The Role of α-Synuclein in Etiology of Neurodegenerative Diseases
Abstract
:1. Neurodegenerative Diseases
2. α-Synuclein Characterization
2.1. Structure of α-Syn
2.2. Expression and Localization of α-Syn
2.3. Post-Translational Modifications of α-Syn
2.3.1. Phosphorylation
2.3.2. Ubiquitination
2.3.3. O-Glycosylation
2.3.4. Nitration
2.3.5. Truncation
3. Biological Functions of α-Synuclein
4. α-Syn Misfolding, Aggregation, and Its Impact on Neurodegeneration
4.1. Fibrillar Aggregates of α-Syn and Their Activity
4.2. Oligomer Polymorphism and Toxicity
4.2.1. Amyloid Fibril Formation
4.2.2. Amyloid Fibril Disaggregation
4.2.3. Binding to Lipid Membranes
4.2.4. Relationships between Structure and Toxicity of α-Syn
5. α-Synuclein in Parkinson’s Disease
6. α-Synuclein in Dementia with Lewy Bodies
7. α-Synuclein in Multiple System Atrophy
8. α-Syn in Traumatic Brain Injury
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Temple, S. Advancing cell therapy for neurodegenerative diseases. Cell Stem Cell 2023, 30, 512–529. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, J.; Nutma, E.; van der Valk, P.; Amor, S. Inflammation in CNS neurodegenerative diseases. Immunology 2018, 154, 204–219. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules 2019, 24, 1583. [Google Scholar] [CrossRef]
- Kumar, V.; Sami, N.; Kashav, T.; Islam, A.; Ahmad, F.; Hassan, M.I. Protein aggregation and neurodegenerative diseases: From theory to therapy. Eur. J. Med. Chem. 2016, 124, 1105–1120. [Google Scholar] [CrossRef] [PubMed]
- Prusiner, S.B. Biology and genetics of prions causing neurodegeneration. Annu. Rev. Genet. 2013, 47, 601–623. [Google Scholar] [CrossRef]
- Magalhães, P.; Lashuel, H.A. Opportunities and challenges of alpha-synuclein as a potential biomarker for Parkinson’s disease and other synucleinopathies. NPJ Park. Dis. 2022, 8, 93. [Google Scholar] [CrossRef]
- Mollenhauer, B. Quantification of α-synuclein in cerebrospinal fluid: How ideal is this biomarker for Parkinson’s disease? Park. Relat. Disord. 2014, 20 (Suppl. S1), S76–S79. [Google Scholar] [CrossRef]
- Mehra, S.; Sahay, S.; Maji, S.K. α-Synuclein misfolding and aggregation: Implications in Parkinson’s disease pathogenesis. Biochim. Biophys. Acta Proteins Proteom. 2019, 1867, 890–908. [Google Scholar] [CrossRef]
- Fusco, G.; De Simone, A.; Gopinath, T.; Vostrikov, V.; Vendruscolo, M.; Dobson, C.M.; Veglia, G. Direct observation of the three regions in α-synuclein that determine its membrane-bound behaviour. Nat. Commun. 2014, 5, 3827. [Google Scholar] [CrossRef]
- Uversky, V.N. Alpha-synuclein misfolding and neurodegenerative diseases. Curr. Protein Pept. Sci. 2008, 9, 507–540. [Google Scholar] [CrossRef]
- Twohig, D.; Nielsen, H.M. α-synuclein in the pathophysiology of Alzheimer’s disease. Mol. Neurodegener. 2019, 14, 23. [Google Scholar] [CrossRef] [PubMed]
- Ling, L.; Wang, F.; Yu, D. Beyond neurodegenerative diseases: α-synuclein in erythropoiesis. Hematology 2022, 27, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Murphy, D.D.; Rueter, S.M.; Trojanowski, J.Q.; Lee, V.M.-Y. Synucleins Are Developmentally Ex-pressed, and a-Synuclein Regulates the Size of the Presynaptic Vesicular Pool in Primary Hippocampal Neurons. J. Neurosci. 2000, 20, 3214–3220. [Google Scholar] [PubMed]
- Li, W.; Hoffman, P.N.; Stirling, W.; Price, D.L.; Lee, M.K. Axonal transport of human a-synuclein slows with aging but is not affected by familial Parkinson’s disease-linked mutations. J. Neurochem. 2004, 88, 401–410. [Google Scholar] [CrossRef]
- Peelaerts, W.; Bousset, L.; Van der Perren, A.; Moskalyuk, A.; Pulizzi, R.; Giugliano, M.; Van den Haute, C.; Melki, R.; Baekelandt, V. Alpha synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 2015, 522, 340–344. [Google Scholar] [CrossRef]
- Matsumoto, J.; Stewart, T.; Sheng, L.; Li, N.; Bullock, K.; Song, N.; Shi, M.; Banks, W.A.; Zhang, J. Transmission of alpha-synuclein-containing erythrocyte-derived extracellular vesicles across the blood-brain barrier via adsorptive mediated transcytosis: Another mechanism for? Acta Neuropathol. Commun. 2017, 5, 71. [Google Scholar] [CrossRef]
- Calabresi, P.; Mechelli, A.; Natale, G.; Volpicelli-Daley, L.; Di Lazzaro, G.; Ghiglieri, V. Alpha-synuclein in Parkinson’s disease and other synucleinopathies: From overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis. 2023, 14, 176. [Google Scholar] [CrossRef]
- Burré, J.; Sharma, M.; Südhof, T.C. Cell Biology and Pathophysiology of α-Synuclein. Cold Spring Harb. Perspect. Med. 2018, 8, a024091. [Google Scholar] [CrossRef]
- Kawahata, I.; Finkelstein, D.I.; Fukunaga, K. Pathogenic Impact of α-Synuclein Phosphorylation and Its Kinases in α-Synucleinopathies. Int. J. Mol. Sci. 2022, 23, 6216. [Google Scholar] [CrossRef]
- Zhou, J.; Broe, M.; Huang, Y.; Anderson, J.P.; Gai, W.P.; Milward, E.A.; Porritt, M.; Howells, D.; Hughes, A.J.; Wang, X.; et al. Changes in the solubility and phosphorylation of α-synuclein over the course of Parkinson’s disease. Acta Neuropathol. 2011, 121, 695–704. [Google Scholar] [CrossRef]
- Mukhopadhyay, D.; Riezman, H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 2007, 315, 201–205. [Google Scholar] [CrossRef]
- Nonaka, T.; Iwatsubo, T.; Hasegawa, M. Ubiquitination of alpha-synuclein. Biochemistry 2005, 44, 361–368. [Google Scholar] [CrossRef]
- Gomez-Tortosa, E.; Newell, K.; Irizarry, M.C.; Sanders, J.L.; Hyman, B.T. alpha-Synuclein immunoreactivity in dementia with Lewy bodies: Morphological staging and comparison with ubiquitin immunostaining. Acta Neuropathol. 2000, 99, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, M.; Fujiwara, H.; Nonaka, T.; Wakabayashi, K.; Takahashi, H.; Lee, V.M.; Trojanowski, J.Q.; Mann, D.; Iwatsubo, T. Phosphorylated alpha-synuclein is ubiquitinated in alpha-synucleinopathy lesions. J. Biol. Chem. 2002, 277, 49071–49076. [Google Scholar] [CrossRef] [PubMed]
- Tofaris, G.K.; Kim, H.T.; Hourez, R.; Jung, J.W.; Kim, K.P.; Goldberg, A.L. Ubiquitin ligase NEDD4 promotes alpha-synuclein degradation by the endosomal-lysosomal pathway. Proc. Natl. Acad. Sci. USA 2011, 108, 17004–17009. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.; Klucken, J.; Patterson, C.; Hyman, B.T.; McLean, P.J. The co-chaperone carboxyl terminus of Hsp70-interacting protein (CHIP) mediates alpha-synuclein degradation decisions between proteasomal and lysosomal pathways. J. Biol. Chem. 2005, 280, 23727–23734. [Google Scholar] [CrossRef]
- Rott, R.; Szargel, R.; Shani, V.; Hamza, H.; Savyon, M.; Abd Elghani, F.; Bandopadhyay, R.; Engelender, S. SUMOylation and ubiquitination reciprocally regulate alpha-synuclein degradation and pathological aggregation. Proc. Natl. Acad. Sci. USA 2017, 114, 13176–13181. [Google Scholar] [CrossRef]
- Shimura, H.; Schlossmacher, M.G.; Hattori, N.; Frosch, M.P.; Trockenbacher, A.; Schneider, R.; Mizuno, Y.; Kosik, K.S.; Selkoe, D.J. Ubiquitination of a new form of alpha-synuclein by parkin from human brain: Implications for Parkinson’s disease. Science 2001, 293, 263–269. [Google Scholar] [CrossRef]
- Hedrich, K.; Kann, M.; Lanthaler, A.J.; Dalski, A.; Eskelson, C.; Landt, O.; Schwinger, E. The importance of gene dosage studies: Mutational analysis of the parkin gene in early-onset parkinsonism. Hum. Mol. Genet. 2001, 10, 1649–1656. [Google Scholar] [CrossRef]
- Stykel, M.G.; Ryan, S.D. Nitrosative stress in Parkinson’s disease. Npj Park. Dis. 2022, 8, 104. [Google Scholar] [CrossRef]
- Burai, R.; Ait-Bouziad, N.; Chiki, A.; Lashuel, H.A. Elucidating the role of site-specific nitration of alpha-synuclein in the pathogenesis of Parkinson’s disease via protein semisynthesis and mutagenesis. J. Am. Chem. Soc. 2015, 137, 5041–5052. [Google Scholar] [CrossRef] [PubMed]
- Chavarría, C.; Souza, J.M. Oxidation and nitration of α-synuclein and their implications in neurodegenerative diseases. Arch. Biochem. Biophys. 2013, 533, 25–32. [Google Scholar] [CrossRef]
- Danielson, S.R.; Held, J.M.; Schilling, B.; Oo, M.; Gibson, B.W.; Andersen, J.K. Preferentially increased nitration of alpha-synuclein at tyrosine-39 in a cellular oxidative model of Parkinson’s disease. Anal. Chem. 2009, 81, 7823–7828. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, X.; Li, J.D. The Roles of Post-translational Modifications on α-Synuclein in the Pathogenesis of Parkinson’s Diseases. Front. Neurosci. 2019, 13, 381. [Google Scholar] [CrossRef] [PubMed]
- Bose, A.; Beal, M.F. Mitochondrial dysfunction in Parkinson’s disease. J. Neurochem. 2016, 139 (Suppl. S1), 216–231. [Google Scholar] [CrossRef]
- Hodara, R.; Norris, E.H.; Giasson, B.I.; Mishizen-Eberz, A.J.; Lynch, D.R.; Lee, V.M.; Ischiropoulos, H. Functional consequences of alpha-synuclein tyrosine nitration: Diminished binding to lipid vesicles and in-creased fibril formation. J. Biol. Chem. 2004, 279, 47746–47753. [Google Scholar] [CrossRef]
- He, Y.; Xi, Y.; Wang, Z.; Chen, S.-D. Alpha-synuclein nitration and its implications in Parkinson’s disease. ACS Chem. Neurosci. 2018. [Google Scholar] [CrossRef]
- Tofaris, G.K.; Razzaq, A.; Ghetti, B.; Lilley, K.S.; Spillantini, M.G. Ubiquitination of alpha-synuclein in Lewy bodies is a pathological event not associated with impairment of proteasome function. J. Biol. Chem. 2003, 278, 44405–44411. [Google Scholar] [CrossRef]
- McGlinchey, R.P.; Lacy, S.M.; Huffer, K.E.; Tayebi, N.; Sidransky, E.; Lee, J.C. C-terminal α-synuclein truncations are linked to cysteine cathepsin activity in Parkinson’s disease. J. Biol. Chem. 2019, 294, 9973–9984. [Google Scholar] [CrossRef]
- Sevlever, D.; Jiang, P.; Yen, S.H. Cathepsin D is the main lysosomal enzyme involved in the degradation of alpha-synuclein and generation of its carboxy-terminally truncated species. Biochemistry 2008, 47, 9678–9687. [Google Scholar] [CrossRef]
- Choi, D.H.; Kim, Y.J.; Kim, Y.G.; Joh, T.H.; Beal, M.F.; Kim, Y.S. Role of matrix metalloproteinase 3-mediated alpha-synuclein cleavage in dopaminergic cell death. J. Biol. Chem. 2011, 286, 14168–14177. [Google Scholar] [CrossRef]
- Iwata, A.; Maruyama, M.; Akagi, T.; Hashikawa, T.; Kanazawa, I.; Tsuji, S.; Nukina, N. Alpha-synuclein degradation by serine protease neurosin: Implication for pathogenesis of synucleinopathies. Hum. Mol. Genet. 2003, 12, 2625–2635. [Google Scholar] [CrossRef] [PubMed]
- Suthar, S.K.; Lee, S.Y. Truncation or proteolysis of α-synuclein in Parkinsonism. Ageing Res. Rev. 2023, 90, 101978. [Google Scholar] [CrossRef]
- Lautenschläger, J.; Stephens, A.D.; Fusco, G.; Ströhl, F.; Curry, N.; Zacharopoulou, M.; Michel, C.H.; Laine, R.; Nespovitaya, N.; Fantham, M.; et al. C-terminal calcium binding of α-synuclein modulates synaptic vesicle interaction. Nat. Commun. 2018, 9, 712. [Google Scholar] [CrossRef] [PubMed]
- Larsen, K.E.; Schmitz, Y.; Troyer, M.D.; Mosharov, E.; Dietrich, P.; Quazi, A.Z.; Savalle, M.; Nemani, V.; Chaudhry, F.A.; Edwards, R.H.; et al. Alpha-synuclein overexpression in PC12 and chromaffin cells impairs catecholamine release by interfering with a late step in exocytosis. J. Neurosci. 2006, 26, 11915–11922. [Google Scholar] [CrossRef] [PubMed]
- Vargas, K.J.; Makani, S.; Davis, T.; Westphal, C.H.; Castillo, P.E.; Chandra, S.S. Synucleins regulate the kinetics of synaptic vesicle endocytosis. J. Neurosci. 2014, 34, 9364–9376. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Das, U.; Scott, D.A.; Tang, Y.; McLean, P.J.; Roy, S. α-synuclein multimers cluster synaptic vesicles and attenuate recycling. Curr. Biol. 2014, 24, 2319–2326. [Google Scholar] [CrossRef]
- Gerst, J.E. SNAREs and SNARE regulators in membrane fusion and exocytosis. Cell. Mol. Life Sci. 1999, 55, 707–734. [Google Scholar] [CrossRef]
- Burre, J.; Sharma, M.; Tsetsenis, T.; Buchman, V.; Etherton, M.R.; Sudhof, T.C. Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 2010, 329, 1663–1667. [Google Scholar] [CrossRef]
- Schaser, A.J.; Osterberg, V.R.; Dent, S.E.; Stackhouse, T.L.; Wakeham, C.M.; Boutros, S.W.; Weston, L.J.; Owen, N.; Weissman, T.A.; Luna, E.; et al. Alpha-synuclein is a DNA binding protein that modulates DNA repair with implications for Lewy body disorders. Sci. Rep. 2019, 9, 10919. [Google Scholar] [CrossRef]
- Sharon, R.; Goldberg, M.S.; Bar-Josef, I.; Betensky, R.A.; Shen, J.; Selkoe, D.J. alpha-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins. Proc. Natl. Acad. Sci. USA 2001, 98, 9110–9115. [Google Scholar] [CrossRef] [PubMed]
- Ban, T.; Hoshino, M.; Takahashi, S.; Hamada, D.; Hasegawa, K.; Naiki, H.; Goto, Y. Direct observation of Abeta amyloid fibril growth and inhibition. J. Mol. Biol. 2004, 344, 757–767. [Google Scholar] [CrossRef]
- Kawahata, I.; Fukunaga, K. Impact of fatty acid-binding proteins and dopamine receptors on α-synucleinopathy. J. Pharmacol. Sci. 2022, 148, 248–254. [Google Scholar] [CrossRef]
- Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016, 8, 595–608. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.S.; Kågedal, K.; Halliday, G.M. Alpha-synuclein biology in Lewy body diseases. Alzheimer’s Res. Therapy 2014, 6, 73. [Google Scholar] [CrossRef]
- Xu, L.; Bhattacharya, S.; Thompson, D. The fold preference and thermodynamic stability of α-synuclein fibrils is encoded in the non-amyloid-β component region. Phys. Chem. Chem. Phys. 2018, 20, 4502–4512. [Google Scholar] [CrossRef]
- Conway, K.A.; Harper, J.D.; Lansbury, P.T., Jr. Fibrils formed in vitro from alpha-synuclein and two mutant forms linked to Parkinson’s disease are typical amyloid. Biochemistry 2000, 39, 2552–2563. [Google Scholar] [CrossRef]
- Bengoa-Vergniory, N.; Roberts, R.F.; Wade-Martins, R.; Alegre-Abarrategui, J. Alpha-synuclein oligomers: A new hope. Acta Neuropathol. 2017, 134, 819–838. [Google Scholar] [CrossRef]
- Cohlberg, J.A.; Li, J.; Uversky, V.N.; Fink, A.L. Heparin and other glycosaminoglycans stimulate the formation of amyloid fibrils from alpha-synuclein in vitro. Biochemistry 2002, 41, 1502–1511. [Google Scholar] [CrossRef]
- Pike, A.F.; Varanita, T.; Herrebout, M.A.C.; Plug, B.C.; Kole, J.; Musters, R.J.P.; Teunissen, C.E.; Hoozemans, J.J.M.; Bubacco, L.; Veerhuis, R. α-Synuclein evokes NLRP3 inflammasome-mediated IL-1β secretion from primary human microglia. Glia 2021, 69, 1413–1428. [Google Scholar] [CrossRef]
- Abdelmotilib, H.; Maltbie, T.; Delic, V.; Liu, Z.; Hu, X.; Fraser, K.B.; Moehle, M.S.; Stoyka, L.; Anabtawi, N.; Krendelchtchikova, V.; et al. α-Synuclein fibril-induced inclusion spread in rats and mice correlates with dopaminergic neurodegeneration. Neurobiol. Dis. 2017, 105, 84–98. [Google Scholar] [CrossRef] [PubMed]
- Alam, P.; Bousset, L.; Melki, R.; Otzen, D.E. α-synuclein oligomers and fibrils: A spectrum of species, a spectrum of toxicities. J. Neurochem. 2019, 150, 522–534. [Google Scholar] [CrossRef]
- Oliveri, V. Toward the discovery and development of effective modulators of α-synuclein amyloid aggregation. Eur. J. Med. Chem. 2019, 167, 10–36. [Google Scholar] [CrossRef] [PubMed]
- Cremades, N.; Chen, S.W.; Dobson, C.M. Structural Characteristics of α-Synuclein Oligomers. Int. Rev. Cell Mol. Biol. 2017, 329, 79–143. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.P.; Han, S.; Fink, A.L.; Uversky, V.N. Characterization of the non-fibrillar α-synuclein oligomers. Protein Pept. Lett. 2011, 18, 230–240. [Google Scholar] [CrossRef]
- Karamanos, T.K.; Jackson, M.P.; Calabrese, A.N.; Goodchild, S.C.; Cawood, E.E.; Thompson, G.S.; Kalverda, A.P.; Hewitt, E.W.; Radford, S.E. Structural mapping of oligomeric intermediates in an amyloid assembly pathway. eLife 2019, 8, e46574. [Google Scholar] [CrossRef]
- Dear, A.J.; Meisl, G.; Šarić, A.; Michaels, T.C.T.; Kjaergaard, M.; Linse, S.; Knowles, T.P.J. Identification of on- and off-pathway oligomers in amyloid fibril formation. Chem. Sci. 2020, 11, 6236–6247. [Google Scholar] [CrossRef]
- Mroczko, B.; Groblewska, M.; Litman-Zawadzka, A.; Kornhuber, J.; Lewczuk, P. Cellular Receptors of Amyloid β Oligomers (AβOs) in Alzheimer’s Disease. Int. J. Mol. Sci. 2018, 19, 1884. [Google Scholar] [CrossRef]
- Bemporad, F.; Chiti, F. Protein misfolded oligomers: Experimental approaches, mechanism of formation, and structure-toxicity relationships. Chem. Biol. 2012, 19, 315–327. [Google Scholar] [CrossRef]
- Cascella, R.; Bigi, A.; Cremades, N.; Cecchi, C. Effects of oligomer toxicity, fibril toxicity and fibril spreading in synucleinopathies. Cell Mol. Life Sci. 2022, 79, 174. [Google Scholar] [CrossRef]
- Desplats, P.; Lee, H.J.; Bae, E.J.; Patrick, C.; Rockenstein, E.; Crews, L.; Spencer, B.; Masliah, E.; Lee, S.J. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc. Natl. Acad. Sci. USA 2009, 106, 13010–13015. [Google Scholar] [CrossRef] [PubMed]
- Cascella, R.; Chen, S.W.; Bigi, A.; Camino, J.D.; Xu, C.K.; Dobson, C.M.; Chiti, F.; Cremades, N.; Cecchi, C. The release of toxic oligomers from α-synuclein fibrils induces dysfunction in neuronal cells. Nat. Commun. 2021, 12, 1814. [Google Scholar] [CrossRef]
- Kim, H.-Y.; Cho, M.-K.; Riedel, D.; Fernandez, C.O.; Zweckstetter, M. Dissociation of amyloid fibrils of α-synuclein in supercooled water. Angew. Chem. Int. Ed. 2008, 47, 5046–5048. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Ito, D.; Yoo, J.M.; Lim, M.H.; Yu, W.; Kawata, Y.; Lee, Y.H. Dual Effects of Presynaptic Membrane Mimetics on α-Synuclein Amyloid Aggregation. Front. Cell Dev. Biol. 2022, 10, 707417. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.T.; Lee, S.-J.; Rochet, J.-C.; Lansbury, P.T. Annular α-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes. Biochemistry 2002, 41, 10209–10217. [Google Scholar] [CrossRef]
- Surguchov, A.; Surgucheva, I.; Sharma, M.; Sharma, R.; Singh, V. Pore-forming proteins as mediators of novel epigenetic mechanism of epilepsy. Front. Neurol. 2017, 8, 3. [Google Scholar] [CrossRef]
- Pountney, D.L.; Voelcker, N.H.; Gai, W.P. Annular alpha-synuclein oligomers are potentially toxic agents in alpha-synucleinopathy. Hypothesis. Neurotox. Res. 2005, 7, 59–67. [Google Scholar] [CrossRef]
- Danzer, K.M.; Haasen, D.; Karow, A.R.; Moussaud, S.; Habeck, M.; Giese, A.; Kretzschmar, H.; Hengerer, B.; Kostka, M. Different species of alpha-synuclein oligomers induce calcium influx and seeding. J. Neurosci. 2007, 27, 9220–9232. [Google Scholar] [CrossRef]
- Kostka, M.; Högen, T.; Danzer, K.M.; Levin, J.; Habeck, M.; Wirth, A.; Wagner, R.; Glabe, C.G.; Finger, S.; Heinzelmann, U.; et al. Single particle characterization of iron-induced pore-forming alpha-synuclein oligomers. J. Biol. Chem. 2008, 283, 10992–11003. [Google Scholar] [CrossRef]
- Stöckl, M.T.; Zijlstra, N.; Subramaniam, V. α-Synuclein oligomers: An amyloid pore? Insights into mechanisms of α-synuclein oligomer-lipid interactions. Mol. Neurobiol. 2013, 47, 613–621. [Google Scholar] [CrossRef]
- Zaichick, S.V.; McGrath, K.M.; Caraveo, G. The role of Ca2+ signaling in Parkinson’s disease. Dis. Model. Mech. 2017, 10, 519–535. [Google Scholar] [CrossRef]
- Lee, A.; Gilbert, R.M. Epidemiology of Parkinson Disease. Neurol. Clin. 2016, 34, 955–965. [Google Scholar] [CrossRef] [PubMed]
- Morris, H.R.; Spillantini, M.G.; Sue, C.M.; Williams-Gray, C.H. The pathogenesis of Parkinson’s disease. Lancet 2024, 403, 293–304. [Google Scholar] [CrossRef]
- Bamford, A.; Henderson, E.J. Parkinson’s disease in older people. Medicine 2021, 49, 56–61. [Google Scholar] [CrossRef]
- DeMaagd, G.; Philip, A. Parkinson’s Disease and Its Management: Part 1: Disease Entity, Risk Factors, Pathophysiology, Clinical Presentation, and Diagnosis. Pharm. Ter. 2015, 40, 504–532. [Google Scholar]
- Gao, L.; Tang, H.; Nie, K.; Wang, L.; Zhao, J.; Gan, R.; Huang, J.; Zhu, R.; Feng, S.; Duan, Z.; et al. Cerebrospinal fluid alpha-synuclein as a biomarker for Parkinson’s disease diagnosis: A systematic review and meta-analysis. Int. J. Neurosci. 2015, 125, 645–654. [Google Scholar] [CrossRef]
- Kang, J.H.; Irwin, D.J.; Chen-Plotkin, A.S.; Siderowf, A.; Caspell, C.; Coffey, C.S.; Waligórska, T.; Taylor, P.; Pan, S.; Frasier, M.; et al. Parkinson’s Progression Markers Initiative. Association of cerebrospinal fluid β-amyloid 1-42, T-tau, P-tau181, and α-synuclein levels with clinical features of drug-naive patients with early Parkinson disease. JAMA Neurol. 2013, 70, 1277–1287. [Google Scholar] [CrossRef] [PubMed]
- Majbour, N.K.; Vaikath, N.N.; van Dijk, K.D.; Ardah, M.T.; Varghese, S.; Vesterager, L.B.; Montezinho, L.P.; Poole, S.; Safieh-Garabedian, B.; Tokuda, T.; et al. Oligomeric and phosphorylated alpha-synuclein as potential CSF biomarkers for Parkinson’s disease. Mol. Neurodegener. 2016, 11, 7. [Google Scholar] [CrossRef]
- Eusebi, P.; Giannandrea, D.; Biscetti, L.; Abraha, I.; Chiasserini, D.; Orso, M.; Calabresi, P.; Parnetti, L. Diagnostic utility of cerebrospinal fluid α-synuclein in Parkinson’s disease: A systematic review and meta-analysis. Mov. Disord. 2017, 32, 1389–1400. [Google Scholar] [CrossRef]
- Parnetti, L.; Gaetani, L.; Eusebi, P.; Paciotti, S.; Hansson, O.; El-Agnaf, O.; Mollenhauer, B.; Blennow, K.; Calabresi, P. CSF and blood biomarkers for Parkinson’s disease. Lancet Neurol. 2019, 18, 573–586. [Google Scholar] [CrossRef]
- Llorens, F.; Schmitz, M.; Varges, D.; Kruse, N.; Gotzmann, N.; Gmitterová, K.; Mollenhauer, B.; Zerr, I. Cerebrospinal α-synuclein in α-synuclein aggregation disorders: Tau/α-synuclein ratio as potential biomarker for dementia with Lewy bodies. J. Neurol. 2016, 263, 2271–2277. [Google Scholar] [CrossRef] [PubMed]
- Agnello, L.; Lo Sasso, B.; Vidali, M.; Scazzone, C.; Gambino, C.M.; Piccoli, T.; Bivona, G.; Ciaccio, A.M.; Giglio, R.V.; La Bella, V.; et al. Evaluation of Alpha-Synuclein Cerebrospinal Fluid Levels in Several Neurological Disorders. J. Clin. Med. 2022, 11, 3139. [Google Scholar] [CrossRef]
- Hansson, O.; Hall, S.; Ohrfelt, A.; Zetterberg, H.; Blennow, K.; Minthon, L.; Nägga, K.; Londos, E.; Varghese, S.; Majbour, N.K.; et al. Levels of cerebrospinal fluid α-synuclein oligomers are increased in Parkinson’s disease with dementia and dementia with Lewy bodies compared to Alzheimer’s disease. Alzheimers Res. Ther. 2014, 6, 25. [Google Scholar] [CrossRef] [PubMed]
- Hall, S.; Surova, Y.; Öhrfelt, A.; Swedish BioFINDER Study; Blennow, K.; Zetterberg, H.; Hansson, O. Longitudinal Measurements of Cerebrospinal Fluid Biomarkers in Parkinson’s Disease. Mov. Disord. 2016, 31, 898–905. [Google Scholar] [CrossRef] [PubMed]
- Majbour, N.K.; Vaikath, N.N.; Eusebi, P.; Chiasserini, D.; Ardah, M.; Varghese, S.; Haque, M.E.; Tokuda, T.; Auinger, P.; Calabresi, P.; et al. Longitudinal changes in CSF alpha-synuclein species reflect Parkinson’s disease progression. Mov. Disord. 2016, 31, 1535–1542. [Google Scholar] [CrossRef] [PubMed]
- Stewart, T.; Sossi, V.; Aasly, J.O.; Wszolek, Z.K.; Uitti, R.J.; Hasegawa, K.; Yokoyama, T.; Zabetian, C.P.; Leverenz, J.B.; Stoessl, A.J.; et al. Phosphorylated α-synuclein in Parkinson’s disease: Correlation depends on disease severity. Acta Neuropathol. Commun. 2015, 3, 7. [Google Scholar] [CrossRef]
- Hall, S.; Surova, Y.; Öhrfelt, A.; Zetterberg, H.; Lindqvist, D.; Hansson, O. CSF biomarkers and clinical progression of Parkinson disease. Neurology 2015, 84, 57–63. [Google Scholar] [CrossRef]
- Prasad, S.; Katta, M.R.; Abhishek, S.; Sridhar, R.; Valisekka, S.S.; Hameed, M.; Kaur, J.; Walia, N. Recent advances in Lewy body dementia: A comprehensive review. Dis. Mon. 2023, 69, 101441. [Google Scholar] [CrossRef]
- Taylor, J.P.; McKeith, I.G.; Burn, D.J.; Boeve, B.F.; Weintraub, D.; Bamford, C.; Allan, L.M.; Thomas, A.J.; O’Brien, J.T. New evidence on the management of Lewy body dementia. Lancet Neurol. 2020, 19, 157–169. [Google Scholar] [CrossRef]
- Bousiges, O.; Philippi, N.; Lavaux, T.; Perret-Liaudet, A.; Lachmann, I.; Schaeffer-Agalède, C.; Anthony, P.; Botzung, A.; Rauch, L.; Jung, B.; et al. Differential diagnostic value of total alpha-synuclein assay in the cerebrospinal fluid between Alzheimer’s disease and dementia with Lewy bodies from the prodromal stage. Alzheimers Res. Ther. 2020, 12, 120. [Google Scholar] [CrossRef]
- van Steenoven, I.; Majbour, N.K.; Vaikath, N.N.; Berendse, H.W.; van der Flier, W.M.; van de Berg, W.D.J.; Teunissen, C.E.; Lemstra, A.W.; El-Agnaf, O.M.A. α-Synuclein species as potential cerebrospinal fluid biomarkers for dementia with lewy bodies. Mov. Disord. 2018, 33, 1724–1733. [Google Scholar] [CrossRef] [PubMed]
- Bougea, A.; Stefanis, L.; Emmanouilidou, E.; Vekrelis, K.; Kapaki, E. High discriminatory ability of peripheral and CFSF biomarkers in Lewy body diseases. J. Neural Transm. 2020, 127, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Parnetti, L.; Chiasserini, D.; Bellomo, G.; Giannandrea, D.; De Carlo, C.; Qureshi, M.M.; Ardah, M.T.; Varghese, S.; Bonanni, L.; Borroni, B.; et al. Cerebrospinal fluid Tau/α-synuclein ratio in Parkinson’s disease and degenerative dementias. Mov. Disord. 2011, 26, 1428–1435. [Google Scholar] [CrossRef]
- Slaets, S.; Vanmechelen, E.; Le Bastard, N.; Decraemer, H.; Vandijck, M.; Martin, J.J.; De Deyn, P.P.; Engelborghs, S. Increased CSF α-synuclein levels in Alzheimer’s disease: Correlation with tau levels. Alzheimers Dement. 2014, 10 (Suppl. S5), S290–S298. [Google Scholar] [CrossRef] [PubMed]
- Lilamand, M.; Clery, J.; Vrillon, A.; Mouton-Liger, F.; Cognat, E.; Gaubert, S.; Hourregue, C.; Martinet, M.; Dumurgier, J.; Hugon, J.; et al. Cerebrospinal Fluid Alpha-Synuclein Improves the Differentiation between Dementia with Lewy Bodies and Alzheimer’s Disease in Clinical Practice. Int. J. Mol. Sci. 2022, 23, 13488. [Google Scholar] [CrossRef] [PubMed]
- Barba, L.; Abu-Rumeileh, S.; Halbgebauer, S.; Bellomo, G.; Paolini Paoletti, F.; Gaetani, L.; Oeckl, P.; Steinacker, P.; Massa, F.; Parnetti, L.; et al. CSF Synaptic Biomarkers in AT(N)-Based Subgroups of Lewy Body Disease. Neurology 2023, 101, e50–e62. [Google Scholar] [CrossRef]
- Chiasserini, D.; Biscetti, L.; Eusebi, P.; Salvadori, N.; Frattini, G.; Simoni, S.; De Roeck, N.; Tambasco, N.; Stoops, E.; Vanderstichele, H.; et al. Differential role of CSF fatty acid binding protein 3, α-synuclein, and Alzhei-mer’s disease core biomarkers in Lewy body disorders and Alzheimer’s dementia. Alzheimers Res. Ther. 2017, 9, 52. [Google Scholar] [CrossRef]
- Goolla, M.; Cheshire, W.P.; Ross, O.A.; Kondru, N. Diagnosing multiple system atrophy: Current clinical guidance and emerging molecular biomarkers. Front. Neurol. 2023, 14, 1210220. [Google Scholar] [CrossRef]
- Wenning, G.K.; Stankovic, I.; Vignatelli, L.; Fanciulli, A.; Calandra-Buonaura, G.; Seppi, K.; Palma, J.A.; Meissner, W.G.; Krismer, F.; Berg, D.; et al. The Movement Disorder Society Criteria for the Diagnosis of Multiple System Atrophy. Mov. Disord. 2022, 37, 1131–1148. [Google Scholar] [CrossRef]
- Baschieri, F.; Cortelli, P. Thirty Years of Multiple System Atrophy (1989–2019): Are We Better at Diagnosing It Than Previously? Mov. Disord. Clin. Pract. 2020, 7, 175–176. [Google Scholar] [CrossRef]
- Miki, Y.; Tanji, K.; Shinnai, K.; Tanaka, M.T.; Altay, F.; Foti, S.C.; Strand, C.; Sasaki, T.; Kon, T.; Shimoyama, S.; et al. Pathological substrate of memory impairment in multiple system atrophy. Neuropathol. Appl. Neurobiol. 2022, 48, e12844. [Google Scholar] [CrossRef] [PubMed]
- Mollenhauer, B.; Locascio, J.J.; Schulz-Schaeffer, W.; Sixel-Döring, F.; Trenkwalder, C.; Schlossmacher, M.G. α-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: A cohort study. Lancet Neurol. 2011, 10, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Bradner, J.; Hancock, A.M.; Chung, K.A.; Quinn, J.F.; Peskind, E.R.; Galasko, D.; Jankovic, J.; Zabetian, C.P.; Kim, H.M.; et al. Cerebrospinal fluid biomarkers for Parkinson disease diagnosis and progression. Ann. Neurol. 2011, 69, 570–580. [Google Scholar] [CrossRef] [PubMed]
- Mondello, S.; Constantinescu, R.; Zetterberg, H.; Andreasson, U.; Holmberg, B.; Jeromin, A. CSF α-synuclein and UCH-L1 levels in Parkinson’s disease and atypical parkinsonian disorders. Park. Relat. Disord. 2014, 20, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Tateno, F.; Sakakibara, R.; Kawai, T.; Kishi, M.; Murano, T. Alpha-synuclein in the cerebrospinal fluid differentiates synucleinopathies (Parkinson Disease, dementia with Lewy bodies, multiple system atrophy) from Alzheimer disease. Alzheimer Dis. Assoc. Disord. 2012, 26, 213–216. [Google Scholar] [CrossRef]
- Magdalinou, N.K.; Paterson, R.W.; Schott, J.M.; Fox, N.C.; Mummery, C.; Blennow, K.; Bhatia, K.; Morris, H.R.; Giunti, P.; Warner, T.T.; et al. A panel of nine cerebrospinal fluid biomarkers may identify patients with atypical parkinsonian syndromes. J. Neurol. Neurosurg. Psychiatry 2015, 86, 1240–1247. [Google Scholar] [CrossRef]
- Foulds, P.G.; Yokota, O.; Thurston, A.; Davidson, Y.; Ahmed, Z.; Holton, J.; Thompson, J.C.; Akiyama, H.; Arai, T.; Hasegawa, M.; et al. Post mortem cerebrospinal fluid α-synuclein levels are raised in multiple system atrophy and distinguish this from the other α-synucleinopathies, Parkinson’s disease and Dementia with Lewy bodies. Neurobiol. Dis. 2012, 45, 188–195. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, M.; Chung, K.A.; Zabetian, C.P.; Leverenz, J.B.; Berg, D.; Srulijes, K.; Trojanowski, J.Q.; Lee, V.M.; Siderowf, A.D.; et al. Phosphorylated α-synuclein in Parkinson’s disease. Sci. Transl. Med. 2012, 4, 121ra20. [Google Scholar] [CrossRef]
- Carlson, S.W.; Yan, H.Q.; Li, Y.; Henchir, J.; Ma, X.; Young, M.S.; Ikonomovic, M.D.; Dixon, C.E. Differential Regional Responses in Soluble Monomeric Alpha Synuclein Abundance Following Traumatic Brain Injury. Mol. Neurobiol. 2021, 58, 362–374. [Google Scholar] [CrossRef]
- Khellaf, A.; Khan, D.Z.; Helmy, A. Recent advances in traumatic brain injury. J. Neurol. 2019, 266, 2878–2889. [Google Scholar] [CrossRef]
- VanItallie, T.B. Traumatic brain injury (TBI) in collision sports: Possible mechanisms of transformation into chronic traumatic encephalopathy (CTE). Metabolism 2019, 100, 153943. [Google Scholar] [CrossRef] [PubMed]
- Delic, V.; Beck, K.D.; Pang, K.C.H.; Citron, B.A. Biological links between traumatic brain injury and Parkinson’s disease. Acta Neuropathol. Commun. 2020, 8, 45. [Google Scholar] [CrossRef] [PubMed]
- Acosta, S.A.; Tajiri, N.; de la Pena, I.; Bastawrous, M.; Sanberg, P.R.; Kaneko, Y.; Borlongan, C.V. Alpha-synuclein as a pathological link between chronic traumatic brain injury and Parkinson’s disease. J. Cell Physiol. 2015, 230, 1024–1032. [Google Scholar] [CrossRef] [PubMed]
- Mondello, S.; Buki, A.; Italiano, D.; Jeromin, A. α-Synuclein in CSF of patients with severe traumatic brain injury. Neurology 2013, 80, 1662–1668. [Google Scholar] [CrossRef]
- Su, E.; Bell, M.J.; Wisniewski, S.R.; Adelson, P.D.; Janesko-Feldman, K.L.; Salonia, R.; Clark, R.S.; Kochanek, P.M.; Kagan, V.E.; Bayır, H. α-Synuclein levels are elevated in cerebrospinal fluid following traumatic brain injury in infants and children: The effect of therapeutic hypothermia. Dev. Neurosci. 2010, 32, 385–395. [Google Scholar] [CrossRef]
- Beach, T.G.; Adler, C.H. Importance of low diagnostic Accuracy for early Parkinson’s disease. Mov. Disord. 2018, 33, 1551–1554. [Google Scholar] [CrossRef]
- Bernal-Conde, L.D.; Ramos-Acevedo, R.; Reyes-Hernández, M.A.; Balbuena-Olvera, A.J.; Morales-Moreno, I.D.; Argüero-Sánchez, R.; Schüle, B.; Guerra-Crespo, M. Alpha-Synuclein Physiology and Pathology: A Perspective on Cellular Structures and Organelles. Front. Neurosci. 2020, 13, 1399. [Google Scholar] [CrossRef]
- Lomeli-Lepe, A.K.; Castañeda-Cabral, J.L.; López-Pérez, S.J. Synucleinopathies: Intrinsic and Extrinsic Factors. Cell Biochem. Biophys. 2023, 81, 427–442. [Google Scholar] [CrossRef]
- Ballard, C.G.; Jones, E.L. CSF α-synuclein as a diagnostic biomarker for Parkinson disease and related dementias. Neurology 2010, 75, 1760–1761. [Google Scholar] [CrossRef]
Clinical Assessment | Analyte | Values | Outcome | Ref. |
---|---|---|---|---|
Diagnosis | Total α-Syn | PD vs. controls 1082 pg/mL vs. 1264 pg/mL | Significantly lower in PD compared to controls | [87] |
Total α-Syn | PD vs. controls 1300 pg/mL vs. 1600 pg/mL | Lower in PD compared to controls | [88,89] | |
Oligomeric α-Syn S129P Oligomeric/total α-Syn ratio | PD vs. controls 116 pg/mL vs. 57 pg/mL PD vs. controls 261 pg/mL vs. 222 pg/mL PD vs. controls 8.9 vs. 3.5 | Significantly higher in PD compared to controls (AUC 0.77, sensitivity 89%, specificity 52%) Higher in PD compared to controls (AUC 0.67, sensitivity 65%, specificity 54%) Significantly higher in PD compared to controls (AUC 0.82, sensitivity 68%, specificity 85%) | [88] | |
Oligomeric α-Syn Oligomeric/total α-syn ratio | PD vs. OND Cut-off 2565.5 pg/mL PD vs. OND Cut-off 0.03 | Significantly higher in PD compared to OND (AUC 0.72, sensitivity 89%, specificity 48%) higher in PD compared to OND, (AUC 0.78, sensitivity 82%, specificity 64%) | [90] | |
Differentiation | Total α-Syn | PIGD vs. TD 1185 pg/mL vs. 892.8 pg/mL | Differentiates between TD and PIGD subtype | [87] |
Total α-Syn | PD vs. PDD 204 pg/mL vs. 221 pg/mL | Higher in PDD compared to PD | [91] | |
Total α-Syn | PD vs. AD 1372 pg/mL vs. 2912 pg/mL | Differentiates PD from AD | [92] | |
Oligomeric α-Syn Oligomeric/total α-Syn ratio | PDD vs. AD 73 309 RLU vs. 26 411 RLU PDD vs. AD 1333 vs. 333 | Higher in PDD compared to AD (AUC 0.64) Higher in PDD compared to AD (AUC 0.75) | [93] | |
Prognosis | Total α-Syn | PD vs. controls at baseline 1763 pg/mL vs. 1975 pg/mL after 2 years 1830 pg/mL vs. 1864 pg/mL | Higher in PD after 2 years compared to controls | [94] |
Oligomeric α-Syn S129P o-α-Syn/t-α-Syn ratio S129P/t-α-Syn ratio | Baseline PD vs. follow-up PD 114.6 pg/mL vs. 181 pg/mL 220.2 pg/mL vs. 180.8 pg/mL 43.4 vs. 48.6 86.5 vs. 47.6 | After 2 years a significant increase in oligomeric α-Syn along with o-α-Syn/t-α-Syn ratio, whereas decrease in S129P and S129P/t-α-Syn ratio | [95] | |
S129P S129P/total α-Syn ratio | Baseline PD vs. follow up PD 114.66 pg/mL vs. 117.89 pg/mL 0.253 vs. 0.269 | Moderate increase after 2 years compared to baseline | [96] | |
Total α-Syn | PD vs. controls 68,000 pg/mL vs. 50,500 pg/mL | Higher baseline levels were associated with worsening of cognitive processing speed (AQT) and motor symptoms (UPDRS-III, Hoehn and Yahr, and TUG) over 2-year period | [97] |
Clinical Assessment | Analyte | Values | Outcome | Ref. |
---|---|---|---|---|
Diagnosis | Total α-Syn Oligomeric α-Syn | DLB vs. controls 1400 pg/mL vs. 1800 pg/mL 108 pg/mL vs. 72 pg/mL | Decreased in DLB compared to controls Increased in DLB compared to controls | [101] |
Total α-Syn | DLB vs. controls 161.7 pg/mL vs. 98.2 pg/mL Cut-off 127 pg/mL | Significantly higher in DLB compared to controls AUC 0.79, sensitivity 72%, specificity 85%) | [102] | |
Total α-Syn | DLB vs. controls 217 pg/mL vs. 297 pg/mL | AUC 0.72 Combining tau with total α-Syn improved the accuracy of DLB diagnosis compared to α-Syn alone (AUC 0.88) | [91] | |
Oligomeric α-Syn/total α-Syn | DLB vs. controls 811 vs. 549 | Increased in DLB compared to controls | [93] | |
Differentiation | Total α-Syn | PD vs. DLB 60.9 pg/mL vs. 161.7 pg/mL Cut-off 128.5 pg/mL | AUC 0.89, sensitivity 72%, specificity 97% Differentiates PD with DLB with good accuracy | [102] |
Total α-Syn | DLB vs. AD 112 pg/mL vs. 183 pg/mL Pro-DLB vs. pro-AD 118 pg/mL vs. 197 pg/mL | Lower in DLB compared to AD AUC 0.75, sensitivity 90.6%, specificity 56.3% AUC 0.83, sensitivity 81.8%, specificity 76.5% Differentiates DLB from AD with moderate diagnostic power; higher α-Syn levels present already at prodromal stages | [100] | |
Total α-Syn Total tau/α-Syn | DLB vs. AD 18,100 pg/mL vs. 34,800 pg/mL DLB vs. AD 43 vs. 67 | Combination of total tau with α-Syn improves diagnostic accuracy of differentiating DLB from AD | [103] | |
Oligomeric α-Syn Oligomeric/total | DLB vs. AD 40.44 RLU vs. 26.44 RLU DLB vs. AD 811 vs. 333 | Differentiates DLB from AD with AUC 0.64 Differentiates DLB from AD with AUC 0.75 | [93] | |
Total α-Syn | DLB vs. AD 111 pg/mL vs. 147 pg/mL | Differentiates DLB from AD, although combined with p-Tau181 increased sensitivity and specificity to 85% and 81%, respectively | [104] | |
Total α-Syn | DLB vs. AD 1280 pg/mL vs. 2260 pg/mL Cut-off 1500 pg/mL | Differentiates DLB from AD with AUC 0.85, sensitivity 82%, specificity 76% | [105] | |
Total α-Syn | DLB vs. AD 1198 pg/mL vs. 1871 pg/mL Cut-off 1683 pg/mL | Discriminates DLB from AD with AUC 0.82, sensitivity 81.2%, specificity 68.3% | [106] | |
Total α-Syn | DLB vs. AD 1751.1 pg/mL vs. 2450.8 pg/mL | Differentiates DLB from AD | [107] |
Clinical Assessment | Analyte | Values | Outcome | Ref. |
---|---|---|---|---|
Diagnosis | Total α-Syn | MSA vs. controls 1110 pg/mL vs. 2220 pg/mL | Significantly lower in MSA compared to controls | [112] |
Total α-Syn | MSA vs. controls 300 pg/mL vs. 480 pg/mL Cut-off 460 pg/mL | Significantly lower in MSA compared to controls AUC 0.88, sensitivity 94%, specificity 70% | [113] | |
Total α-Syn | MSA vs. controls 750 pg/mL vs. 1310 pg/mL | Significantly lower in MSA compared to controls | [114] | |
Total α-Syn | MSA vs. controls 108 pg/mL vs. 137.8 pg/mL | [115] | ||
Total α-Syn | MSA vs. controls 1347 pg/mL vs. 1782 pg/mL | [116] | ||
Differentiation | Total α-Syn | MSA vs. PD 1110 pg/mL vs. 1340 pg/mL | Differentiates MSA from PD | [112] |
Total α-Syn | MSA vs. AD 300 pg/mL vs. 550 pg/mL cut-off 320 pg/mL | Differentiates MSA from AD with AUC 0.92, sensitivity 95%, specificity 70% | [113] | |
Total α-Syn | MSA vs. PD 750 pg/mL vs. 840 pg/mL | Differentiates MSA from PD | [114] | |
Total α-Syn | MSA vs. AD 108 pg/mL vs. 184.1 pg/mL | [115] | ||
Total α-Syn | MSA vs. PD 1347 pg/mL vs. 1767 pg/mL | [116] | ||
Oligomeric α-Syn S129P Oligomeric S129P | MSA vs. PD 22,490,000 pg/mL vs. 7,040,000 pg/mL MSA vs. DLB 22,490,000 pg/mL vs. 9,470,000 pg/mL MSA vs. PD 7,140,000 pg/mL vs. 3,430,000 pg/mL MSA vs. DLB 7,140,000 pg/mL vs. 1,630,000 pg/mL MSA vs. PD 19,560,000 pg/mL vs. 770,000 pg/mL MSA vs. DLB 19,560,000 pg/mL vs. 1,600,000 pg/mL | Significantly higher in MSA compared to PD Higher in MSA compared to DLB Significantly higher in MSA compared to PD Significantly higher in MSA compared to DLB Significantly higher in MSA compared to PD Significantly higher in MSA compared to DLB Both oligomeric and phosphorylated α-Syn differentiate MSA from PD and DLB | [117] | |
S129P | MSA vs. AD 58.12 pg/mL vs. 72.64 pg/mL | Differentiates MSA from AD | [118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krawczuk, D.; Groblewska, M.; Mroczko, J.; Winkel, I.; Mroczko, B. The Role of α-Synuclein in Etiology of Neurodegenerative Diseases. Int. J. Mol. Sci. 2024, 25, 9197. https://doi.org/10.3390/ijms25179197
Krawczuk D, Groblewska M, Mroczko J, Winkel I, Mroczko B. The Role of α-Synuclein in Etiology of Neurodegenerative Diseases. International Journal of Molecular Sciences. 2024; 25(17):9197. https://doi.org/10.3390/ijms25179197
Chicago/Turabian StyleKrawczuk, Daria, Magdalena Groblewska, Jan Mroczko, Izabela Winkel, and Barbara Mroczko. 2024. "The Role of α-Synuclein in Etiology of Neurodegenerative Diseases" International Journal of Molecular Sciences 25, no. 17: 9197. https://doi.org/10.3390/ijms25179197
APA StyleKrawczuk, D., Groblewska, M., Mroczko, J., Winkel, I., & Mroczko, B. (2024). The Role of α-Synuclein in Etiology of Neurodegenerative Diseases. International Journal of Molecular Sciences, 25(17), 9197. https://doi.org/10.3390/ijms25179197