In-Depth Analysis of the Peripheral Immune Profile of HER2+ Breast Cancer Patients on Neoadjuvant Treatment with Chemotherapy Plus Trastuzumab Plus Pertuzumab
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics and Clinical Responses
2.2. Variables in PRE Samples That Were Differentially Expressed between Response Groups
2.3. Variations in Leukocytes and Immune Populations after Anti-HER2 Therapy
2.4. Changes in T and NK Cell Compartments
2.5. Changes in Functional Performance of NK Cells after Treatment
3. Discussion
4. Materials and Methods
4.1. Patients Samples
4.2. CBC and FC Analysis on PB
4.3. CD107a Degranulation and IFN-γ Production Assay
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wolff, A.C.; Somerfield, M.R.; Dowsett, M.; Hammond, M.E.H.; Hayes, D.F.; McShane, L.M.; Saphner, T.J.; Spears, P.A.; Allison, K.H. Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: ASCO-College of American Pathologists Guideline Update. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2023, 41, 3867–3872. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, N.A.; Browne, B.C.; Chow, L.; Wang, Y.; Ginther, C.; Arboleda, J.; Duffy, M.J.; Crown, J.; O’Donovan, N.; Slamon, D.J. Activated Phosphoinositide 3-Kinase/AKT Signaling Confers Resistance to Trastuzumab but Not Lapatinib. Mol. Cancer Ther. 2010, 9, 1489–1502. [Google Scholar] [CrossRef] [PubMed]
- Schnitt, S.J. Classification and Prognosis of Invasive Breast Cancer: From Morphology to Molecular Taxonomy. Mod. Pathol. an Off. J. United States Can. Acad. Pathol. Inc 2010, 23 (Suppl. 2), S60–S64. [Google Scholar] [CrossRef]
- Elster, N.; Collins, D.M.; Toomey, S.; Crown, J.; Eustace, A.J.; Hennessy, B.T. HER2-Family Signalling Mechanisms, Clinical Implications and Targeting in Breast Cancer. Breast Cancer Res. Treat. 2015, 149, 5–15. [Google Scholar] [CrossRef]
- Gómez Román, V.R.; Murray, J.C.; Weiner, L.M. Chapter 1—Antibody-Dependent Cellular Cytotoxicity (ADCC). In Antibody Fc; Ackerman, M.E., Nimmerjahn, F., Eds.; Academic Press: Boston, MA, USA, 2014; pp. 1–27. ISBN 978-0-12-394802-1. [Google Scholar]
- Kinder, M.; Greenplate, A.R.; Strohl, W.R.; Jordan, R.E.; Brezski, R.J. An Fc Engineering Approach That Modulates Antibody-Dependent Cytokine Release without Altering Cell-Killing Functions. MAbs 2015, 7, 494–504. [Google Scholar] [CrossRef]
- Capietto, A.-H.; Martinet, L.; Fournié, J.-J. Stimulated Γδ T Cells Increase the in Vivo Efficacy of Trastuzumab in HER-2+ Breast Cancer. J. Immunol. 2011, 187, 1031–1038. [Google Scholar] [CrossRef]
- Beano, A.; Signorino, E.; Evangelista, A.; Brusa, D.; Mistrangelo, M.; Polimeni, M.A.; Spadi, R.; Donadio, M.; Ciuffreda, L.; Matera, L. Correlation between NK Function and Response to Trastuzumab in Metastatic Breast Cancer Patients. J. Transl. Med. 2008, 6, 25. [Google Scholar] [CrossRef]
- Varchetta, S.; Gibelli, N.; Oliviero, B.; Nardini, E.; Gennari, R.; Gatti, G.; Silva, L.S.; Villani, L.; Tagliabue, E.; Menard, S.; et al. Elements Related to Heterogeneity of Antibody-Dependent Cell Cytotoxicity in Patients Under Trastuzumab Therapy for Primary Operable Breast Cancer Overexpressing Her2. Cancer Res. 2007, 67, 11991–11999. [Google Scholar] [CrossRef] [PubMed]
- Gennari, R.; Menard, S.; Fagnoni, F.; Ponchio, L.; Scelsi, M.; Tagliabue, E.; Castiglioni, F.; Villani, L.; Magalotti, C.; Gibelli, N.; et al. Pilot Study of the Mechanism of Action of Preoperative Trastuzumab in Patients with Primary Operable Breast Tumors Overexpressing HER2. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2004, 10, 5650–5655. [Google Scholar] [CrossRef]
- Loibl, S.; Gianni, L. HER2-Positive Breast Cancer. Lancet 2017, 389, 2415–2429. [Google Scholar] [CrossRef]
- Escrivá-de-Romaní, S.; Arumí, M.; Bellet, M.; Saura, C. HER2-Positive Breast Cancer: Current and New Therapeutic Strategies. Breast 2018, 39, 80–88. [Google Scholar] [CrossRef]
- Pivot, X.; Pegram, M.; Cortes, J.; Lüftner, D.; Lyman, G.H.; Curigliano, G.; Bondarenko, I.; Yoon, Y.C.; Kim, Y.; Kim, C. Three-Year Follow-up from a Phase 3 Study of SB3 (a Trastuzumab Biosimilar) versus Reference Trastuzumab in the Neoadjuvant Setting for Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer. Eur. J. Cancer 2019, 120, 1–9. [Google Scholar] [CrossRef]
- Scheuer, W.; Friess, T.; Burtscher, H.; Bossenmaier, B.; Endl, J.; Hasmann, M. Strongly Enhanced Antitumor Activity of Trastuzumab and Pertuzumab Combination Treatment on HER2-Positive Human Xenograft Tumor Models. Cancer Res. 2009, 69, 9330–9336. [Google Scholar] [CrossRef] [PubMed]
- Schneeweiss, A.; Chia, S.; Hickish, T.; Harvey, V.; Eniu, A.; Hegg, R.; Tausch, C.; Seo, J.H.; Tsai, Y.-F.; Ratnayake, J.; et al. Pertuzumab plus Trastuzumab in Combination with Standard Neoadjuvant Anthracycline-Containing and Anthracycline-Free Chemotherapy Regimens in Patients with HER2-Positive Early Breast Cancer: A Randomized Phase II Cardiac Safety Study (TRYPHAENA). Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2013, 24, 2278–2284. [Google Scholar] [CrossRef] [PubMed]
- Gianni, L.; Pienkowski, T.; Im, Y.-H.; Roman, L.; Tseng, L.-M.; Liu, M.-C.; Lluch, A.; Staroslawska, E.; de la Haba-Rodriguez, J.; Im, S.-A.; et al. Efficacy and Safety of Neoadjuvant Pertuzumab and Trastuzumab in Women with Locally Advanced, Inflammatory, or Early HER2-Positive Breast Cancer (NeoSphere): A Randomised Multicentre, Open-Label, Phase 2 Trial. Lancet Oncol. 2012, 13, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Carey, L.A.; Berry, D.A.; Cirrincione, C.T.; Barry, W.T.; Pitcher, B.N.; Harris, L.N.; Ollila, D.W.; Krop, I.E.; Henry, N.L.; Weckstein, D.J.; et al. Molecular Heterogeneity and Response to Neoadjuvant Human Epidermal Growth Factor Receptor 2 Targeting in CALGB 40601, a Randomized Phase III Trial of Paclitaxel Plus Trastuzumab With or Without Lapatinib. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2016, 34, 542–549. [Google Scholar] [CrossRef]
- Fumagalli, D.; Venet, D.; Ignatiadis, M.; Azim, H.A.J.; Maetens, M.; Rothé, F.; Salgado, R.; Bradbury, I.; Pusztai, L.; Harbeck, N.; et al. RNA Sequencing to Predict Response to Neoadjuvant Anti-HER2 Therapy: A Secondary Analysis of the NeoALTTO Randomized Clinical Trial. JAMA Oncol. 2017, 3, 227–234. [Google Scholar] [CrossRef]
- Swain, S.M.; Tang, G.; Lucas, P.C.; Robidoux, A.; Goerlitz, D.; Harris, B.T.; Bandos, H.; Geyer, C.E.J.; Rastogi, P.; Mamounas, E.P.; et al. Pathologic Complete Response and Outcomes by Intrinsic Subtypes in NSABP B-41, a Randomized Neoadjuvant Trial of Chemotherapy with Trastuzumab, Lapatinib, or the Combination. Breast Cancer Res. Treat. 2019, 178, 389–399. [Google Scholar] [CrossRef]
- Dieci, M.V.; Prat, A.; Tagliafico, E.; Paré, L.; Ficarra, G.; Bisagni, G.; Piacentini, F.; Generali, D.G.; Conte, P.; Guarneri, V. Integrated Evaluation of PAM50 Subtypes and Immune Modulation of PCR in HER2-Positive Breast Cancer Patients Treated with Chemotherapy and HER2-Targeted Agents in the CherLOB Trial. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2016, 27, 1867–1873. [Google Scholar] [CrossRef]
- Fernandez-Martinez, A.; Krop, I.E.; Hillman, D.W.; Polley, M.-Y.; Parker, J.S.; Huebner, L.; Hoadley, K.A.; Shepherd, J.; Tolaney, S.; Henry, N.L.; et al. Survival, Pathologic Response, and Genomics in CALGB 40601 (Alliance), a Neoadjuvant Phase III Trial of Paclitaxel-Trastuzumab With or Without Lapatinib in HER2-Positive Breast Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 4184–4193. [Google Scholar] [CrossRef]
- Salgado, R.; Denkert, C.; Campbell, C.; Savas, P.; Nuciforo, P.; Aura, C.; de Azambuja, E.; Eidtmann, H.; Ellis, C.E.; Baselga, J.; et al. Tumor-Infiltrating Lymphocytes and Associations With Pathological Complete Response and Event-Free Survival in HER2-Positive Early-Stage Breast Cancer Treated With Lapatinib and Trastuzumab: A Secondary Analysis of the NeoALTTO Trial. JAMA Oncol. 2015, 1, 448–454. [Google Scholar] [CrossRef]
- Tanioka, M.; Fan, C.; Parker, J.S.; Hoadley, K.A.; Hu, Z.; Li, Y.; Hyslop, T.M.; Pitcher, B.N.; Soloway, M.G.; Spears, P.A.; et al. Integrated Analysis of RNA and DNA from the Phase III Trial CALGB 40601 Identifies Predictors of Response to Trastuzumab-Based Neoadjuvant Chemotherapy in HER2-Positive Breast Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018, 24, 5292–5304. [Google Scholar] [CrossRef] [PubMed]
- Powles, R.L.; Redmond, D.; Sotiriou, C.; Loi, S.; Fumagalli, D.; Nuciforo, P.; Harbeck, N.; de Azambuja, E.; Sarp, S.; Di Cosimo, S.; et al. Association of T-Cell Receptor Repertoire Use With Response to Combined Trastuzumab-Lapatinib Treatment of HER2-Positive Breast Cancer: Secondary Analysis of the NeoALTTO Randomized Clinical Trial. JAMA Oncol. 2018, 4, e181564. [Google Scholar] [CrossRef]
- Shi, W.; Jiang, T.; Nuciforo, P.; Hatzis, C.; Holmes, E.; Harbeck, N.; Sotiriou, C.; Peña, L.; Loi, S.; Rosa, D.D.; et al. Pathway Level Alterations Rather than Mutations in Single Genes Predict Response to HER2-Targeted Therapies in the Neo-ALTTO Trial. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2019, 30, 1018. [Google Scholar] [CrossRef]
- Boér, K.; Kahán, Z.; Landherr, L.; Csőszi, T.; Máhr, K.; Ruzsa, Á.; Horváth, Z.; Budai, B.; Rubovszky, G. Pathologic Complete Response Rates After Neoadjuvant Pertuzumab and Trastuzumab with Chemotherapy in Early Stage HER2-Positive Breast Cancer—Increasing Rates of Breast Conserving Surgery: A Real-World Experience. Pathol. Oncol. Res. 2021, 27, 1609785. [Google Scholar] [CrossRef]
- Burcombe, R.J.; Makris, A.; Richman, P.I.; Daley, F.M.; Noble, S.; Pittam, M.; Wright, D.; Allen, S.A.; Dove, J.; Wilson, G.D. Evaluation of ER, PgR, HER-2 and Ki-67 as Predictors of Response to Neoadjuvant Anthracycline Chemotherapy for Operable Breast Cancer. Br. J. Cancer 2005, 92, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Sheri, A.; Dowsett, M. Developments in Ki67 and Other Biomarkers for Treatment Decision Making in Breast Cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2012, 23 (Suppl. 1), x219–x227. [Google Scholar] [CrossRef] [PubMed]
- Hall, B.J.; Bhojwani, A.A.; Wong, H.; Law, A.; Flint, H.; Ahmed, E.; Innes, H.; Cliff, J.; Malik, Z.; O’Hagan, J.E.; et al. Neoadjuvant Trastuzumab and Pertuzumab for Early HER2-Positive Breast Cancer: A Real World Experience. Breast J. 2022, 2022, 7146172. [Google Scholar] [CrossRef]
- Cooper, M.A.; Fehniger, T.A.; Caligiuri, M.A. The Biology of Human Natural Killer-Cell Subsets. Trends Immunol. 2001, 22, 633–640. [Google Scholar] [CrossRef]
- Fabbri, A.; Nelli, F.; Botticelli, A.; Giannarelli, D.; Marrucci, E.; Fiore, C.; Virtuoso, A.; Scagnoli, S.; Pisegna, S.; Alesini, D.; et al. Pathologic Response and Survival after Neoadjuvant Chemotherapy with or without Pertuzumab in Patients with HER2-Positive Breast Cancer: The Neopearl Nationwide Collaborative Study. Front. Oncol. 2023, 13, 1177681. [Google Scholar] [CrossRef]
- Gianni, L.; Eiermann, W.; Semiglazov, V.; Manikhas, A.; Lluch, A.; Tjulandin, S.; Zambetti, M.; Vazquez, F.; Byakhow, M.; Lichinitser, M.; et al. Neoadjuvant Chemotherapy with Trastuzumab Followed by Adjuvant Trastuzumab versus Neoadjuvant Chemotherapy Alone, in Patients with HER2-Positive Locally Advanced Breast Cancer (the NOAH Trial): A Randomised Controlled Superiority Trial with a Parallel HE. Lancet 2010, 375, 377–384. [Google Scholar] [CrossRef]
- O’Shaughnessy, J.; Gradishar, W.; O’Regan, R.; Gadi, V. Risk of Recurrence in Patients With HER2+ Early-Stage Breast Cancer: Literature Analysis of Patient and Disease Characteristics. Clin. Breast Cancer 2023, 23, 350–362. [Google Scholar] [CrossRef] [PubMed]
- de Azambuja, E.; Cardoso, F.; de Castro, G.J.; Colozza, M.; Mano, M.S.; Durbecq, V.; Sotiriou, C.; Larsimont, D.; Piccart-Gebhart, M.J.; Paesmans, M. Ki-67 as Prognostic Marker in Early Breast Cancer: A Meta-Analysis of Published Studies Involving 12,155 Patients. Br. J. Cancer 2007, 96, 1504–1513. [Google Scholar] [CrossRef]
- Pazina, T.; Shemesh, A.; Brusilovsky, M.; Porgador, A.; Campbell, K.S. Regulation of the Functions of Natural Cytotoxicity Receptors by Interactions with Diverse Ligands and Alterations in Splice Variant Expression. Front. Immunol. 2017, 8, 369. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.; Hodgins, J.J.; Marathe, M.; Nicolai, C.J.; Bourgeois-Daigneault, M.-C.; Trevino, T.N.; Azimi, C.S.; Scheer, A.K.; Randolph, H.E.; Thompson, T.W.; et al. Contribution of NK Cells to Immunotherapy Mediated by PD-1/PD-L1 Blockade. J. Clin. Investig. 2018, 128, 4654–4668. [Google Scholar] [CrossRef]
- Ndhlovu, L.C.; Lopez-Vergès, S.; Barbour, J.D.; Jones, R.B.; Jha, A.R.; Long, B.R.; Schoeffler, E.C.; Fujita, T.; Nixon, D.F.; Lanier, L.L. Tim-3 Marks Human Natural Killer Cell Maturation and Suppresses Cell-Mediated Cytotoxicity. Blood 2012, 119, 3734–3743. [Google Scholar] [CrossRef]
- Muntasell, A.; Servitja, S.; Cabo, M.; Bermejo, B.; Pérez-Buira, S.; Rojo, F.; Costa-García, M.; Arpí, O.; Moraru, M.; Serrano, L.; et al. High Numbers of Circulating CD57(+) NK Cells Associate with Resistance to HER2-Specific Therapeutic Antibodies in HER2(+) Primary Breast Cancer. Cancer Immunol. Res. 2019, 7, 1280–1292. [Google Scholar] [CrossRef]
- Muraro, E.; Comaro, E.; Talamini, R.; Turchet, E.; Miolo, G.; Scalone, S.; Militello, L.; Lombardi, D.; Spazzapan, S.; Perin, T.; et al. Improved Natural Killer Cell Activity and Retained Anti-Tumor CD8(+) T Cell Responses Contribute to the Induction of a Pathological Complete Response in HER2-Positive Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy. J. Transl. Med. 2015, 13, 204. [Google Scholar] [CrossRef]
- Bordignon, M.B.; Pesce Viglietti, A.I.; Juliá, E.P.; Sanchez, M.B.; Rölle, A.; Mandó, P.; Sabatini, L.; Ostinelli, A.; Rizzo, M.M.; Barrio, M.M.; et al. Phenotypic and Functional Analysis in HER2+ Targeted Therapy of Human NK Cell Subpopulation According to the Expression of FcεRIγ and NKG2C in Breast Cancer Patients. Cancer Immunol. Immunother. 2023, 72, 2687–2700. [Google Scholar] [CrossRef]
- Gaynor, N.; Blanco, A.; Madden, S.F.; Moran, B.; Fletcher, J.M.; Kaukonen, D.; Ramírez, J.S.; Eustace, A.J.; McDermott, M.S.J.; Canonici, A.; et al. Alterations in Immune Cell Phenotype and Cytotoxic Capacity in HER2+ Breast Cancer Patients Receiving HER2-Targeted Neo-Adjuvant Therapy. Br. J. Cancer 2023, 129, 1022–1031. [Google Scholar] [CrossRef]
- Ahmadzadeh, M.; Johnson, L.A.; Heemskerk, B.; Wunderlich, J.R.; Dudley, M.E.; White, D.E.; Rosenberg, S.A. Tumor Antigen-Specific CD8 T Cells Infiltrating the Tumor Express High Levels of PD-1 and Are Functionally Impaired. Blood 2009, 114, 1537–1544. [Google Scholar] [CrossRef] [PubMed]
Characteristics | n (%) | |
---|---|---|
pCR | no-pCR | |
n | 51 | 11 |
Age: median (IQR) | 50 (41–57) | 58 (44–64) |
Histological type | ||
NST | 48 (94.1) | 10 (90.9) |
Lobular | 1 (1.2) | 1 (9.1) |
Others | 2 (3.9) | 0 (0) |
Histological grade | ||
1 | 0 (0) | 1 (9.1) |
2 | 22 (43.1) | 4 (36.4) |
3 | 21 (41.2) | 4 (36.4) |
ND | 8 (15.7) | 2 (18.2) |
Stage | ||
1 | 5 (9.8) | 2 (18.2) |
2 | 33 (64.7) | 7 (63.6) |
3 | 13 (25.5) | 2 (18.2) |
HR+/HER2+ | 26 (51) | 8 (72.7) |
HR−/HER2+ | 25 (49) | 3 (27.3) |
Ki67: median (IQR) | 40 (24–45) | 40 (25–50) |
Ki67 > 20% | 38 (74.5) | 10 (90.9) |
PRE | POST | ||
---|---|---|---|
n | n | p-Value | |
% CD16 (NK) | 59 | 47 | 0.0642 |
MFI CD16 (NK) | 41 | 30 | 0.0815 |
% CD16 (NKdim) | 59 | 47 | 0.0436 |
MFI CD16 (NKdim) | 41 | 30 | 0.1936 |
% CD57 (NK) | 59 | 49 | 0.0021 |
MFI CD57 (NK) | 55 | 45 | 0.0026 |
% CD57 (NKdim) | 59 | 49 | 0.0439 |
MFI CD57 (NKdim) | 55 | 45 | 0.0358 |
% NKp30 (NK) | 60 | 47 | 0.6089 |
MFI NKp30 (NK) | 57 | 43 | 0.5024 |
% NKp30 (NKdim) | 60 | 47 | 0.5842 |
MFI NKp30 (NKdim) | 57 | 43 | 0.0968 |
%NKp44 (NK) | 57 | 47 | 0.2495 |
MFI NKp44 (NK) | 55 | 43 | 0.0046 |
%NKp44 (NKdim) | 57 | 47 | 0.0197 |
MFI NKp44 (NKdim) | 55 | 43 | 0.0010 |
%NKG2C (NK) | 43 | 39 | <0.0001 |
MFI NKG2C (NK) | 39 | 38 | 0.0111 |
%NKG2C (NKdim) | 43 | 39 | <0.0001 |
MFI NKG2C (NKdim) | 39 | 38 | 0.0097 |
% CD25 (NK) | 61 | 47 | 0.8967 |
MFI CD25 (NK) | 58 | 43 | 0.0160 |
% CD25 (NKdim) | 61 | 47 | 0.7028 |
MFI CD25 (NKdim) | 58 | 43 | 0.0001 |
% NKG2A (NK) | 60 | 43 | 0.0080 |
MFI NKG2A (NK) | 57 | 39 | 0.1635 |
% NKG2A (NKdim) | 60 | 43 | 0.0581 |
MFI NKG2A (NKdim) | 57 | 39 | 0.0068 |
% TIM-3 (NK) | 59 | 48 | 0.6273 |
MFI TIM-3 (NK) | 54 | 45 | 0.6866 |
% TIM-3 (NKdim) | 59 | 48 | 0.6129 |
MFI TIM-3 (NKdim) | 54 | 45 | 0.8600 |
% PD-L1 (NK) | 62 | 50 | 0.7467 |
MFI PD-L1 (NK) | 59 | 46 | 0.0026 |
% PD-L1 (NKdim) | 62 | 50 | 0.6135 |
MFI PD-L1 (NKdim) | 59 | 46 | 0.0086 |
% PD-1 (NK) | 55 | 41 | 0.6374 |
MFI PD-1 (NK) | 54 | 39 | 0.0042 |
% PD-1 (NKdim) | 54 | 41 | 0.9629 |
MFI PD-1 (NKdim) | 54 | 39 | 0.0040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pesce Viglietti, A.I.; Bordignon, M.B.; Ostinelli, A.; Rizzo, M.M.; Cueto, G.; Sanchez, M.B.; Perazzo, F.; Amat, M.; Coló, F.; Costanzo, M.V.; et al. In-Depth Analysis of the Peripheral Immune Profile of HER2+ Breast Cancer Patients on Neoadjuvant Treatment with Chemotherapy Plus Trastuzumab Plus Pertuzumab. Int. J. Mol. Sci. 2024, 25, 9268. https://doi.org/10.3390/ijms25179268
Pesce Viglietti AI, Bordignon MB, Ostinelli A, Rizzo MM, Cueto G, Sanchez MB, Perazzo F, Amat M, Coló F, Costanzo MV, et al. In-Depth Analysis of the Peripheral Immune Profile of HER2+ Breast Cancer Patients on Neoadjuvant Treatment with Chemotherapy Plus Trastuzumab Plus Pertuzumab. International Journal of Molecular Sciences. 2024; 25(17):9268. https://doi.org/10.3390/ijms25179268
Chicago/Turabian StylePesce Viglietti, Ayelén Ivana, María Belén Bordignon, Alexis Ostinelli, Manglio Miguel Rizzo, Gerardo Cueto, María Belén Sanchez, Florencia Perazzo, Mora Amat, Federico Coló, María Victoria Costanzo, and et al. 2024. "In-Depth Analysis of the Peripheral Immune Profile of HER2+ Breast Cancer Patients on Neoadjuvant Treatment with Chemotherapy Plus Trastuzumab Plus Pertuzumab" International Journal of Molecular Sciences 25, no. 17: 9268. https://doi.org/10.3390/ijms25179268
APA StylePesce Viglietti, A. I., Bordignon, M. B., Ostinelli, A., Rizzo, M. M., Cueto, G., Sanchez, M. B., Perazzo, F., Amat, M., Coló, F., Costanzo, M. V., Nervo, A., Nadal, J., Crimi, G., Mc Lean, I., Spengler, E. A., Mordoh, J., Mandó, P., & Levy, E. M. (2024). In-Depth Analysis of the Peripheral Immune Profile of HER2+ Breast Cancer Patients on Neoadjuvant Treatment with Chemotherapy Plus Trastuzumab Plus Pertuzumab. International Journal of Molecular Sciences, 25(17), 9268. https://doi.org/10.3390/ijms25179268