google Scholar] [CrossRef]
- Suarez, E.M.; Knackstedt, R.J.; Jenrette, J.M. Significant fibrosis after radiation therapy in a patient with Marfan syndrome. Radiat. Oncol. J. 2014, 32, 208–212. [Google Scholar] [CrossRef]
- Crosas-Molist, E.; Meirelles, T.; Lopez-Luque, J.; Serra-Peinado, C.; Selva, J.; Caja, L.; Gorbenko Del Blanco, D.; Uriarte, J.J.; Bertran, E.; Mendizabal, Y.; et al. Vascular smooth muscle cell phenotypic changes in patients with Marfan syndrome. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 960–972. [Google Scholar] [CrossRef]
- Yuan, S.M.; Ma, H.H.; Zhang, R.S.; Jing, H. Transforming growth factor-beta signaling pathway in Marfan’s syndrome: A preliminary histopathological study. Vasa 2011, 40, 369–374. [Google Scholar] [CrossRef]
- Chaudhry, S.S.; Cain, S.A.; Morgan, A.; Dallas, S.L.; Shuttleworth, C.A.; Kielty, C.M. Fibrillin-1 regulates the bioavailability of TGFbeta1. J. Cell Biol. 2007, 176, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Zeigler, S.M.; Sloan, B.; Jones, J.A. Pathophysiology and Pathogenesis of Marfan Syndrome. Adv. Exp. Med. Biol. 2021, 1348, 185–206. [Google Scholar] [CrossRef] [PubMed]
- Massague, J. How cells read TGF-beta signals. Nat. Rev. Mol. Cell Biol. 2000, 1, 169–178. [Google Scholar] [CrossRef]
- Bertolino, P.; Deckers, M.; Lebrin, F.; ten Dijke, P. Transforming growth factor-beta signal transduction in angiogenesis and vascular disorders. Chest 2005, 128, 585S–590S. [Google Scholar] [CrossRef]
- Chandiran, K.; Cauley, L.S. The diverse effects of transforming growth factor-beta and SMAD signaling pathways during the CTL response. Front. Immunol. 2023, 14, 1199671. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.Y.; Qin, L.; Simons, M. TGFbeta signaling pathways in human health and disease. Front. Mol. Biosci. 2023, 10, 1113061. [Google Scholar] [CrossRef]
- Matt, P.; Schoenhoff, F.; Habashi, J.; Holm, T.; Van Erp, C.; Loch, D.; Carlson, O.D.; Griswold, B.F.; Fu, Q.; De Backer, J.; et al. Circulating transforming growth factor-beta in Marfan syndrome. Circulation 2009, 120, 526–532. [Google Scholar] [CrossRef]
- Nataatmadja, M.; West, J.; West, M. Overexpression of transforming growth factor-beta is associated with increased hyaluronan content and impairment of repair in Marfan syndrome aortic aneurysm. Circulation 2006, 114, I371–I377. [Google Scholar] [CrossRef]
- Loeys, B.L.; Dietz, H.C.; Braverman, A.C.; Callewaert, B.L.; De Backer, J.; Devereux, R.B.; Hilhorst-Hofstee, Y.; Jondeau, G.; Faivre, L.; Milewicz, D.M.; et al. The revised Ghent nosology for the Marfan syndrome. J. Med. Genet. 2010, 47, 476–485. [Google Scholar] [CrossRef]
- Paolino, G.; Corsetti, P.; Moliterni, E.; Corsetti, S.; Didona, D.; Albanesi, M.; Mattozzi, C.; Lido, P.; Calvieri, S. Mast cells and cancer. G. Ital. Dermatol. Venereol. 2019, 154, 650–668. [Google Scholar] [CrossRef] [PubMed]
- Paolino, G.; Cardone, M.; Didona, D.; Moliterni, E.; Losco, L.; Corsetti, P.; Schipani, G.; Lopez, T.; Calvieri, S.; Bottoni, U. Prognostic factors in head and neck melanoma according to facial aesthetic units. G. Ital. Dermatol. Venereol. 2020, 155, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Buchwalow, I.B.; Böcker, W. Immunohistochemistry: Basics and Methods; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Buchwalow, I.; Samoilova, V.; Boecker, W.; Tiemann, M. Non-specific binding of antibodies in immunohistochemistry: Fallacies and facts. Sci. Rep. 2011, 1, 28. [Google Scholar] [CrossRef] [PubMed]
- Buchwalow, I.; Samoilova, V.; Boecker, W.; Tiemann, M. Multiple immunolabeling with antibodies from the same host species in combination with tyramide signal amplification. Acta Histochem. 2018, 120, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Bankhead, P.; Loughrey, M.B.; Fernandez, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.; Coleman, H.G.; et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017, 7, 16878. [Google Scholar] [CrossRef]
Patients | Features of the Fibrous Component of the Skin Dermis | ||||
---|---|---|---|---|---|
Total Area of the Fibrous Component of the Skin Dermis (mm2) | Collagen Fibers | Elastic Fibers | |||
Integral Area (mm2) | Relative Content (%) | Integral Area (mm2) | Relative Content (%) | ||
Patient No. 1 * | 0.66 | 0.49 | 74.2 | 0.17 | 25.8 |
Patient No. 2 | 1.42 | 1.06 | 74.65 | 0.36 | 25.35 |
Patient No. 3 | 2.83 | 2.51 | 88.7 | 0.32 | 11.3 |
Patient No. 4 | 1.83 | 1.41 | 77 | 0.42 | 23.0 |
Patient No. 5 ** | 1.74 | 1.41 | 81 | 0.33 | 19.0 |
Patient No. 6 | 2.13 | 1.76 | 82.6 | 0.37 | 17.4 |
Patient No. 7 | 1.92 | 1.44 | 75 | 0.48 | 25 |
The norm No. 1 | 8.58 | 6.82 | 79.5 | 1.76 | 20.5 |
The norm No. 2 | 12.09 | 9.17 | 75.85 | 2.92 | 24.15 |
Antibodies | Host | Catalogue Nr. | Dilution | Source |
---|---|---|---|---|
Tryptase | Mouse monoclonal | #ab2378 | 1:3000 | AbCam, Cambridge, UK |
Carboxypeptidase A3 (CPA3) | Rabbit polyclonal | #ab251696 | 1:2000 | AbCam, UK |
Chymase | Mouse monoclonal | #ab2377 | 1:3000 | AbCam, UK |
TGF-β | Rabbit monoclonal | #ab215715 | 1:500 | AbCam, UK |
Alpha SMA | Mouse monoclonal | #ab7817 | 1:3000 | AbCam, UK |
Antibodies and Other Reagents | Source | Dilution | Label |
---|---|---|---|
Goat anti-mouse IgG Ab (#ab97035) | AbCam, UK | 1/300 | Cy3 |
Goat anti-rabbit IgG Ab (#ab150077) | AbCam, UK | 1/300 | Alexa Fluor 488 |
Secondary antibodies conjugated with horseradish peroxidase (Opal Polymer HRP Ms+Rb (#ARH1001EA)) | Akoya Biosciences, Marlborough, MA, USA | ready-to-use | Opal 480 Reagent Pack (#FP1500001KT) |
Secondary antibodies conjugated with horseradish peroxidase (Opal Polymer HRP Ms+Rb (#ARH1001EA)) | Akoya Biosciences, USA | ready-to-use | Opal 570 Reagent Pack (#FP1488001KT) |
Secondary antibodies conjugated with horseradish peroxidase (Opal Polymer HRP Ms+Rb (#ARH1001EA)) | Akoya Biosciences, USA | ready-to-use | Opal 690 Reagent Pack (#FP1497001KT) |
AmpliStain™ anti-Mouse 1-Step HRP (#AS-M1-HRP) | SDT GmbH, Baesweiler, Germany | ready-to-use | HRP |
AmpliStain™ anti-Rabbit 1-Step HRP (#AS-R1-HRP) | SDT GmbH, Baesweiler, Germany | ready-to-use | HRP |
4′,6-diamidino-2-phenylindole (DAPI, #D9542-5MG) | Sigma, Hamburg, Germany | 5 µg/mL | w/o |
VECTASHIELD® Mounting Medium (#H-1000) | Vector Laboratories, Burlingame, CA, USA | ready-to-use | w/o |
DAB Peroxidase Substrate Kit (#SK-4100) | Vector Laboratories, Burlingame, CA, USA | ready-to-use | DAB |
Mayer’s Hematoxylin (Biovitrum, #05-002) | ErgoProduction LLC, Saint Petersburg, Russia | ready-to-use | w/o |
Eosin Y 1% aqueous (Biovitrum, #05-010/S) | ErgoProduction LLC, Russia | ready-to-use | w/o |
Giemsa solution (Biovitrum, #21-023) | ErgoProduction LLC, Russia | ready-to-use | w/o |
Toluidine blue (Biovitrum, #07-002) | ErgoProduction LLC, Russia | ready-to-use | w/o |
Silver impregnation (Biovitrum, #21-026) | ErgoProduction LLC, Russia | ready-to-use | w/o |
Picro Mallory trichrome (Biovitrum, #21-036) | ErgoProduction LLC, Russia | ready-to-use | w/o |
Weigert for elastic fibers (Biovitrum, #21-030) | ErgoProduction LLC, Russia | ready-to-use | w/o |
Weigert–Van Gieson (Biovitrum, #21-020) | ErgoProduction LLC, Russia | ready-to-use | w/o |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atiakshin, D.; Nikolaeva, E.; Semyachkina, A.; Kostin, A.; Volodkin, A.; Morozov, S.; Ignatyuk, M.; Mikhaleva, L.; Demyashkin, G.; Elieh-Ali-Komi, D.; et al. The Contribution of Mast Cells to the Regulation of Elastic Fiber Tensometry in the Skin Dermis of Children with Marfan Syndrome. Int. J. Mol. Sci. 2024, 25, 9191. https://doi.org/10.3390/ijms25179191
Atiakshin D, Nikolaeva E, Semyachkina A, Kostin A, Volodkin A, Morozov S, Ignatyuk M, Mikhaleva L, Demyashkin G, Elieh-Ali-Komi D, et al. The Contribution of Mast Cells to the Regulation of Elastic Fiber Tensometry in the Skin Dermis of Children with Marfan Syndrome. International Journal of Molecular Sciences. 2024; 25(17):9191. https://doi.org/10.3390/ijms25179191
Chicago/Turabian StyleAtiakshin, Dmitrii, Ekaterina Nikolaeva, Alla Semyachkina, Andrey Kostin, Artem Volodkin, Sergey Morozov, Michael Ignatyuk, Liudmila Mikhaleva, Grigory Demyashkin, Daniel Elieh-Ali-Komi, and et al. 2024. "The Contribution of Mast Cells to the Regulation of Elastic Fiber Tensometry in the Skin Dermis of Children with Marfan Syndrome" International Journal of Molecular Sciences 25, no. 17: 9191. https://doi.org/10.3390/ijms25179191
APA StyleAtiakshin, D., Nikolaeva, E., Semyachkina, A., Kostin, A., Volodkin, A., Morozov, S., Ignatyuk, M., Mikhaleva, L., Demyashkin, G., Elieh-Ali-Komi, D., Buchwalow, I., & Tiemann, M. (2024). The Contribution of Mast Cells to the Regulation of Elastic Fiber Tensometry in the Skin Dermis of Children with Marfan Syndrome. International Journal of Molecular Sciences, 25(17), 9191. https://doi.org/10.3390/ijms25179191