Decoding the Role of Insulin-like Growth Factor 1 and Its Isoforms in Breast Cancer
Abstract
:1. Introduction
2. Molecular Characteristics and Functional Roles of IGF-1 Isoforms in Health and Disease
3. The Role of IGF-1, Its Isoforms, and IGF-1R in Breast Cancer
3.1. IGF-1 in Breast Cancer
3.2. IGF-1 Isoforms and Receptor Interactions in Breast Cancer
Study (Reference) | Research Focus | Key Findings | Clinical/Scientific Impact |
---|---|---|---|
Mauro De Santi et al., 2023 [78] | Association between IGF-1 levels, MetS, and insulin resistance in BC survivors | - Lower circulating IGF-1 levels in BC survivors with MetS compared to those without MetS - Interaction between HDL-C, glycemia, and IGF-1 levels, especially in subjects without MetS | - Highlights the impact of metabolic syndrome and insulin resistance on IGF-1 levels in BC survivors - Potential lifestyle interventions to modulate IGF-1 concentrations |
Heba Mohammed Arafat et al., 2023 [76] | Investigate the relationship between IGF-1 and IGFBP-3 levels and BC risk among women in Gaza | - Age, lower physical activity, increased FBG, and IGF-1 levels were associated with an increased BC risk | - Identifies key risk factors for BC specific to the Gaza Strip population |
Heidari S. et al., 2022 [79] | IGF-1 expression in serum and peritoneal fluid of BC patients | - Increased IGF-1 expression in the serum and peritoneal fluid of BC patients compared to controls | - Supports the role of IGF-1 in BC progression and metastasis |
Lee et al., 2022 [13] | Prognostic value of IGF-1R across BC subtypes | IGF-1R expression was associated with poor survival across all BC subtypes and more pronounced in certain subtypes | - Highlights the functional significance of IGF-1R phosphorylation in BC prognosis |
Biello et al., 2021 [16] | IGF Expression in relation to BC characteristics | - Higher IGF expression was associated with worse prognostic features in BC | - Provides insights into the association between IGF expression levels and the clinical characteristics of BC |
Kamdje et al., 2021 [80] | IGF-1 and mammary tumor microenvironment | - Role of IGF-1 in regulating mammary tumor microenvironment; implications for tumor growth and metastasis | - Explores the influence of IGF-1 on tumor microenvironment dynamics and therapeutic strategies targeting IGF-1 |
Jennifer Tsui et al., 2021 [81] | IGF-1 and chemotherapy response in TNBC | - Study evaluating the role of IGF-1 in chemotherapy response and prognosis in TNBC | - Explores therapeutic implications of IGF-1 pathway inhibition in TNBC |
Murphy et al. 2020 [65] | Mendelian randomization of circulating IGF-1 and BC risk | - Higher circulating IGF-1 levels associated with increased BC risk; a causal relationship was suggested | - Supports IGF-1 as a potential target for BC prevention strategies |
Y Zhu et al., 2020 [77] | Association of circulating IGF-1 with BC mortality | - Inverse association between high circulating IGF-1 and all-cause mortality in BC patients | - Suggests a potential protective role of circulating IGF-1 in BC outcomes, especially in specific patient subgroups |
Yiwei Tong et al., 2020 [82] | Evaluate the prognostic value of IGF-1 and metabolic abnormalities in HER2+ BC patients | - High IGF-1 levels are more common in pre/perimenopausal women and those with high IGFBP-3 - IGF-1 level was not associated with recurrence-free survival (RFS) in the whole population | - Identifies a subset of patients with distinct prognostic profiles based on IGF-1 levels - IGF-1 levels alone are not sufficient as a prognostic marker for RFS |
Yujing Zhou et al., 2020 [83] | IGF-1 and estrogen (ERβ) in BC progression | - IGF-1 stimulates ERβ and aromatase overexpression in BC cells, promoting disease progression | - Highlights IGF-1′s role in promoting estrogen-driven pathways in BC |
Gui-Ping Xu et al., 2018 [84] | Investigate the association between the rs1520220 polymorphism in the IGF1 gene and cancer susceptibility | - No overall positive association between rs1520220 and cancer risk | - Provides evidence that rs1520220 may not be a universal marker for cancer risk |
H Li et al., 2016 [85] | Genetic polymorphisms in IGF-1 and BC risk | - Association between IGF-1 gene polymorphisms and BC risk; ethnic and subtype-specific differences | - Highlights genetic variations in IGF-1 and their impact on BC susceptibility across different populations |
O’Flanagan et al., 2016 [86] | IGF-1R signaling and DNA damage response | - IGF-1R signaling sensitizes BC cells to cisplatin-induced DNA damage via ATM/ATR pathways, implicating IGF-1R in DNA repair mechanisms | - Highlights IGF-1R as a potential target for enhancing the DNA damage response in BC therapy |
Christopoulos et al., 2015 [15] | Prognostic impact of IGF-1R expression among BC subtypes | - IGF-1R expression varies across BC subtypes; associated with a better BCSS in Luminal B but a worse outcome in the HER2-enriched subtype | - Highlights subtype-specific prognostic implications of IGF-1R expression, with potential for targeted therapies |
Yerushalmi et al., 2012 [87] | Differential expression of tissue IGF-1 and BC subtypes | - Tissue IGF-1 levels were associated with a better prognosis in ER+ BC, in a conflicting role compared to serum IGF-1 levels | - Emphasizes the discrepancy between circulating and tissue-specific IGF-1 levels in BC prognosis |
Litzenburger et al., 2011 [88] | IGF-1R inhibitors in BC cell lines | - Effective inhibition of IGF-1R with BMS-754807 in ΤΝBC cell lines, reversing IGF-1R-activated gene expression signatures | - Demonstrates the potential efficacy of IGF-1R inhibitors in ER-negative and HER2− BCs |
Aleksic et al., 2010 [45] | IGF-1R nuclear translocation in BC | - Nuclear localization of IGF-1R was associated with aggressive tumor behavior and poor prognosis in BC | - Investigates the role of IGF-1R nuclear translocation as a prognostic marker and potential therapeutic target |
Runhua Shi et al., 2004 [89] | Evaluate the association of IGF-1 and IGFBP-3 levels with BC risk through a meta-analysis | - Circulating levels of IGF-1 were significantly higher in premenopausal BC patients | - Supports the association between high IGF-1 levels and increased BC risk in premenopausal women. |
Type of Evidence | Cell Lines | IGF-1 or IGF-1 Isoform of Interest | Method | Results | References |
---|---|---|---|---|---|
In vitro | MCF-7 | Ec peptide | MTT assay/Trypan Blue | hEc in low doses stimulated the proliferation of wt cells | [59] |
rhIGF-1 | Exogenous administration of human mature IGF-1 (rhIGF-1) in monolayer cultures stimulated the growth/metabolic activity of wt cells | ||||
Ec peptide | Wound healing/Scratch assay | MCF-7Ec cells have increased motility/migration capability compared to wt cells | |||
Ec peptide | qPCR | An upregulation of Cdh-11, an indicative marker of EMT in MCF-7Ec cells, was detected | |||
MDA-MB-231 | Ec peptide | MTT assay/Trypan Blue | hEc did not stimulate the proliferation of wt cells | [90] | |
rhIGF-1 | Exogenous administration of rhIGF-1 in monolayer cultures stimulated the growth/metabolic activity of wt cells | ||||
rhIGF-1 | Wound healing/Scratch assay | IGF-1 increased MDA-MB-231 cell migration approximately tenfold with half maximal stimulation at a concentration of 12 ng/ml | |||
In vivo | MCF-7 | IGF-1 | Mouse xenograft experiments | MCF-7 cells stably overexpressing IGF-1 induce significantly higher tumor volumes compared with control or mock cells | [15] |
Increased activation of the PI3K/AKT/mTOR pathway facilitated BCSC maintenance and increased their EMT phenotype | |||||
Immortalized human mammary epithelial cells | IGF-1R | Mouse xenografts experiments | Overexpression of IGF-1R caused cells to undergo EMT which was associated with dramatically increased migration and invasion | [91] | |
MDA-MB-231 | IGF-1/IGF-1R | TNBC patients | IGF-1 and IGF-1R overexpression were associated with an increased incidence of metastases and decreased survival | [92] |
3.3. The Role of IGF-1 Signaling in Breast Cancer
4. The Role of IGF-1 in Breast Cancer: Mechanisms of Proliferation, Angiogenesis, Metastasis, and Resistance
4.1. Cell Proliferation and Survival
4.2. Angiogenesis and Metastasis
4.3. Resistance and Apoptosis
5. Clinical Implication and Therapeutic Potential
5.1. Therapeutic Targeting of IGF-1 and Its Isoforms
5.2. Monoclonal Antibodies and Small Molecule Inhibitors in IGF-1R Targeting
5.3. Emerging Therapies and Novel Approaches in IGF-1 and Its Receptor Inhibition
6. Future Directions in Research
7. Discussion
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kotsifaki, A.; Alevizopoulos, N.; Dimopoulou, V.; Armakolas, A. Unveiling the Immune Microenvironment’s Role in Breast Cancer: A Glimpse into Promising Frontiers. Int. J. Mol. Sci. 2023, 24, 15332. [Google Scholar] [CrossRef] [PubMed]
- Werner, H. New Insights into the Role of the Insulin-Like Growth Factors in Breast Cancer. Med. Res. Arch. 2023, 11. [Google Scholar] [CrossRef]
- Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; et al. Current and Future Burden of Breast Cancer: Global Statistics for 2020 and 2040. Breast 2022, 66, 15–23. [Google Scholar] [CrossRef]
- Kotsifaki, A.; Maroulaki, S.; Armakolas, A. Exploring the Immunological Profile in Breast Cancer: Recent Advances in Diagnosis and Prognosis through Circulating Tumor Cells. Int. J. Mol. Sci. 2024, 25, 4832. [Google Scholar] [CrossRef] [PubMed]
- Đokić, S.; Gazić, B.; Grčar Kuzmanov, B.; Blazina, J.; Miceska, S.; Čugura, T.; Grašič Kuhar, C.; Jeruc, J. Clinical and Analytical Validation of Two Methods for Ki-67 Scoring in Formalin Fixed and Paraffin Embedded Tissue Sections of Early Breast Cancer. Cancers 2024, 16, 1405. [Google Scholar] [CrossRef]
- Bailes, J.; Soloviev, M. Insulin-Like Growth Factor-1 (IGF-1) and Its Monitoring in Medical Diagnostic and in Sports. Biomolecules 2021, 11, 217. [Google Scholar] [CrossRef]
- Werner, H. The IGF1 Signaling Pathway: From Basic Concepts to Therapeutic Opportunities. Int. J. Mol. Sci. 2023, 24, 14882. [Google Scholar] [CrossRef]
- Yoshida, T.; Delafontaine, P. Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells 2020, 9, 1970. [Google Scholar] [CrossRef]
- Cao, J.; Yee, D. Disrupting Insulin and IGF Receptor Function in Cancer. Int. J. Mol. Sci. 2021, 22, 555. [Google Scholar] [CrossRef]
- Ekyalongo, R.C.; Yee, D. Revisiting the IGF-1R as a Breast Cancer Target. NPJ Precis. Oncol. 2017, 1, 14. [Google Scholar] [CrossRef]
- Baxter, R.C. Signaling Pathways of the Insulin-like Growth Factor Binding Proteins. Endocr. Rev. 2023, 44, 753–778. [Google Scholar] [CrossRef] [PubMed]
- Rosenzweig, S.A. The Continuing Evolution of Insulin-like Growth Factor Signaling. F1000Research 2020, 9, 205. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-S.; Tocheny, C.E.; Shaw, L.M. The Insulin-like Growth Factor Signaling Pathway in Breast Cancer: An Elusive Therapeutic Target. Life 2022, 12, 1992. [Google Scholar] [CrossRef]
- Petersen, M.C.; Shulman, G.I. Mechanisms of Insulin Action and Insulin Resistance. Physiol. Rev. 2018, 98, 2133–2223. [Google Scholar] [CrossRef]
- Christopoulos, P.F.; Msaouel, P.; Koutsilieris, M. The Role of the Insulin-like Growth Factor-1 System in Breast Cancer. Mol. Cancer 2015, 14, 43. [Google Scholar] [CrossRef] [PubMed]
- Biello, F.; Platini, F.; D’Avanzo, F.; Cattrini, C.; Mennitto, A.; Genestroni, S.; Martini, V.; Marzullo, P.; Aimaretti, G.; Gennari, A. Insulin/IGF Axis in Breast Cancer: Clinical Evidence and Translational Insights. Biomolecules 2021, 11, 125. [Google Scholar] [CrossRef] [PubMed]
- Ianza, A.; Sirico, M.; Bernocchi, O.; Generali, D. Role of the IGF-1 Axis in Overcoming Resistance in Breast Cancer. Front. Cell Dev. Biol. 2021, 9, 641449. [Google Scholar] [CrossRef]
- Christopoulos, P.F.; Corthay, A.; Koutsilieris, M. Aiming for the Insulin-like Growth Factor-1 System in Breast Cancer Therapeutics. Cancer Treat. Rev. 2018, 63, 79–95. [Google Scholar] [CrossRef]
- Skarlis, C.; Nezos, A.; Mavragani, C.P.; Koutsilieris, M. The Role of Insulin Growth Factors in Autoimmune Diseases. Ann. Res. Hosp. 2019, 3, 79–95. [Google Scholar] [CrossRef]
- Poreba, E.; Durzynska, J. Nuclear Localization and Actions of the Insulin-like Growth Factor 1 (IGF-1) System Components: Transcriptional Regulation and DNA Damage Response. Mutat. Res./Rev. Mutat. Res. 2020, 784, 108307. [Google Scholar] [CrossRef]
- Nili, M.; Mukherjee, A.; Shinde, U.; David, L.; Rotwein, P. Defining the Disulfide Bonds of Insulin-like Growth Factor-Binding Protein-5 by Tandem Mass Spectrometry with Electron Transfer Dissociation and Collision-Induced Dissociation. J. Biol. Chem. 2012, 287, 1510–1519. [Google Scholar] [CrossRef] [PubMed]
- Kasprzak, A. Insulin-Like Growth Factor 1 (IGF-1) Signaling in Glucose Metabolism in Colorectal Cancer. Int. J. Mol. Sci. 2021, 22, 6434. [Google Scholar] [CrossRef] [PubMed]
- Allard, J.B.; Duan, C. IGF-Binding Proteins: Why Do They Exist and Why Are There So Many? Front. Endocrinol. 2018, 9, 117. [Google Scholar] [CrossRef] [PubMed]
- Racine, H.L.; Serrat, M.A. The Actions of IGF-1 in the Growth Plate and Its Role in Postnatal Bone Elongation. Curr. Osteoporos. Rep. 2020, 18, 210–227. [Google Scholar] [CrossRef] [PubMed]
- LeRoith, D.; Holly, J.M.P.; Forbes, B.E. Insulin-like Growth Factors: Ligands, Binding Proteins, and Receptors. Mol. Metab. 2021, 52, 101245. [Google Scholar] [CrossRef]
- Lee, J.; Ko, K.-R.; Lee, N.; Kim, S.; Yu, S.-S.; Kim, S.; Lee, J. Construction of Plasmid DNA Expressing Two Isoforms of Insulin-Like Growth Factor-1 and Its Effects on Skeletal Muscle Injury Models. Hum. Gene Ther. 2022, 33, 1305–1314. [Google Scholar] [CrossRef]
- Philippou, A.; Armakolas, A.; Panteleakou, Z.; Pissimissis, N.; Nezos, A.; Theos, A.; Kaparelou, M.; Armakolas, N.; Pneumaticos, S.G.; Koutsilieris, M. IGF1Ec Expression in MG-63 Human Osteoblast-like Osteosarcoma Cells. Anticancer Res. 2011, 31, 4259–4265. [Google Scholar]
- Sun, K.-T.; Cheung, K.-K.; Au, S.W.N.; Yeung, S.S.; Yeung, E.W. Overexpression of Mechano-Growth Factor Modulates Inflammatory Cytokine Expression and Macrophage Resolution in Skeletal Muscle Injury. Front. Physiol. 2018, 9, 999. [Google Scholar] [CrossRef]
- Philippou, A.; Maridaki, M.; Pneumaticos, S.; Koutsilieris, M. The Complexity of the IGF1 Gene Splicing, Posttranslational Modification and Bioactivity. Mol. Med. 2014, 20, 202–214. [Google Scholar] [CrossRef]
- Oberbauer, A.M. The Regulation of IGF-1 Gene Transcription and Splicing during Development and Aging. Front. Endocrinol. 2013, 4, 39. [Google Scholar] [CrossRef]
- Girnita, L.; Worrall, C.; Takahashi, S.-I.; Seregard, S.; Girnita, A. Something Old, Something New and Something Borrowed: Emerging Paradigm of Insulin-like Growth Factor Type 1 Receptor (IGF-1R) Signaling Regulation. Cell Mol. Life Sci. 2013, 71, 2403–2427. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Zhang, Q.; Wang, H.; Yang, X.; Mu, H. Alternative Splicing and Related RNA Binding Proteins in Human Health and Disease. Signal Transduct. Target. Ther. 2024, 9, 26. [Google Scholar] [CrossRef] [PubMed]
- Macvanin, M.; Gluvic, Z.; Radovanovic, J.; Essack, M.; Gao, X.; Isenovic, E.R. New Insights on the Cardiovascular Effects of IGF-1. Front. Endocrinol. 2023, 14, 1142644. [Google Scholar] [CrossRef]
- Ahmad, S.S.; Ahmad, K.; Lee, E.J.; Lee, Y.-H.; Choi, I. Implications of Insulin-Like Growth Factor-1 in Skeletal Muscle and Various Diseases. Cells 2020, 9, 1773. [Google Scholar] [CrossRef] [PubMed]
- Youssef, A.; Aboalola, D.; Han, V.K.M. The Roles of Insulin-Like Growth Factors in Mesenchymal Stem Cell Niche. Stem Cells Int. 2017, 2017, 9453108. [Google Scholar] [CrossRef] [PubMed]
- Al-Samerria, S.; Radovick, S. The Role of Insulin-like Growth Factor-1 (IGF-1) in the Control of Neuroendocrine Regulation of Growth. Cells 2021, 10, 2664. [Google Scholar] [CrossRef] [PubMed]
- Danielpour, D. Advances and Challenges in Targeting TGF-β Isoforms for Therapeutic Intervention of Cancer: A Mechanism-Based Perspective. Pharmaceuticals 2024, 17, 533. [Google Scholar] [CrossRef]
- Litton, J.K.; Hurvitz, S.A.; Mina, L.A.; Rugo, H.S.; Lee, K.-H.; Gonçalves, A.; Diab, S.; Woodward, N.; Goodwin, A.; Yerushalmi, R.; et al. Talazoparib versus Chemotherapy in Patients with Germline BRCA1/2-Mutated HER2-Negative Advanced Breast Cancer: Final Overall Survival Results from the EMBRACA Trial. Ann. Oncol. 2020, 31, 1526–1535. [Google Scholar] [CrossRef]
- Qian, Y.; Berryman, D.E.; Basu, R.; List, E.O.; Okada, S.; Young, J.A.; Jensen, E.A.; Bell, S.R.C.; Kulkarni, P.; Duran-Ortiz, S.; et al. Mice with Gene Alterations in the GH and IGF Family. Pituitary 2022, 25, 1–51. [Google Scholar] [CrossRef]
- Perugini, J.; Smorlesi, A.; Acciarini, S.; Mondini, E.; Colleluori, G.; Pirazzini, C.; Kwiatkowska, K.M.; Garagnani, P.; Franceschi, C.; Zingaretti, M.C.; et al. Adipo-Epithelial Transdifferentiation in In Vitro Models of the Mammary Gland. Cells 2024, 13, 943. [Google Scholar] [CrossRef]
- Zhu, J.; Wei, Y.; Deng, F.; Zhou, Y.; Yang, Z.; Ma, Y. The Role of FOXA1 in Human Normal Development and Its Functions in Sex Hormone-Related Cancers. FBL 2024, 29, 225. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Li, B.; Ou-Yang, L. Role of Estrogen Receptors in Health and Disease. Front. Endocrinol. 2022, 13, 839005. [Google Scholar] [CrossRef]
- Blontzos, N.; Mavrogianni, D.; Ntzeros, K.; Kathopoulis, N.; Moustogiannis, A.; Philippou, A.; Koutsilieris, M.; Protopapas, A. Differential Expression of Insulin Growth Factor 1 (IGF-1) Isoforms in Different Types of Endometriosis: Preliminary Results of a Single-Center Study. Biomolecules 2024, 14, 7. [Google Scholar] [CrossRef] [PubMed]
- Werner, H.; Sarfstein, R.; Laron, Z. The Role of Nuclear Insulin and IGF1 Receptors in Metabolism and Cancer. Biomolecules 2021, 11, 531. [Google Scholar] [CrossRef] [PubMed]
- Aleksic, T.; Chitnis, M.M.; Perestenko, O.V.; Gao, S.; Thomas, P.H.; Turner, G.D.; Protheroe, A.S.; Howarth, M.; Macaulay, V.M. Type 1 IGF Receptor Translocates to the Nucleus of Human Tumor Cells. Cancer Res. 2010, 70, 6412–6419. [Google Scholar] [CrossRef]
- Soni, U.K.; Jenny, L.; Hegde, R.S. IGF-1R Targeting in Cancer—Does Sub-Cellular Localization Matter? J. Exp. Clin. Cancer Res. 2023, 42, 273. [Google Scholar] [CrossRef]
- Farabaugh, S.M.; Boone, D.N.; Lee, A.V. Role of IGF1R in Breast Cancer Subtypes, Stemness, and Lineage Differentiation. Front. Endocrinol. 2015, 6, 59. [Google Scholar] [CrossRef] [PubMed]
- Vella, V.; Milluzzo, A.; Scalisi, N.M.; Vigneri, P.; Sciacca, L. Insulin Receptor Isoforms in Cancer. Int. J. Mol. Sci. 2018, 19, 3615. [Google Scholar] [CrossRef]
- Stavropoulos, A.; Varras, M.; Philippou, A.; Vasilakaki, T.; Varra, V.-K.; Varra, F.-N.; Tsavari, A.; Lazaris, A.C.; Koutsilieris, M. Immunohistochemical Expression of Insulin-like Growth Factor-1Ec in Primary Endometrial Carcinoma: Association with PTEN, P53 and Survivin Expression. Oncol. Lett. 2020, 20, 395. [Google Scholar] [CrossRef]
- Bowers, L.W.; Rossi, E.L.; O’Flanagan, C.H.; deGraffenried, L.A.; Hursting, S.D. The Role of the Insulin/IGF System in Cancer: Lessons Learned from Clinical Trials and the Energy Balance-Cancer Link. Front. Endocrinol. 2015, 6, 77. [Google Scholar] [CrossRef]
- Simpson, A.; Petnga, W.; Macaulay, V.M.; Weyer-Czernilofsky, U.; Bogenrieder, T. Insulin-Like Growth Factor (IGF) Pathway Targeting in Cancer: Role of the IGF Axis and Opportunities for Future Combination Studies. Target. Oncol. 2017, 12, 571–597. [Google Scholar] [CrossRef] [PubMed]
- Denduluri, S.K.; Idowu, O.; Wang, Z.; Liao, Z.; Yan, Z.; Mohammed, M.K.; Ye, J.; Wei, Q.; Wang, J.; Zhao, L.; et al. Insulin-like Growth Factor (IGF) Signaling in Tumorigenesis and the Development of Cancer Drug Resistance. Genes Dis. 2014, 2, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Duan, M.; Zhang, D.; Xie, J. The Role of Mechano Growth Factor in Chondrocytes and Cartilage Defects: A Concise Review. Acta Biochim. Biophys. Sin. 2023, 55, 701–712. [Google Scholar] [CrossRef]
- Xu, K.; Fu, A.; Li, Z.; Miao, L.; Lou, Z.; Jiang, K.; Lau, C.; Su, T.; Tong, T.; Bao, J.; et al. Elevated Extracellular Matrix Protein 1 in Circulating Extracellular Vesicles Supports Breast Cancer Progression under Obesity Conditions. Nat. Commun. 2024, 15, 1685. [Google Scholar] [CrossRef]
- Li, J.; Huang, G. Insulin Receptor Alternative Splicing in Breast and Prostate Cancer. Cancer Cell Int. 2024, 24, 62. [Google Scholar] [CrossRef] [PubMed]
- Stella, S.; Massimino, M.; Manzella, L.; Parrinello, N.L.; Vitale, S.R.; Martorana, F.; Vigneri, P. Glucose-Dependent Effect of Insulin Receptor Isoforms on Tamoxifen Antitumor Activity in Estrogen Receptor-Positive Breast Cancer Cells. Front. Endocrinol. 2023, 14, 1081831. [Google Scholar] [CrossRef]
- Shanmugalingam, T.; Bosco, C.; Ridley, A.J.; Van Hemelrijck, M. Is There a Role for IGF-1 in the Development of Second Primary Cancers? Cancer Med. 2016, 5, 3353–3367. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Tsai, S.; Hou, M.; Tien, L.; Wu, S.; Hou, L.A.; Tsai, J.M.; Tsai, L. Increased Igf-I/Igfbp-3 Ratios in Postmenopausal Taiwanese with Breast Cancer, Irrespective of Er and Pr Statuses and Her2 Expression in a Case–Control Study. J. Clin. Lab. Anal. 2014, 30, 58–64. [Google Scholar] [CrossRef]
- Rajoria, B.; Zhang, X.; Yee, D. IGF-1 Stimulates Glycolytic ATP Production in MCF-7L Cells. Int. J. Mol. Sci. 2023, 24, 10209. [Google Scholar] [CrossRef]
- Mazerbourg, S.; Monget, P. Insulin-Like Growth Factor Binding Proteins and IGFBP Proteases: A Dynamic System Regulating the Ovarian Folliculogenesis. Front. Endocrinol. 2018, 9, 134. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.; Li, K.; Li, S.; Sun, B. IGFBP-3 Is the Key Target of Sanguinarine in Promoting Apoptosis in Hepatocellular Carcinoma. Cancer Manag. Res. 2020, 12, 1007–1015. [Google Scholar] [CrossRef] [PubMed]
- Qian, F.; Huo, D. Circulating Insulin-Like Growth Factor-1 and Risk of Total and 19 Site-Specific Cancers: Cohort Study Analyses from the UK Biobank. Cancer Epidemiol. Biomark. Prev. 2020, 29, 2332–2342. [Google Scholar] [CrossRef] [PubMed]
- Kaboli, P.J.; Imani, S.; Jomhori, M.; Ling, K.-H. Chemoresistance in Breast Cancer: PI3K/Akt Pathway Inhibitors vs the Current Chemotherapy. Am. J. Cancer Res. 2021, 11, 5155–5183. [Google Scholar] [PubMed]
- Dittmer, J. Biological Effects and Regulation of IGFBP5 in Breast Cancer. Front. Endocrinol. 2022, 13, 983793. [Google Scholar] [CrossRef] [PubMed]
- Murphy, N.; Knuppel, A.; Papadimitriou, N.; Martin, R.M.; Tsilidis, K.K.; Smith-Byrne, K.; Fensom, G.; Perez-Cornago, A.; Travis, R.C.; Key, T.J.; et al. Insulin-like Growth Factor-1, Insulin-like Growth Factor-Binding Protein-3, and Breast Cancer Risk: Observational and Mendelian Randomization Analyses with ~430,000 Women. Ann. Oncol. 2020, 31, 641–649. [Google Scholar] [CrossRef]
- Xu, Y.; Cao, W.; Shen, Y.; Tang, J.; Wang, Y.; Ma, X.; Bao, Y. The Relationship between Sex Hormones and Glycated Hemoglobin in a Non-Diabetic Middle-Aged and Elderly Population. BMC Endocr. Disord. 2022, 22, 91. [Google Scholar] [CrossRef]
- Rahmani, J.; Montesanto, A.; Giovannucci, E.; Zand, H.; Barati, M.; Kopchick, J.J.; Mirisola, M.G.; Lagani, V.; Bawadi, H.; Vardavas, R.; et al. Association between IGF-1 Levels Ranges and All-cause Mortality: A Meta-analysis. Aging Cell 2022, 21, e13540. [Google Scholar] [CrossRef]
- Li, S.; Xu, Y.; Zhang, Y.; Nie, L.; Ma, Z.; Ma, L.; Fang, X.; Ma, X. Mendelian Randomization Analyses of Genetically Predicted Circulating Levels of Cytokines with Risk of Breast Cancer. NPJ Precis. Oncol. 2020, 4, 25. [Google Scholar] [CrossRef]
- Lero, M.W.; Shaw, L.M. Diversity of Insulin and IGF Signaling in Breast Cancer: Implications for Therapy. Mol. Cell Endocrinol. 2021, 527, 111213. [Google Scholar] [CrossRef]
- Porter, H.A.; Perry, A.; Kingsley, C.; Tran, N.L.; Keegan, A.D. IRS1 Is Highly Expressed in Localized Breast Tumors and Regulates the Sensitivity of Breast Cancer Cells to Chemotherapy, While IRS2 Is Highly Expressed in Invasive Breast Tumors. Cancer Lett. 2013, 338, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Kaewlert, W.; Sakonsinsiri, C.; Lert-itthiporn, W.; Ungarreevittaya, P.; Pairojkul, C.; Pinlaor, S.; Murata, M.; Thanan, R. Overexpression of Insulin Receptor Substrate 1 (IRS1) Relates to Poor Prognosis and Promotes Proliferation, Stemness, Migration, and Oxidative Stress Resistance in Cholangiocarcinoma. Int. J. Mol. Sci. 2023, 24, 2428. [Google Scholar] [CrossRef] [PubMed]
- Furuta, H.; Sheng, Y.; Takahashi, A.; Nagano, R.; Kataoka, N.; Perks, C.M.; Barker, R.; Hakuno, F.; Takahashi, S.-I. The IGF-Independent Role of IRS-2 in the Secretion of MMP-9 Enhances the Growth of Prostate Carcinoma Cell Line PC3. Int. J. Mol. Sci. 2023, 24, 15065. [Google Scholar] [CrossRef] [PubMed]
- Kinnunen, M.; Liu, X.; Niemelä, E.; Öhman, T.; Gawriyski, L.; Salokas, K.; Keskitalo, S.; Varjosalo, M. The Impact of ETV6-NTRK3 Oncogenic Gene Fusions on Molecular and Signaling Pathway Alterations. Cancers 2023, 15, 4246. [Google Scholar] [CrossRef] [PubMed]
- Belfiore, A.; Malaguarnera, R.; Vella, V.; Lawrence, M.C.; Sciacca, L.; Frasca, F.; Morrione, A.; Vigneri, R. Insulin Receptor Isoforms in Physiology and Disease: An Updated View. Endocr. Rev. 2017, 38, 379. [Google Scholar] [CrossRef] [PubMed]
- Rajapaksha, H.; Forbes, B.E. Ligand-Binding Affinity at the Insulin Receptor Isoform-A and Subsequent IR-A Tyrosine Phosphorylation Kinetics Are Important Determinants of Mitogenic Biological Outcomes. Front. Endocrinol. 2015, 6, 107. [Google Scholar] [CrossRef]
- Arafat, H.M.; Omar, J.; Shafii, N.; Naser, I.A.; Al Laham, N.A.; Muhamad, R.; Al-Astani, T.A.D.; Mohammed Shamallakh, O.; Mohammed Shamallakh, K. The Association Between the Serum Level of IGF-1 and IGFBP-3 and the Risk of Breast Cancer among Women in the Gaza Strip. Asian Pac. J. Cancer Prev. 2023, 24, 717–723. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, T.; Wu, J.; Huang, O.; Zhu, L.; He, J.; Li, Y.; Chen, W.; Chen, X.; Shen, K. Associations Between Circulating Insulin-Like Growth Factor 1 and Mortality in Women with Invasive Breast Cancer. Front. Oncol. 2020, 10, 1384. [Google Scholar] [CrossRef]
- De Santi, M.; Annibalini, G.; Marano, G.; Biganzoli, G.; Venturelli, E.; Pellegrini, M.; Lucertini, F.; Brandi, G.; Biganzoli, E.; Barbieri, E.; et al. Association between Metabolic Syndrome, Insulin Resistance, and IGF-1 in Breast Cancer Survivors of DIANA-5 Study. J. Cancer Res. Clin. Oncol. 2023, 149, 8639–8648. [Google Scholar] [CrossRef]
- Heidari, S.; Kolahdouz-Mohammadi, R.; Khodaverdi, S.; Mohammadi, T.; Delbandi, A.-A. Changes in MCP-1, HGF, and IGF-1 Expression in Endometrial Stromal Cells, PBMCs, and PFMCs of Endometriotic Women Following 1,25(OH)2D3 Treatment. J. Cell. Mol. Med. 2022, 26, 5634–5646. [Google Scholar] [CrossRef]
- Nwabo Kamdje, A.H.; Seke Etet, P.F.; Kipanyula, M.J.; Vecchio, L.; Tagne Simo, R.; Njamnshi, A.K.; Lukong, K.E.; Mimche, P.N. Insulin-like Growth Factor-1 Signaling in the Tumor Microenvironment: Carcinogenesis, Cancer Drug Resistance, and Therapeutic Potential. Front. Endocrinol. 2022, 13, 927390. [Google Scholar] [CrossRef]
- Tsui, J.; Qi, S.; Perrino, S.; Leibovitch, M.; Brodt, P. Identification of a Resistance Mechanism to IGF-IR Targeting in Human Triple Negative MDA-MB-231 Breast Cancer Cells. Biomolecules 2021, 11, 527. [Google Scholar] [CrossRef]
- Tong, Y.; Wu, J.; Huang, O.; He, J.; Zhu, L.; Chen, W.; Li, Y.; Chen, X.; Shen, K. IGF-1 Interacted with Obesity in Prognosis Prediction in HER2-Positive Breast Cancer Patients. Front. Oncol. 2020, 10, 550. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liu, X. The Role of Estrogen Receptor Beta in Breast Cancer. Biomark. Res. 2020, 8, 39. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.-P.; Chen, W.-X.; Xie, W.-Y.; Wu, L.-F. The Association between IGF1 Gene Rs1520220 Polymorphism and Cancer Susceptibility: A Meta-Analysis Based on 12,884 Cases and 58,304 Controls. Environ. Health Prev. Med. 2018, 23, 38. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhao, M.; Wang, Q.; Liu, L.; Qi, Y.N.; Li, J.Y. Genetic Polymorphisms of Insulin-like Growth Factor 1 and Insulin-like Growth Factor Binding Protein 3, Xenoestrogen, Phytoestrogen, and Premenopausal Breast Cancer. Curr. Oncol. 2016, 23, e17–e23. [Google Scholar] [CrossRef]
- O’Flanagan, C.H.; O’shea, S.; Lyons, A.; Fogarty, F.M.; McCabe, N.; Kennedy, R.D.; O’Connor, R. IGF-1R Inhibition Sensitizes Breast Cancer Cells to ATM-Related Kinase (ATR) Inhibitor and Cisplatin. Oncotarget 2016, 7, 56826–56841. [Google Scholar] [CrossRef] [PubMed]
- Yerushalmi, R.; Gelmon, K.A.; Leung, S.; Gao, D.; Cheang, M.; Pollak, M.; Turashvili, G.; Gilks, B.C.; Kennecke, H. Insulin-like Growth Factor Receptor (IGF-1R) in Breast Cancer Subtypes. Breast Cancer Res. Treat. 2012, 132, 131–142. [Google Scholar] [CrossRef]
- Litzenburger, B.C.; Creighton, C.J.; Tsimelzon, A.; Chan, B.T.; Hilsenbeck, S.G.; Wang, T.; Carboni, J.M.; Gottardis, M.M.; Huang, F.; Chang, J.C.; et al. High IGF-IR Activity in Triple-Negative Breast Cancer Cell Lines and Tumorgrafts Correlates with Sensitivity to Anti-IGF-IR Therapy. Clin. Cancer Res. 2011, 17, 2314–2327. [Google Scholar] [CrossRef]
- Shi, R.; Yu, H.; McLarty, J.; Glass, J. IGF-I and Breast Cancer: A Meta-Analysis. Int. J. Cancer 2004, 111, 418–423. [Google Scholar] [CrossRef]
- Christopoulos, P.F.; Papageorgiou, E.; Petraki, C.; Koutsilieris, M. The COOH-Terminus of the IGF-1Ec Isoform Enhances the Proliferation and Migration of Human MCF-7 Breast Cancer Cells. AR 2017, 37, 2899–2912. [Google Scholar] [CrossRef]
- Kim, H.-J.; Litzenburger, B.C.; Cui, X.; Delgado, D.A.; Grabiner, B.C.; Lin, X.; Lewis, M.T.; Gottardis, M.M.; Wong, T.W.; Attar, R.M.; et al. Constitutively Active Type I Insulin-Like Growth Factor Receptor Causes Transformation and Xenograft Growth of Immortalized Mammary Epithelial Cells and Is Accompanied by an Epithelial-to-Mesenchymal Transition Mediated by NF-κB and Snail. Mol. Cell. Biol. 2007, 27, 3165–3175. [Google Scholar] [CrossRef] [PubMed]
- Bahhnassy, A.; Mohanad, M.; Shaarawy, S.; Ismail, M.F.; El-Bastawisy, A.; Ashmawy, A.M.; Zekri, A.-R. Transforming Growth Factor-β, Insulin-like Growth Factor I/Insulin-like Growth Factor I Receptor and Vascular Endothelial Growth Factor-A: Prognostic and Predictive Markers in Triple-Negative and Non-Triple-Negative Breast Cancer. Mol. Med. Rep. 2015, 12, 851–864. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.L.; Oshi, M.; Endo, I.; Takabe, K. Clinical Relevance of Stem Cell Surface Markers CD133, CD24, and CD44 in Colorectal Cancer. Am. J. Cancer Res. 2021, 11, 5141–5154. [Google Scholar] [PubMed]
- Chu, X.; Tian, W.; Ning, J.; Xiao, G.; Zhou, Y.; Wang, Z.; Zhai, Z.; Tanzhu, G.; Yang, J.; Zhou, R. Cancer Stem Cells: Advances in Knowledge and Implications for Cancer Therapy. Signal Transduct. Target. Ther. 2024, 9, 170. [Google Scholar] [CrossRef]
- Crudden, C.; Song, D.; Cismas, S.; Trocmé, E.; Pasca, S.; Calin, G.A.; Girnita, A.; Girnita, L. Below the Surface: IGF-1R Therapeutic Targeting and Its Endocytic Journey. Cells 2019, 8, 1223. [Google Scholar] [CrossRef]
- Voudouri, K.; Berdiaki, A.; Tzardi, M.; Tzanakakis, G.N.; Nikitovic, D. Insulin-Like Growth Factor and Epidermal Growth Factor Signaling in Breast Cancer Cell Growth: Focus on Endocrine Resistant Disease. Anal. Cell. Pathol. 2015, 2015, 975495. [Google Scholar] [CrossRef]
- Suba, Z. DNA Damage Responses in Tumors Are Not Proliferative Stimuli, but Rather They Are DNA Repair Actions Requiring Supportive Medical Care. Cancers 2024, 16, 1573. [Google Scholar] [CrossRef]
- Monteiro, M.; Zhang, X.; Yee, D. Insulin Promotes Growth in Breast Cancer Cells through the Type I IGF Receptor in Insulin Receptor Deficient Cells. Exp. Cell Res. 2024, 434, 113862. [Google Scholar] [CrossRef] [PubMed]
- De Santi, M.; Annibalini, G.; Barbieri, E.; Villarini, A.; Vallorani, L.; Contarelli, S.; Berrino, F.; Stocchi, V.; Brandi, G. Human IGF1 Pro-Forms Induce Breast Cancer Cell Proliferation via the IGF1 Receptor. Cell. Oncol. 2016, 39, 149–159. [Google Scholar] [CrossRef]
- He, Y.; Sun, M.M.; Zhang, G.G.; Yang, J.; Chen, K.S.; Xu, W.W.; Li, B. Targeting PI3K/Akt Signal Transduction for Cancer Therapy. Signal Transduct. Target. Ther. 2021, 6, 425. [Google Scholar] [CrossRef] [PubMed]
- Tóthová, Z.; Šemeláková, M.; Solárová, Z.; Tomc, J.; Debeljak, N.; Solár, P. The Role of PI3K/AKT and MAPK Signaling Pathways in Erythropoietin Signalization. Int. J. Mol. Sci. 2021, 22, 7682. [Google Scholar] [CrossRef] [PubMed]
- Nitulescu, G.M.; Van De Venter, M.; Nitulescu, G.; Ungurianu, A.; Juzenas, P.; Peng, Q.; Olaru, O.T.; Grădinaru, D.; Tsatsakis, A.; Tsoukalas, D.; et al. The Akt Pathway in Oncology Therapy and beyond (Review). Int. J. Oncol. 2018, 53, 2319–2331. [Google Scholar] [CrossRef] [PubMed]
- Glaviano, A.; Foo, A.S.C.; Lam, H.Y.; Yap, K.C.H.; Jacot, W.; Jones, R.H.; Eng, H.; Nair, M.G.; Makvandi, P.; Geoerger, B.; et al. PI3K/AKT/mTOR Signaling Transduction Pathway and Targeted Therapies in Cancer. Mol. Cancer 2023, 22, 138. [Google Scholar] [CrossRef] [PubMed]
- Martínez Báez, A.; Ayala, G.; Pedroza-Saavedra, A.; González-Sánchez, H.M.; Chihu Amparan, L. Phosphorylation Codes in IRS-1 and IRS-2 Are Associated with the Activation/Inhibition of Insulin Canonical Signaling Pathways. Curr. Issues Mol. Biol. 2024, 46, 634–649. [Google Scholar] [CrossRef]
- Maik-Rachline, G.; Hacohen-Lev-Ran, A.; Seger, R. Nuclear ERK: Mechanism of Translocation, Substrates, and Role in Cancer. Int. J. Mol. Sci. 2019, 20, 1194. [Google Scholar] [CrossRef]
- Zheng, X.; Ma, H.; Wang, J.; Huang, M.; Fu, D.; Qin, L.; Yin, Q. Energy Metabolism Pathways in Breast Cancer Progression: The Reprogramming, Crosstalk, and Potential Therapeutic Targets. Transl. Oncol. 2022, 26, 101534. [Google Scholar] [CrossRef]
- Levantini, E.; Maroni, G.; Del Re, M.; Tenen, D.G. EGFR Signaling Pathway as Therapeutic Target in Human Cancers. Semin. Cancer Biol. 2022, 85, 253–275. [Google Scholar] [CrossRef]
- Swain, S.M.; Shastry, M.; Hamilton, E. Targeting HER2-Positive Breast Cancer: Advances and Future Directions. Nat. Rev. Drug Discov. 2023, 22, 101–126. [Google Scholar] [CrossRef] [PubMed]
- Clusan, L.; Ferrière, F.; Flouriot, G.; Pakdel, F. A Basic Review on Estrogen Receptor Signaling Pathways in Breast Cancer. Int. J. Mol. Sci. 2023, 24, 6834. [Google Scholar] [CrossRef]
- Catellani, C.; Ravegnini, G.; Sartori, C.; Angelini, S.; Street, M.E. GH and IGF System: The Regulatory Role of miRNAs and lncRNAs in Cancer. Front. Endocrinol. 2021, 12, 701246. [Google Scholar] [CrossRef]
- Luo, G.; He, K.; Xia, Z.; Liu, S.; Liu, H.; Xiang, G. Regulation of microRNA-497 Expression in Human Cancer. Oncol. Lett. 2021, 21, 23. [Google Scholar] [CrossRef] [PubMed]
- Armakolas, A.; Kaparelou, M.; Dimakakos, A.; Papageorgiou, E.; Armakolas, N.; Antonopoulos, A.; Petraki, C.; Lekarakou, M.; Lelovas, P.; Stathaki, M.; et al. Oncogenic Role of the Ec Peptide of the IGF-1Ec Isoform in Prostate Cancer. Mol. Med. 2015, 21, 167–179. [Google Scholar] [CrossRef]
- Grimberg, A. Mechanisms by Which IGF-I May Promote Cancer. Cancer Biol. Ther. 2003, 2, 630–635. [Google Scholar] [CrossRef] [PubMed]
- Hakuno, F.; Takahashi, S.-I. 40 YEARS OF IGF1: IGF1 Receptor Signaling Pathways. J. Mol. Endocrinol. 2018, 61, T69–T86. [Google Scholar] [CrossRef] [PubMed]
- Diehl, J.A. Cycling to Cancer with Cyclin D1. Cancer Biol. Ther. 2002, 1, 226–231. [Google Scholar] [CrossRef]
- Shang, J.; Fan, X.; Liu, H. The Role of Mechano-Growth Factor E Peptide in the Regulation of Osteosarcoma. Oncol. Lett. 2015, 10, 697–704. [Google Scholar] [CrossRef]
- Liu, Z.-L.; Chen, H.-H.; Zheng, L.-L.; Sun, L.-P.; Shi, L. Angiogenic Signaling Pathways and Anti-Angiogenic Therapy for Cancer. Signal Transduct. Target. Ther. 2023, 8, 198. [Google Scholar] [CrossRef]
- Folkman, J. Role of Angiogenesis in Tumor Growth and Metastasis. Semin. Oncol. 2002, 29, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, M.; Morse, B.A.; Delventhal, V.; Carvajal, I.M.; Konerding, M.A. Anti-VEGFR2 and Anti-IGF-1R-Adnectins Inhibit Ewing’s Sarcoma A673-Xenograft Growth and Normalize Tumor Vascular Architecture. Angiogenesis 2012, 15, 685–695. [Google Scholar] [CrossRef]
- Tian, J.; Lambertz, I.; Berton, T.R.; Rundhaug, J.E.; Kiguchi, K.; Shirley, S.H.; DiGiovanni, J.; Conti, C.J.; Fischer, S.M.; Fuchs-Young, R. Transgenic Insulin-like Growth Factor-1 Stimulates Activation of COX-2 Signaling in Mammary Glands. Mol. Carcinog. 2012, 51, 973–983. [Google Scholar] [CrossRef]
- Matanes, E.; Gotlieb, W.H. Pathophysiological and Anatomical Basis of Lymphatic Transit of Cancer Cells and Role of the Lymphatic System: A Review of Published Literature. Chin. Clin. Oncol. 2021, 10, 14. [Google Scholar] [CrossRef] [PubMed]
- Jana, S.; Muscarella, R.A.; Jones, D. The Multifaceted Effects of Breast Cancer on Tumor-Draining Lymph Nodes. Am. J. Pathol. 2021, 191, 1353–1363. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Tsang, J.Y.; Tse, G.M. Tumor Microenvironment in Breast Cancer—Updates on Therapeutic Implications and Pathologic Assessment. Cancers 2021, 13, 4233. [Google Scholar] [CrossRef] [PubMed]
- Liao, G.; Wang, M.; Ou, Y.; Zhao, Y. IGF-1-Induced Epithelial–Mesenchymal Transition in MCF-7 Cells Is Mediated by MUC1. Cell. Signal. 2014, 26, 2131–2137. [Google Scholar] [CrossRef]
- Morimura, S.; Takahashi, K. Rac1 and Stathmin but Not EB1 Are Required for Invasion of Breast Cancer Cells in Response to IGF-I. Int. J. Cell Biol. 2011, 2011, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Luo, Q.; Sun, J.; Xu, B.; Ju, Y.; Yang, L.; Song, G. MGF Enhances Tenocyte Invasion through MMP-2 Activity via the FAK-ERK 1/2 Pathway. Wound Repair Regen. 2015, 23, 394–402. [Google Scholar] [CrossRef]
- Sommers, C.L.; Byers, S.W.; Thompson, E.W.; Torri, J.A.; Gelmann, E.P. Differentiation State and Invasiveness of Human Breast Cancer Cell Lines. Breast Cancer Res. Treat. 1994, 31, 325–335. [Google Scholar] [CrossRef]
- King, E.R.; Wong, K.-K. Insulin-like Growth Factor: Current Concepts and New Developments in Cancer Therapy. Recent Pat. Anticancer Drug Discov. 2012, 7, 14–30. [Google Scholar] [CrossRef]
- Cevenini, A.; Orrù, S.; Mancini, A.; Alfieri, A.; Buono, P.; Imperlini, E. Molecular Signatures of the Insulin-Like Growth Factor 1-Mediated Epithelial-Mesenchymal Transition in Breast, Lung and Gastric Cancers. Int. J. Mol. Sci. 2018, 19, 2411. [Google Scholar] [CrossRef]
- Fedele, M.; Sgarra, R.; Battista, S.; Cerchia, L.; Manfioletti, G. The Epithelial–Mesenchymal Transition at the Crossroads between Metabolism and Tumor Progression. Int. J. Mol. Sci. 2022, 23, 800. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, C.L.T.; Forsare, C.; Bendahl, P.-O.; Falck, A.-K.; Fernö, M.; Lövgren, K.; Aaltonen, K.; Rydén, L. Expression of Epithelial-Mesenchymal Transition-Related Markers and Phenotypes during Breast Cancer Progression. Breast Cancer Res. Treat. 2020, 181, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Batth, I.S.; Qu, X.; Xu, L.; Song, N.; Wang, R.; Liu, Y. IGF-IR Signaling in Epithelial to Mesenchymal Transition and Targeting IGF-IR Therapy: Overview and New Insights. Mol. Cancer 2017, 16, 6. [Google Scholar] [CrossRef] [PubMed]
- Hazrati, A.; Malekpour, K.; Mirsanei, Z.; Khosrojerdi, A.; Rahmani-Kukia, N.; Heidari, N.; Abbasi, A.; Soudi, S. Cancer-Associated Mesenchymal Stem/Stromal Cells: Role in Progression and Potential Targets for Therapeutic Approaches. Front. Immunol. 2023, 14, 1280601. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-J.; Khadka, D.; Seo, J.H. Interplay between Solid Tumors and Tumor Microenvironment. Front. Immunol. 2022, 13, 882718. [Google Scholar] [CrossRef]
- Zhang, Y.; Moerkens, M.; Ramaiahgari, S.; De Bont, H.; Price, L.; Meerman, J.; Van De Water, B. Elevated Insulin-like Growth Factor 1 Receptor Signaling Induces Antiestrogen Resistance through the MAPK/ERK and PI3K/Akt Signaling Routes. Breast Cancer Res. 2011, 13, R52. [Google Scholar] [CrossRef]
- Massarweh, S.; Osborne, C.K.; Creighton, C.J.; Qin, L.; Tsimelzon, A.; Huang, S.; Weiss, H.; Rimawi, M.; Schiff, R. Tamoxifen Resistance in Breast Tumors Is Driven by Growth Factor Receptor Signaling with Repression of Classic Estrogen Receptor Genomic Function. Cancer Res. 2008, 68, 826–833. [Google Scholar] [CrossRef]
- Leroy, C.; Ramos, P.; Cornille, K.; Bonenfant, D.; Fritsch, C.; Voshol, H.; Bentires-Alj, M. Activation of IGF1R/P110β/AKT/mTOR Confers Resistance to α-Specific PI3K Inhibition. Breast Cancer Res. 2016, 18, 41. [Google Scholar] [CrossRef] [PubMed]
- Heckler, M.M.; Thakor, H.; Schafer, C.C.; Riggins, R.B. ERK/MAPK Regulates ERR γ Expression, Transcriptional Activity and Receptor-mediated Tamoxifen Resistance in ER + Breast Cancer. FEBS J. 2014, 281, 2431–2442. [Google Scholar] [CrossRef]
- Nicholson, R.I.; Staka, C.; Boyns, F.; Hutcheson, I.R.; Gee, J.M.W. Growth Factor-Driven Mechanisms Associated with Resistance to Estrogen Deprivation in Breast Cancer: New Opportunities for Therapy. Endocr. Relat. Cancer 2004, 11, 623–641. [Google Scholar] [CrossRef]
- Yang, H.-Y.; Qu, R.-M.; Lin, X.-S.; Liu, T.-X.; Sun, Q.-Q.; Yang, C.; Li, X.-H.; Lu, W.; Hu, X.-F.; Dai, J.-X.; et al. IGF-1 from Adipose-Derived Mesenchymal Stem Cells Promotes Radioresistance of Breast Cancer Cells. Asian Pac. J. Cancer Prev. 2015, 15, 10115–10119. [Google Scholar] [CrossRef]
- Peyrat, J.P.; Louchez, M.M.; Lefebvre, J.; Bonneterre, J.; Vennin, P.; Demaille, A.; Helquet, B.; Fournier, C. Plasma Insulin-like Growth Factor-1 (IGF-1) Concentrations in Human Breast Cancer. Eur. J. Cancer 1993, 29, 492–497. [Google Scholar] [CrossRef] [PubMed]
- Menashe, I.; Maeder, D.; Garcia-Closas, M.; Figueroa, J.D.; Bhattacharjee, S.; Rotunno, M.; Kraft, P.; Hunter, D.J.; Chanock, S.J.; Rosenberg, P.S.; et al. Pathway Analysis of Breast Cancer Genome-Wide Association Study Highlights Three Pathways and One Canonical Signaling Cascade. Cancer Res. 2010, 70, 4453–4459. [Google Scholar] [CrossRef] [PubMed]
- Seitz, S.; Rick, F.G.; Schally, A.V.; Treszl, A.; Hohla, F.; Szalontay, L.; Zarandi, M.; Ortmann, O.; Engel, J.B.; Buchholz, S. Combination of GHRH Antagonists and Docetaxel Shows Experimental Effectiveness for the Treatment of Triple-Negative Breast Cancers. Oncol. Rep. 2013, 30, 413–418. [Google Scholar] [CrossRef]
- Van Den Berg, C.L.; Cox, G.N.; Stroh, C.A.; Hilsenbeck, S.G.; Weng, C.-N.; Mcdermott, M.J.; Pratt, D.; Osborne, C.K.; Coronado-Heinsohn, E.B.; Yee, D. Polyethylene Glycol Conjugated Insulin-like Growth Factor Binding Protein-1 (IGFBP-1) Inhibits Growth of Breast Cancer in Athymic Mice. Eur. J. Cancer 1997, 33, 1108–1113. [Google Scholar] [CrossRef] [PubMed]
- Busund, L.-T.; Richardsen, E.; Busund, R.; Ukkonen, T.; Bjørnsen, T.; Busch, C.; Stalsberg, H. Significant Expression of IGFBP2 in Breast Cancer Compared with Benign Lesions. J. Clin. Pathol. 2005, 58, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Marzec, K.A.; Lin, M.Z.; Martin, J.L.; Baxter, R.C. Involvement of P53 in Insulin-like Growth Factor Binding Protein-3 Regulation in the Breast Cancer Cell Response to DNA Damage. Oncotarget 2015, 6, 26583–26598. [Google Scholar] [CrossRef]
- Evdokimova, V.; Tognon, C.E.; Benatar, T.; Yang, W.; Krutikov, K.; Pollak, M.; Sorensen, P.H.B.; Seth, A. IGFBP7 Binds to the IGF-1 Receptor and Blocks Its Activation by Insulin-Like Growth Factors. Sci. Signal. 2012, 5, ra92. [Google Scholar] [CrossRef]
- Brahmkhatri, V.P.; Prasanna, C.; Atreya, H.S. Insulin-Like Growth Factor System in Cancer: Novel Targeted Therapies. Biomed. Res. Int. 2015, 2015, 538019. [Google Scholar] [CrossRef]
- Pellegrino, M.; Secli, V.; D’Amico, S.; Petrilli, L.L.; Caforio, M.; Folgiero, V.; Tumino, N.; Vacca, P.; Vinci, M.; Fruci, D.; et al. Manipulating the Tumor Immune Microenvironment to Improve Cancer Immunotherapy: IGF1R, a Promising Target. Front. Immunol. 2024, 15, 1356321. [Google Scholar] [CrossRef]
- Wang, P.; Mak, V.C.Y.; Cheung, L.W.T. Drugging IGF-1R in Cancer: New Insights and Emerging Opportunities. Genes Dis. 2023, 10, 199–211. [Google Scholar] [CrossRef]
- Shulman, D.S.; Merriam, P.; Choy, E.; Guenther, L.M.; Cavanaugh, K.L.; Kao, P.; Posner, A.; Bhushan, K.; Fairchild, G.; Barker, E.; et al. Phase 2 Trial of Palbociclib and Ganitumab in Patients with Relapsed Ewing Sarcoma. Cancer Med. 2023, 12, 15207–15216. [Google Scholar] [CrossRef] [PubMed]
- Chapman, J.-A.W.; Costantino, J.P.; Dong, B.; Margolese, R.G.; Pritchard, K.I.; Shepherd, L.E.; Gelmon, K.A.; Wolmark, N.; Pollak, M.N. Octreotide LAR and Tamoxifen versus Tamoxifen in Phase III Randomize Early Breast Cancer Trials: NCIC CTG MA.14 and NSABP B-29. Breast Cancer Res. Treat. 2015, 153, 353–360. [Google Scholar] [CrossRef]
- Singh, B.; Smith, J.A.; Axelrod, D.M.; Ameri, P.; Levitt, H.; Danoff, A.; Lesser, M.; De Angelis, C.; Illa-Bochaca, I.; Lubitz, S.; et al. Insulin-like Growth Factor-I Inhibition with Pasireotide Decreases Cell Proliferation and Increases Apoptosis in Pre-Malignant Lesions of the Breast: A Phase 1 Proof of Principle Trial. Breast Cancer Res. 2014, 16, 463. [Google Scholar] [CrossRef] [PubMed]
- Haluska, P.; Menefee, M.; Plimack, E.R.; Rosenberg, J.; Northfelt, D.; LaVallee, T.; Shi, L.; Yu, X.-Q.; Burke, P.; Huang, J.; et al. Phase I Dose-Escalation Study of MEDI-573, a Bispecific, Antiligand Monoclonal Antibody against IGFI and IGFII, in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2014, 20, 4747–4757. [Google Scholar] [CrossRef] [PubMed]
- Friedbichler, K.; Hofmann, M.H.; Kroez, M.; Ostermann, E.; Lamche, H.R.; Koessl, C.; Borges, E.; Pollak, M.N.; Adolf, G.; Adam, P.J. Pharmacodynamic and Antineoplastic Activity of BI 836845, a Fully Human IGF Ligand-Neutralizing Antibody, and Mechanistic Rationale for Combination with Rapamycin. Mol. Cancer Ther. 2014, 13, 399–409. [Google Scholar] [CrossRef]
- Chakraborty, A.K.; Zerillo, C.; DiGiovanna, M.P. In Vitro and in Vivo Studies of the Combination of IGF1R Inhibitor Figitumumab (CP-751,871) with HER2 Inhibitors Trastuzumab and Neratinib. Breast Cancer Res. Treat. 2015, 152, 533–544. [Google Scholar] [CrossRef]
- Robertson, J.F.; Ferrero, J.-M.; Bourgeois, H.; Kennecke, H.; De Boer, R.H.; Jacot, W.; McGreivy, J.; Suzuki, S.; Zhu, M.; McCaffery, I.; et al. Ganitumab with Either Exemestane or Fulvestrant for Postmenopausal Women with Advanced, Hormone-Receptor-Positive Breast Cancer: A Randomised, Controlled, Double-Blind, Phase 2 Trial. Lancet Oncol. 2013, 14, 228–235. [Google Scholar] [CrossRef]
- Gradishar, W.J.; Yardley, D.A.; Layman, R.; Sparano, J.A.; Chuang, E.; Northfelt, D.W.; Schwartz, G.N.; Youssoufian, H.; Tang, S.; Novosiadly, R.; et al. Clinical and Translational Results of a Phase II, Randomized Trial of an Anti–IGF-1R (Cixutumumab) in Women with Breast Cancer That Progressed on Endocrine Therapy. Clin. Cancer Res. 2016, 22, 301–309. [Google Scholar] [CrossRef]
- Di Cosimo, S.; Sathyanarayanan, S.; Bendell, J.C.; Cervantes, A.; Stein, M.N.; Braña, I.; Roda, D.; Haines, B.B.; Zhang, T.; Winter, C.G.; et al. Combination of the mTOR Inhibitor Ridaforolimus and the Anti-IGF1R Monoclonal Antibody Dalotuzumab: Preclinical Characterization and Phase I Clinical Trial. Clin. Cancer Res. 2015, 21, 49–59. [Google Scholar] [CrossRef]
- Zeng, X.; Zhang, H.; Oh, A.; Zhang, Y.; Yee, D. Enhancement of Doxorubicin Cytotoxicity of Human Cancer Cells by Tyrosine Kinase Inhibition of Insulin Receptor and Type I IGF Receptor. Breast Cancer Res. Treat. 2012, 133, 117–126. [Google Scholar] [CrossRef]
- Castaño, Z.; Marsh, T.; Tadipatri, R.; Kuznetsov, H.S.; Al-Shahrour, F.; Paktinat, M.; Greene-Colozzi, A.; Nilsson, B.; Richardson, A.L.; McAllister, S.S. Stromal EGF and IGF-I Together Modulate Plasticity of Disseminated Triple-Negative Breast Tumors. Cancer Discov. 2013, 3, 922–935. [Google Scholar] [CrossRef]
- Karamouzis, M.V.; Papavassiliou, A.G. Targeting Insulin-like Growth Factor in Breast Cancer Therapeutics. Crit. Rev. Oncol./Hematol. 2012, 84, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Huang, F.; Macedo, L.F.; Harrington, S.C.; Reeves, K.A.; Greer, A.; Finckenstein, F.G.; Brodie, A.; Gottardis, M.M.; Carboni, J.M.; et al. Dual IGF-1R/InsR Inhibitor BMS-754807 Synergizes with Hormonal Agents in Treatment of Estrogen-Dependent Breast Cancer. Cancer Res. 2011, 71, 7597–7607. [Google Scholar] [CrossRef] [PubMed]
- Mancarella, C.; Morrione, A.; Scotlandi, K. Extracellular Interactors of the IGF System: Impact on Cancer Hallmarks and Therapeutic Approaches. Int. J. Mol. Sci. 2024, 25, 5915. [Google Scholar] [CrossRef] [PubMed]
- Roche, S.; Gaule, P.; Winrow, D.; Mukherjee, N.; O’Neill, F.; Conlon, N.T.; Meiller, J.; Collins, D.M.; Canonici, A.; Fawsi, M.I.; et al. Preclinical Evaluation of Insulin-like Growth Factor Receptor 1 (IGF1R) and Insulin Receptor (IR) as a Therapeutic Targets in Triple Negative Breast Cancer. PLoS ONE 2023, 18, e0282512. [Google Scholar] [CrossRef] [PubMed]
- Law, J.H.; Habibi, G.; Hu, K.; Masoudi, H.; Wang, M.Y.C.; Stratford, A.L.; Park, E.; Gee, J.M.W.; Finlay, P.; Jones, H.E.; et al. Phosphorylated Insulin-Like Growth Factor-I/Insulin Receptor Is Present in All Breast Cancer Subtypes and Is Related to Poor Survival. Cancer Res. 2008, 68, 10238–10246. [Google Scholar] [CrossRef]
- Bartolucci, D.; Pession, A.; Hrelia, P.; Tonelli, R. Precision Anti-Cancer Medicines by Oligonucleotide Therapeutics in Clinical Research Targeting Undruggable Proteins and Non-Coding RNAs. Pharmaceutics 2022, 14, 1453. [Google Scholar] [CrossRef]
- Kaczmarek, M.; Poznańska, J.; Fechner, F.; Michalska, N.; Paszkowska, S.; Napierała, A.; Mackiewicz, A. Cancer Vaccine Therapeutics: Limitations and Effectiveness—A Literature Review. Cells 2023, 12, 2159. [Google Scholar] [CrossRef]
- Durfort, T.; Tkach, M.; Meschaninova, M.I.; Rivas, M.A.; Elizalde, P.V.; Venyaminova, A.G.; Schillaci, R.; François, J.-C. Small Interfering RNA Targeted to IGF-IR Delays Tumor Growth and Induces Proinflammatory Cytokines in a Mouse Breast Cancer Model. PLoS ONE 2012, 7, e29213. [Google Scholar] [CrossRef]
- Zimmerman, B.S.; Esteva, F.J. Next-Generation HER2-Targeted Antibody–Drug Conjugates in Breast Cancer. Cancers 2024, 16, 800. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Edalatian Zakeri, S.; Bahal, R.; Wiemer, A.J. New Technologies Bloom Together for Bettering Cancer Drug Conjugates. Pharmacol. Rev. 2022, 74, 680–713. [Google Scholar] [CrossRef]
- Lindberg, J.; Nilvebrant, J.; Nygren, P.-Å.; Lehmann, F. Progress and Future Directions with Peptide-Drug Conjugates for Targeted Cancer Therapy. Molecules 2021, 26, 6042. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Bordeau, B.M.; Balthasar, J.P. Mechanisms of ADC Toxicity and Strategies to Increase ADC Tolerability. Cancers 2023, 15, 713. [Google Scholar] [CrossRef]
- Solomon, V.R.; Alizadeh, E.; Bernhard, W.; Makhlouf, A.; Hartimath, S.V.; Hill, W.; El-Sayed, A.; Barreto, K.; Geyer, C.R.; Fonge, H. Development and Preclinical Evaluation of Cixutumumab Drug Conjugates in a Model of Insulin Growth Factor Receptor I (IGF-1R) Positive Cancer. Sci. Rep. 2020, 10, 18549. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-C.; Kuo, Y.-C.; Chuong, C.-M.; Huang, Y.-H. Niche Modulation of IGF-1R Signaling: Its Role in Stem Cell Pluripotency, Cancer Reprogramming, and Therapeutic Applications. Front. Cell Dev. Biol. 2021, 8, 625943. [Google Scholar] [CrossRef]
- Kang, J.; Guo, Z.; Zhang, H.; Guo, R.; Zhu, X.; Guo, X. Dual Inhibition of EGFR and IGF-1R Signaling Leads to Enhanced Antitumor Efficacy against Esophageal Squamous Cancer. Int. J. Mol. Sci. 2022, 23, 10382. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.L.; Carlson, D.F.; Largaespada, D.A.; Hackett, P.B.; Fahrenkrug, S.C. Engineered Swine Models of Cancer. Front. Genet. 2016, 7, 78. [Google Scholar] [CrossRef]
- Biadgo, B.; Tamir, W.; Ambachew, S. Insulin-like Growth Factor and Its Therapeutic Potential for Diabetes Complications—Mechanisms and Metabolic Links: A Review. Rev. Diabet. Stud. 2021, 16, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Herz, D.; Haupt, S.; Zimmer, R.T.; Wachsmuth, N.B.; Schierbauer, J.; Zimmermann, P.; Voit, T.; Thurm, U.; Khoramipour, K.; Rilstone, S.; et al. Efficacy of Fasting in Type 1 and Type 2 Diabetes Mellitus: A Narrative Review. Nutrients 2023, 15, 3525. [Google Scholar] [CrossRef]
- Li, M.; Chi, X.; Wang, Y.; Setrerrahmane, S.; Xie, W.; Xu, H. Trends in Insulin Resistance: Insights into Mechanisms and Therapeutic Strategy. Signal Transduct. Target. Ther. 2022, 7, 216. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Q.; Huang, Z.; Li, B.; Nice, E.C.; Huang, C.; Wei, L.; Zou, B. Targeting Glucose Metabolism Enzymes in Cancer Treatment: Current and Emerging Strategies. Cancers 2022, 14, 4568. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Zheng, Q.; Meng, X. Hyperglycemia and Chemoresistance in Breast Cancer: From Cellular Mechanisms to Treatment Response. Front. Oncol. 2021, 11, 628359. [Google Scholar] [CrossRef] [PubMed]
- De Gruil, N.; Pijl, H.; van der Burg, S.H.; Kroep, J.R. Short-Term Fasting Synergizes with Solid Cancer Therapy by Boosting Antitumor Immunity. Cancers 2022, 14, 1390. [Google Scholar] [CrossRef] [PubMed]
- De Groot, S.; Lugtenberg, R.T.; Cohen, D.; Welters, M.J.P.; Ehsan, I.; Vreeswijk, M.P.G.; Smit, V.T.H.B.M.; de Graaf, H.; Heijns, J.B.; Portielje, J.E.A.; et al. Fasting Mimicking Diet as an Adjunct to Neoadjuvant Chemotherapy for Breast Cancer in the Multicentre Randomized Phase 2 DIRECT Trial. Nat. Commun. 2020, 11, 3083. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, B.; Gan, C.; Sun, H.; Zhang, J.; Feng, L. A Comprehensive Review of Small Interfering RNAs (siRNAs): Mechanism, Therapeutic Targets, and Delivery Strategies for Cancer Therapy. Int. J. Nanomed. 2023, 18, 7605–7635. [Google Scholar] [CrossRef]
- Tian, Z.; Liang, G.; Cui, K.; Liang, Y.; Wang, Q.; Lv, S.; Cheng, X.; Zhang, L. Insight into the Prospects for RNAi Therapy of Cancer. Front. Pharmacol. 2021, 12, 644718. [Google Scholar] [CrossRef]
- Mehrgou, A.; Ebadollahi, S.; Seidi, K.; Ayoubi-Joshaghani, M.H.; Ahmadieh Yazdi, A.; Zare, P.; Jaymand, M.; Jahanban-Esfahlan, R. Roles of miRNAs in Colorectal Cancer: Therapeutic Implications and Clinical Opportunities. Adv. Pharm. Bull. 2021, 11, 233–247. [Google Scholar] [CrossRef]
- Al-Samerria, S.; Radovick, S. Exploring the Therapeutic Potential of Targeting GH and IGF-1 in the Management of Obesity: Insights from the Interplay between These Hormones and Metabolism. Int. J. Mol. Sci. 2023, 24, 9556. [Google Scholar] [CrossRef]
- Mohammedali, A.; Biernacka, K.; Barker, R.M.; Holly, J.M.P.; Perks, C.M. The Role of Insulin-like Growth Factor Binding Protein (IGFBP)-2 in DNA Repair and Chemoresistance in Breast Cancer Cells. Cancers 2024, 16, 2113. [Google Scholar] [CrossRef]
- Zhang, X.; Varma, S.; Yee, D. Suppression of Insulin Receptor Substrate 1 Inhibits Breast Cancer Growth In Vitro and in Female Athymic Mice. Endocrinology 2023, 164, bqac214. [Google Scholar] [CrossRef]
- Armakolas, A.; Alevizopoulos, N.; Stathaki, M.; Petraki, C.; Agrogiannis, G.; Samiotaki, M.; Panayotou, G.; Chatzinikita, E.; Koutsilieris, M. Anti-PEc: Development of a Novel Monoclonal Antibody against Prostate Cancer. Br. J. Cancer 2024, 551–564. [Google Scholar] [CrossRef] [PubMed]
- Armakolas, A.; Dimakakos, A.; Loukogiannaki, C.; Armakolas, N.; Antonopoulos, A.; Florou, C.; Tsioli, P.; Papageorgiou, E.; Alexandrou, T.P.; Stathaki, M.; et al. IL-6 Is Associated to IGF-1Ec Upregulation and Ec Peptide Secretion, from Prostate Tumors. Mol. Med. 2018, 24, 6. [Google Scholar] [CrossRef]
- Yang, L.; Shi, P.; Zhao, G.; Xu, J.; Peng, W.; Zhang, J.; Zhang, G.; Wang, X.; Dong, Z.; Chen, F.; et al. Targeting Cancer Stem Cell Pathways for Cancer Therapy. Signal Transduct. Target. Ther. 2020, 5, 8. [Google Scholar] [CrossRef] [PubMed]
- Bahar, M.E.; Kim, H.J.; Kim, D.R. Targeting the RAS/RAF/MAPK Pathway for Cancer Therapy: From Mechanism to Clinical Studies. Signal Transduct. Target. Ther. 2023, 8, 455. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Xiao, K. Nanoparticles-Based Strategies to Improve the Delivery of Therapeutic Small Interfering RNA in Precision Oncology. Pharmaceutics 2022, 14, 1586. [Google Scholar] [CrossRef]
Isoform | Structure | Generation Mechanism | Alternative Splicing | Functional Characteristics and Differences | Primary Signaling Pathways | Predominant Tissues |
---|---|---|---|---|---|---|
IGF-1Ea | Exons 1, 2, 3, 4, 5 | Splicing of exons 1–5 from the igf-1 gene | Modulates exon 5 inclusion/exclusion | - Similar to hepatic IGF-1, involved in systemic growth regulation - Promotes cell proliferation, survival, and metabolic functions - Interacts with IGFBPs to regulate bioavailability and activity | - PI3K/Akt, - MAPK (ERK1/2), - JAK/STAT - IGF-1R - IGFBPs - The specific roles and predominant tissues of each IGF-1 isoform can vary depending on developmental stage, physiological conditions, and species-specific differences. | - Liver, muscle, bone, brain, and adipose tissue |
IGF-1Eb | Exons 1, 2, 3, 4, 6 | Splicing of exons 1–4, 6 from the igf-1 gene | Excludes exon 5 | - Predominantly expressed in liver, role in growth regulation - Specific role in growth modulation, potential interactions with IGFBPs | - Liver, muscle, and testes - Other Tissues: Present but with less clear predominant roles compared to IGF-1a and IGF-1c | |
IGF-1Ec | Exons 1, 2, 3, 5, 6 | Splicing of exons 1, 2, 3, 5, 6 from the igf-1 gene | Excludes exon 4 | - Response to mechanical stress in tissues - Enhances cell migration, tissue remodeling, and repair processes - Cleaved COO-terminal peptide (PEc) induces cellular proliferation and epithelial to mesenchymal transition (metastasis in prostate cancer) | - Muscle, heart, bone, and tendons |
Patient Group | IGF-1 Expression (%) | Estrogen Receptor Status |
---|---|---|
ER+ (Positive) | 60% | IGF-1R is often associated with ER+ BC |
Triple-Negative (TNBC) | 20% | IGF-1R expression tends to be lower in TNBC compared to ER+ subtypes |
Tumor Stage | ||
Early (T1–T2) | 35% | Higher IGF-1 expression correlates with more advanced BC stages (T3–T4) |
Advanced (T3–T4) | 65% | |
Lymph Node Status | ||
Metastasis Present | 60% | IGF-1 expression is higher in BC patients with lymph node metastasis |
No Metastasis | 40% | Lower IGF-1 expression is observed in BC patients without lymph node involvement |
BC Subtype | Percentage of IGF-1R Expression | Key Findings |
---|---|---|
Luminal A | ~52% | IGF-1R expression does not affect breast cancer specific survival. |
Luminal B | ~57.5% | Higher total IGF-1R levels correlate with a better prognosis. |
HR+/ERBB2+ | ~10–20% | Active phosphorylated IGF-1R/IR does not correlate with prognosis in trastuzumab-treated ERBB2+ tumors. |
TNBC | ~22–46% | IGF-1R expression correlates with shorter survival. TNBCs are responsive to IGF-1 signaling promoting proliferation and survival. |
Target Component of the IGF-1 System | Details of Agent | BC Subtype | Phase of Development | Status | Combination Therapy | References |
---|---|---|---|---|---|---|
GH-RH | Antagonists JV-1-36 or JMR-132 | TNBC | II | Completed | Docetaxel | [143] |
Somatostatin analog: Octreotide | Stage I, II, III BC HER2+ metastatic BC | ΙΙ | Completed Ongoing | Tamoxifen, ovariectomy | [152] | |
Somatostatin analog: Pasireotide | Stage I, II, III BC | I | Ongoing | - | [153] | |
IGF-1 | Neutralizing monoclinic antibody: MEDI-573 | Hormone-sensitive, HER2− metastatic BC | II | Ongoing | Aromatase inhibitor | [154] |
mAb: BI 836845 | Hormone-sensitive, HER2− metastatic BC | I | Ongoing | Everolimus, Exemestane | [155] | |
IGF-1R | mAb: CP-751.871 | Postmenopausal subjects with advanced HR+ BC | II | Terminated | Exemestane, fulvestrant | [156] |
mAb: AMG-479 | Postmenopausal subjects with locally advanced or metastatic HR+ BC | II | Completed | Exemestane, fulvestrant | [157] | |
mAb: IMC-A12 | HER2 positive advanced BC resistant to transtuzumab and/or anthracyclines | II | Ongoing | Capecitabine, Lapatinib | [158] | |
mAb: MK-0646 | ER+/HER2-BC TNBC | II | Completed | Ridaforolimus, exemestane | [159] | |
IGF-1R RTKI | OSI-906 | Hormone-sensitive metastatic BC | II | Terminated | Erlotinib, Letrozole, Goserelin | [160] |
BMS-754807 | HER2+ advanced or metastatic BC HR+, HER2−, resistant to non-steroidal aromatase inhibitors | II | Completed | Trastuzumab, Letrozole | [161] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotsifaki, A.; Maroulaki, S.; Karalexis, E.; Stathaki, M.; Armakolas, A. Decoding the Role of Insulin-like Growth Factor 1 and Its Isoforms in Breast Cancer. Int. J. Mol. Sci. 2024, 25, 9302. https://doi.org/10.3390/ijms25179302
Kotsifaki A, Maroulaki S, Karalexis E, Stathaki M, Armakolas A. Decoding the Role of Insulin-like Growth Factor 1 and Its Isoforms in Breast Cancer. International Journal of Molecular Sciences. 2024; 25(17):9302. https://doi.org/10.3390/ijms25179302
Chicago/Turabian StyleKotsifaki, Amalia, Sousanna Maroulaki, Efthymios Karalexis, Martha Stathaki, and Athanasios Armakolas. 2024. "Decoding the Role of Insulin-like Growth Factor 1 and Its Isoforms in Breast Cancer" International Journal of Molecular Sciences 25, no. 17: 9302. https://doi.org/10.3390/ijms25179302
APA StyleKotsifaki, A., Maroulaki, S., Karalexis, E., Stathaki, M., & Armakolas, A. (2024). Decoding the Role of Insulin-like Growth Factor 1 and Its Isoforms in Breast Cancer. International Journal of Molecular Sciences, 25(17), 9302. https://doi.org/10.3390/ijms25179302