CAIP-Induced ROS Production Contributes to Sustaining Atherosclerotic Process Associated with Helicobacter cinaedi Infection through Macrophages and Endothelial Cells Activation
Abstract
:1. Introduction
2. Results
2.1. CAIP Increases the Expression of LOX-1 Receptor on the Surface of Macrophages and Endothelial Cells
2.2. The Heightened Expression of LOX-1 Is Facilitated by ROS Induced by CAIP
2.3. CAIP-Mediated ROS Production Plays a Crucial Role in the Formation of Foam Cells
2.4. The CAIP-Mediated Phosphorylation of MAPKs ERK1/2 and p38, and the Activation of NFkB, Are Dependent on ROS
2.5. CAIP-Triggered Cytokines Production Is Affected by ROS Inhibition
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. Purification of the Cells and Treatments
4.3. Flow Cytometry
4.4. ROS Detection
4.5. Foam Cell Formation
4.6. Western Blot
4.7. Detection of TNF-α, IL-1β, IL-6, CCL-2, and IL-8 in Culture Supernatants
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; de Ferranti, S.; Després, J.-P.; Fullerton, H.J.; Howard, V.J.; et al. Heart Disease and Stroke Statistics—2015 Update: A Report from the American Heart Association. Circulation 2015, 131, e29–e322. [Google Scholar] [CrossRef]
- Hansson, G.K.; Hermansson, A. The Immune System in Atherosclerosis. Nat. Immunol. 2011, 12, 204–212. [Google Scholar] [CrossRef]
- Hansson, G.K.; Robertson, A.-K.L.; Söderberg-Nauclér, C. Inflammation and Atherosclerosis. Annu. Rev. Pathol. 2006, 1, 297–329. [Google Scholar] [CrossRef]
- Shashkin, P.; Dragulev, B.; Ley, K. Macrophage Differentiation to Foam Cells. Curr. Pharm. Des. 2005, 11, 3061–3072. [Google Scholar] [CrossRef]
- O’Connor, S.; Taylor, C.; Campbell, L.A.; Epstein, S.; Libby, P. Potential Infectious Etiologies of Atherosclerosis: A Multifactorial Perspective. Emerg. Infect. Dis. 2001, 7, 780–788. [Google Scholar] [CrossRef]
- Rosenfeld, M.E.; Campbell, L.A. Pathogens and Atherosclerosis: Update on the Potential Contribution of Multiple Infectious Organisms to the Pathogenesis of Atherosclerosis. Thromb. Haemost. 2011, 106, 858–867. [Google Scholar] [CrossRef]
- Campbell, L.A.; Rosenfeld, M.E. Infection and Atherosclerosis Development. Arch. Med. Res. 2015, 46, 339–350. [Google Scholar] [CrossRef]
- Kaplan, M.; Yavuz, S.S.; Cinar, B.; Koksal, V.; Kut, M.S.; Yapici, F.; Gercekoglu, H.; Demirtas, M.M. Detection of Chlamydia pneumoniae and Helicobacter pylori in Atherosclerotic Plaques of Carotid Artery by Polymerase Chain Reaction. Int. J. Infect. Dis. 2006, 10, 116–123. [Google Scholar] [CrossRef]
- Kuo, C.C.; Shor, A.; Campbell, L.A.; Fukushi, H.; Patton, D.L.; Grayston, J.T. Demonstration of Chlamydia pneumoniae in Atherosclerotic Lesions of Coronary Arteries. J. Infect. Dis. 1993, 167, 841–849. [Google Scholar] [CrossRef]
- Blankenberg, S.; Rupprecht, H.J.; Bickel, C.; Peetz, D.; Hafner, G.; Tiret, L.; Meyer, J. Circulating Cell Adhesion Molecules and Death in Patients with Coronary Artery Disease. Circulation 2001, 104, 1336–1342. [Google Scholar] [CrossRef]
- Teles, R.; Wang, C.-Y. Mechanisms Involved in the Association between Periodontal Diseases and Cardiovascular Disease. Oral Dis. 2011, 17, 450–461. [Google Scholar] [CrossRef]
- Kakuta, R.; Yano, H.; Kanamori, H.; Shimizu, T.; Gu, Y.; Hatta, M.; Aoyagi, T.; Endo, S.; Inomata, S.; Oe, C.; et al. Helicobacter cinaedi Infection of Abdominal Aortic Aneurysm, Japan. Emerg. Infect. Dis. 2014, 20, 1942–1945. [Google Scholar] [CrossRef]
- Lewis, G.D.; Holmes, C.B.; Holmvang, G.; Butterton, J.R. Case Records of the Massachusetts General Hospital. Case 8-2007. A 48-Year-Old Man with Chest Pain Followed by Cardiac Arrest. N. Engl. J. Med. 2007, 356, 1153–1162. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Okamoto, T.; Enomoto, K.; Sakashita, N.; Oyama, K.; Fujii, S.; Sawa, T.; Takeya, M.; Ogawa, H.; Yamabe, H.; et al. Potential Association of Helicobacter cinaedi with Atrial Arrhythmias and Atherosclerosis. Microbiol. Immunol. 2012, 56, 145–154. [Google Scholar] [CrossRef]
- Bartels, H.; Goldenberger, D.; Reuthebuch, O.; Vosbeck, J.; Weisser, M.; Frei, R.; Bättig, V. First Case of Infective Endocarditis Caused by Helicobacter cinaedi. BMC Infect. Dis. 2014, 14, 586. [Google Scholar] [CrossRef]
- Nishida, K.; Iwasawa, T.; Tamura, A.; Lefor, A.T. Infected Abdominal Aortic Aneurysm with Helicobacter cinaedi. Case Rep. Surg. 2016, 2016, 1396568. [Google Scholar] [CrossRef]
- Kitamura, T.; Kawamura, Y.; Ohkusu, K.; Masaki, T.; Iwashita, H.; Sawa, T.; Fujii, S.; Okamoto, T.; Akaike, T. Helicobacter cinaedi Cellulitis and Bacteremia in Immunocompetent Hosts after Orthopedic Surgery. J. Clin. Microbiol. 2007, 45, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Araoka, H.; Baba, M.; Kimura, M.; Abe, M.; Inagawa, H.; Yoneyama, A. Clinical Characteristics of Bacteremia Caused by Helicobacter cinaedi and Time Required for Blood Cultures to Become Positive. J. Clin. Microbiol. 2014, 52, 1519–1522. [Google Scholar] [CrossRef]
- Fox, J.G. The Non-H Pylori Helicobacters: Their Expanding Role in Gastrointestinal and Systemic Diseases. Gut 2002, 50, 273–283. [Google Scholar] [CrossRef]
- Solnick, J.V. Clinical Significance of Helicobacter Species Other than Helicobacter pylori. Clin. Infect Dis. 2003, 36, 349–354. [Google Scholar] [CrossRef]
- Vandamme, P.; Harrington, C.S.; Jalava, K.; On, S.L. Misidentifying Helicobacters: The Helicobacter cinaedi Example. J. Clin. Microbiol. 2000, 38, 2261–2266. [Google Scholar] [CrossRef] [PubMed]
- Van der Ven, A.J.; Kullberg, B.J.; Vandamme, P.; Meis, J.F. Helicobacter cinaedi Bacteremia Associated with Localized Pain but Not with Cellulitis. Clin. Infect. Dis. 1996, 22, 710–711. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Rahman, H.N.A.; Okamoto, T.; Matsunaga, T.; Fujiwara, Y.; Sawa, T.; Yoshitake, J.; Ono, K.; Ahmed, K.A.; Rahaman, M.M.; et al. Promotion of Atherosclerosis by Helicobacter cinaedi Infection That Involves Macrophage-Driven Proinflammatory Responses. Sci. Rep. 2015, 4, 4680. [Google Scholar] [CrossRef]
- D’Elios, M.M.; Vallese, F.; Capitani, N.; Benagiano, M.; Bernardini, M.L.; Rossi, M.; Rossi, G.P.; Ferrari, M.; Baldari, C.T.; Zanotti, G.; et al. The Helicobacter cinaedi Antigen CAIP Participates in Atherosclerotic Inflammation by Promoting the Differentiation of Macrophages in Foam Cells. Sci. Rep. 2017, 7, 40515. [Google Scholar] [CrossRef]
- Mehta, J.; Chen, J.; Hermonat, P.; Romeo, F.; Novelli, G. Lectin-like, Oxidized Low-Density Lipoprotein Receptor-1 (LOX-1): A Critical Player in the Development of Atherosclerosis and Related Disorders. Cardiovasc. Res. 2006, 69, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Kattoor, A.J.; Goel, A.; Mehta, J.L. LOX-1: Regulation, Signaling and Its Role in Atherosclerosis. Antioxidants 2019, 8, 218. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.-Y.; Bian, Y.-F.; Zhang, H.-P.; Gao, F.; Xiao, C.-S.; Liang, B.; Li, J.; Zhang, N.-N.; Yang, Z.-M. LOX-1 Is Implicated in Oxidized Low-Density Lipoprotein-Induced Oxidative Stress of Macrophages in Atherosclerosis. Mol. Med. Rep. 2015, 12, 5335–5341. [Google Scholar] [CrossRef]
- Liu, M.; Li, H.; Zhou, Q.; Zhao, H.; Lv, D.; Cao, J.; Jiang, J.; Tang, M.; Wu, D.; Liu, J.; et al. ROS-Autophagy Pathway Mediates Monocytes-human Umbilical Vein Endothelial Cells Adhesion Induced by Apelin-13. J. Cell Physiol. 2018, 233, 6839–6850. [Google Scholar] [CrossRef]
- Riganti, C.; Gazzano, E.; Polimeni, M.; Costamagna, C.; Bosia, A.; Ghigo, D. Diphenyleneiodonium Inhibits the Cell Redox Metabolism and Induces Oxidative Stress. J. Biol. Chem. 2004, 279, 47726–47731. [Google Scholar] [CrossRef]
- Batty, M.; Bennett, M.R.; Yu, E. The Role of Oxidative Stress in Atherosclerosis. Cells 2022, 11, 3843. [Google Scholar] [CrossRef]
- Caliceti, C.; Rizzo, P.; Ferrari, R.; Fortini, F.; Aquila, G.; Leoncini, E.; Zambonin, L.; Rizzo, B.; Calabria, D.; Simoni, P.; et al. Novel Role of the Nutraceutical Bioactive Compound Berberine in Lectin-like OxLDL Receptor 1-Mediated Endothelial Dysfunction in Comparison to Lovastatin. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 552–563. [Google Scholar] [CrossRef] [PubMed]
- Murthy, V.L.; Yu, B.; Wang, W.; Zhang, X.; Alkis, T.; Pico, A.R.; Yeri, A.; Bhupathiraju, S.N.; Bressler, J.; Ballantyne, C.M.; et al. Molecular Signature of Multisystem Cardiometabolic Stress and Its Association with Prognosis. JAMA Cardiol. 2020, 5, 1144. [Google Scholar] [CrossRef] [PubMed]
- Charo, I.F.; Ransohoff, R.M. The Many Roles of Chemokines and Chemokine Receptors in Inflammation. N. Engl. J. Med. 2006, 354, 610–621. [Google Scholar] [CrossRef] [PubMed]
- Förstermann, U.; Xia, N.; Li, H. Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis. Circ. Res. 2017, 120, 713–735. [Google Scholar] [CrossRef] [PubMed]
- Pant, S.; Deshmukh, A.; GuruMurthy, G.S.; Pothineni, N.V.; Watts, T.E.; Romeo, F.; Mehta, J.L. Inflammation and Atherosclerosis—Revisited. J. Cardiovasc. Pharmacol. Ther. 2014, 19, 170–178. [Google Scholar] [CrossRef]
- Pothineni, N.V.K.; Subramany, S.; Kuriakose, K.; Shirazi, L.F.; Romeo, F.; Shah, P.K.; Mehta, J.L. Infections, Atherosclerosis, and Coronary Heart Disease. Eur. Heart J. 2017, 38, 3195–3201. [Google Scholar] [CrossRef]
- Di Pietro, M.; Filardo, S.; Falasca, F.; Turriziani, O.; Sessa, R. Infectious Agents in Atherosclerotic Cardiovascular Diseases through Oxidative Stress. IJMS 2017, 18, 2459. [Google Scholar] [CrossRef]
- Pirillo, A.; Norata, G.D.; Catapano, A.L. LOX-1, OxLDL, and Atherosclerosis. Mediators Inflamm. 2013, 2013, 152786. [Google Scholar] [CrossRef]
- Xu, S.; Ogura, S.; Chen, J.; Little, P.J.; Moss, J.; Liu, P. LOX-1 in Atherosclerosis: Biological Functions and Pharmacological Modifiers. Cell Mol. Life Sci. 2013, 70, 2859–2872. [Google Scholar] [CrossRef]
- Schaeffer, D.F.; Riazy, M.; Parhar, K.S.; Chen, J.H.; Duronio, V.; Sawamura, T.; Steinbrecher, U.P. LOX-1 Augments oxLDL Uptake by lysoPC-Stimulated Murine Macrophages but Is Not Required for oxLDL Clearance from Plasma. J. Lipid Res. 2009, 50, 1676–1684. [Google Scholar] [CrossRef]
- Kattoor, A.J.; Pothineni, N.V.K.; Palagiri, D.; Mehta, J.L. Oxidative Stress in Atherosclerosis. Curr. Atheroscler. Rep. 2017, 19, 42. [Google Scholar] [CrossRef] [PubMed]
- Coletta, S.; Lonardi, S.; Sensi, F.; D’Angelo, E.; Fassan, M.; Pucciarelli, S.; Valzelli, A.; Biccari, A.; Vermi, W.; Della Bella, C.; et al. Tumor Cells and the Extracellular Matrix Dictate the Pro-Tumoral Profile of Macrophages in CRC. Cancers 2021, 13, 5199. [Google Scholar] [CrossRef] [PubMed]
- Pozzobon, T.; Facchinello, N.; Bossi, F.; Capitani, N.; Benagiano, M.; Di Benedetto, G.; Zennaro, C.; West, N.; Codolo, G.; Bernardini, M.; et al. Treponema pallidum (Syphilis) Antigen TpF1 Induces Angiogenesis through the Activation of the IL-8 Pathway. Sci. Rep. 2016, 6, 18785. [Google Scholar] [CrossRef]
- Casellato, A.; Rossi Paccani, S.; Barrile, R.; Bossi, F.; Ciucchi, L.; Codolo, G.; Pizza, M.; Aricò, B.; de Bernard, M. The C2 Fragment from Neisseria Meningitidis Antigen NHBA Increases Endothelial Permeability by Destabilizing Adherens Junctions. Cell Microbiol. 2014, 16, 925–937. [Google Scholar] [CrossRef] [PubMed]
- Schaffner, T.; Taylor, K.; Bartucci, E.J.; Fischer-Dzoga, K.; Beeson, J.H.; Glagov, S.; Wissler, R.W. Arterial Foam Cells with Distinctive Immunomorphologic and Histochemical Features of Macrophages. Am. J. Pathol. 1980, 100, 57–80. [Google Scholar]
- Vallese, F.; Mishra, N.M.; Pagliari, M.; Berto, P.; Codolo, G.; De Bernard, M.; Zanotti, G. Helicobacter pylori Antigenic Lpp20 Is a Structural Homologue of Tipα and Promotes Epithelial-Mesenchymal Transition. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2017, 1861, 3263–3271. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paolini, E.; Cozzi, S.; Codolo, G. CAIP-Induced ROS Production Contributes to Sustaining Atherosclerotic Process Associated with Helicobacter cinaedi Infection through Macrophages and Endothelial Cells Activation. Int. J. Mol. Sci. 2024, 25, 9377. https://doi.org/10.3390/ijms25179377
Paolini E, Cozzi S, Codolo G. CAIP-Induced ROS Production Contributes to Sustaining Atherosclerotic Process Associated with Helicobacter cinaedi Infection through Macrophages and Endothelial Cells Activation. International Journal of Molecular Sciences. 2024; 25(17):9377. https://doi.org/10.3390/ijms25179377
Chicago/Turabian StylePaolini, Erika, Stefano Cozzi, and Gaia Codolo. 2024. "CAIP-Induced ROS Production Contributes to Sustaining Atherosclerotic Process Associated with Helicobacter cinaedi Infection through Macrophages and Endothelial Cells Activation" International Journal of Molecular Sciences 25, no. 17: 9377. https://doi.org/10.3390/ijms25179377
APA StylePaolini, E., Cozzi, S., & Codolo, G. (2024). CAIP-Induced ROS Production Contributes to Sustaining Atherosclerotic Process Associated with Helicobacter cinaedi Infection through Macrophages and Endothelial Cells Activation. International Journal of Molecular Sciences, 25(17), 9377. https://doi.org/10.3390/ijms25179377