Kinetics of Riboflavin Production by Hyphopichia wangnamkhiaoensis under Varying Nutritional Conditions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Various Carbon Sources on Riboflavin Production by H. wangnamkhiaoensis in a Bubble Column Bioreactor
2.2. Effect of Various Nitrogen Sources on Riboflavin Production by H. wangnamkhiaoensis
2.2.1. Flask Screening of Nitrogen Sources for Riboflavin Production by H. wangnamkhiaoensis
2.2.2. Effect of the Selected Nitrogen Sources on Cell Growth, Glucose Consumption, and Riboflavin Production by H. wangnamkhiaoensis in a Bubble Column Bioreactor
2.3. Effect of Histidine, Methionine, and Tryptophan on Cell Growth, Glucose Consumption, and Riboflavin Production by H. wangnamkhiaoensis in a Bubble Column Bioreactor
2.4. Effect of Various Vitamins on Cell Growth, Glucose Consumption, and Riboflavin Production by H. wangnamkhiaoensis in a Bubble Column Bioreactor
2.5. Formulation of a Culture Medium for Riboflavin Production by H. wangnamkhiaoensis in a Bubble Column Bioreactor
3. Materials and Methods
3.1. Micro-Organism
3.2. Culture Media
3.3. Pneumatic Bubble Column Bioreactor
3.4. Kinetic Study of the Effect of Different Nutritional Factors on Riboflavin Production by H. wangnamkhiaoensis
3.4.1. Effect of Different Carbon Sources
3.4.2. Influence of Different Nitrogen Sources
3.4.3. Effect of Some Amino Acids
3.4.4. Influence of Some Vitamins
3.5. Formulation of a Culture Medium for Riboflavin Production by H. wangnamkhiaoensis
3.6. Analytical Methods
3.6.1. Cell Concentration
3.6.2. Substrate Concentration
3.6.3. Riboflavin Concentration
3.7. Data and Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stahmann, K.-P.; Revuelta, J.L.; Seulberger, H. Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl. Microbiol. Biotechnol. 2000, 53, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Schwechheimer, S.K.; Park, E.Y.; Revuelta, J.L.; Becker, J.; Wittmann, C. Biotechnology of riboflavin. Appl. Microbiol. Biotechnol. 2016, 100, 2107–2119. [Google Scholar] [CrossRef] [PubMed]
- Fedorovych, D.V.; Dmytruk, K.V.; Sibirny, A.A. Recent advances in construction of the efficient producers of riboflavin and flavin nucleotides (FMN, FAD) in the yeast Candida famata. Methods Mol. Biol. 2021, 2280, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (US). Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline. In Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline; National Academies Press: Washington, DC, USA, 1998; pp. 87–122. [Google Scholar] [CrossRef]
- Palayam, M.; Ganapathy, J.; Guercio, A.M.; Tal, L.; Deck, S.L.; Shabek, N. Structural insights into photoactivation of plant cryptochrome-2. Commun. Biol. 2021, 4, 28. [Google Scholar] [CrossRef]
- Lim, S.H.; Choi, J.S.; Park, E.Y. Microbial production of riboflavin using riboflavin overproducers, Ashbya gossypii, Bacillus subtilis, and Candida famate: An overview. Biotechnol. Bioprocess Eng. 2001, 6, 75–88. [Google Scholar] [CrossRef]
- Zhao, G.; Dong, F.; Lao, X.; Zheng, H. Strategies to increase the production of biosynthetic riboflavin. Mol. Biotechnol. 2021, 63, 909–918. [Google Scholar] [CrossRef]
- Zhang, J.-R.; Ge, Y.-Y.; Liu, P.-H.; Wu, D.-T.; Liu, H.-Y.; Li, H.-B.; Corke, H.; Gan, R.-Y. Biotechnological strategies of riboflavin biosynthesis in microbes. Engineering 2022, 12, 115–127. [Google Scholar] [CrossRef]
- Liu, S.; Hu, W.; Wang, Z.; Chen, T. Production of riboflavin and related cofactors by biotechnological processes. Microb. Cell Fact. 2020, 19, 31. [Google Scholar] [CrossRef]
- Revuelta, J.L.; Ledesma-Amaro, R.; Lozano-Martinez, P.; Díaz-Fernández, D.; Buey, R.M.; Jiménez, A. Bioproduction of riboflavin: A bright yellow history. J. Ind. Microbiol. Biotechnol. 2017, 44, 659–665. [Google Scholar] [CrossRef]
- Russo, P.; Capozzi, V.; Arena, M.P.; Spadaccino, G.; Dueñas, M.T.; López, P.; Fiocco, D.; Spano, G. Riboflavin-overproducing strains of Lactobacillus fermentum for riboflavin-enriched bread. Appl. Microbiol. Biotechnol. 2014, 98, 3691–3700. [Google Scholar] [CrossRef]
- Amornrattanapan, P. Riboflavin production by Candida tropicalis isolated from seawater. Sci. Res. Essays 2013, 8, 43–47. [Google Scholar] [CrossRef]
- Andreieva, Y.; Lyzak, O.; Liu, W.; Kang, Y.; Dmytruk, K.; Sibirny, A. SEF1 and VMA1 genes regulate riboflavin biosynthesis in the flavinogenic yeast Candida famata. Cytol. Genet. 2020, 54, 379–385. [Google Scholar] [CrossRef]
- Kurtzman, C.P. New species and a new combination in the Hyphopichia and Yarrowia yeast clades. Antonie Van Leeuwenhoek 2005, 88, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Fedorovych, D.; Kszeminska, H.; Babjak, L.; Kaszycki, P.; Kołoczek, H. Hexavalent chromium stimulation of riboflavin synthesis in flavinogenic yeast. BioMetals 2001, 14, 23–31. [Google Scholar] [CrossRef]
- Demain, A.L.; Phaff, H.J.; Kurtzman, C.P. The industrial and agricultural significance of yeasts. In The Yeasts, 4th ed.; Kurtzman, C.P., Fell, J.W., Eds.; Elsevier: Amsterdam, The Netherlands, 1998; pp. 13–19. [Google Scholar] [CrossRef]
- Chávez-Camarillo, G.M.; Lopez-Nuñez, P.V.; Jiménez-Nava, R.A.; Aranda-García, E.; Cristiani-Urbina, E. Production of extracellular α-amylase by single-stage steady-state continuous cultures of Candida wangnamkhiaoensis in an airlift bioreactor. PLoS ONE 2022, 17, e0264734. [Google Scholar] [CrossRef]
- Petrovska, Y.; Lyzak, O.; Ruchala, J.; Dmytruk, K.; Sibirny, A. Co-overexpression of RIB1 and RIB6 increases riboflavin production in the yeast Candida famata. Fermentation 2022, 8, 141. [Google Scholar] [CrossRef]
- Dmytruk, K.V.; Yatsyshyn, V.Y.; Sybirna, N.O.; Fedorovych, D.V.; Sibirny, A.A. Metabolic engineering and classic selection of the yeast Candida famata (Candida flareri) for construction of strains with enhanced riboflavin production. Metab. Eng. 2011, 13, 82–88. [Google Scholar] [CrossRef]
- Tsyrulnyk, A.O.; Fedorovych, D.V.; Dmytruk, K.V.; Sibirny, A.A. Overexpression of riboflavin excretase enhances riboflavin production in the yeast Candida famata. Methods Mol. Biol. 2021, 2280, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Petrovska, Y.; Lyzak, O.; Dmytruk, K.; Sibirny, A. Effect of gene SFU1 on riboflavin synthesis in flavinogenic yeast Candida famata. Cytol. Genet. 2020, 54, 408–412. [Google Scholar] [CrossRef]
- Andreieva, Y.; Petrovska, Y.; Lyzak, O.; Liu, W.; Kang, Y.; Dmytruk, K.; Sibirny, A. Role of the regulatory genes SEF1, VMA1 and SFU1 in riboflavin synthesis in the flavinogenic yeast Candida famata (Candida flareri). Yeast 2020, 37, 497–504. [Google Scholar] [CrossRef]
- Fedorovych, D.; Boretsky, V.; Pynyaha, Y.; Bohovych, I.; Boretsky, Y.; Sibirny, A. Cloning of genes Sef1 and Tup1 encoding transcriptional activator and global repressor in the flavinogenic yeast Meyerozyma (Candida, Pichia) guilliermondii. Cytol. Genet. 2020, 54, 413–419. [Google Scholar] [CrossRef]
- Tsyrulnyk, A.O.; Andreieva, Y.A.; Ruchala, J.; Fayura, L.R.; Dmytruk, K.V.; Fedorovych, D.V.; Sibirny, A.A. Expression of yeast homolog of the mammal BCRP gene coding for riboflavin efflux protein activates vitamin B2 production in the flavinogenic yeast Candida famata. Yeast 2020, 37, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Dmytruk, K.V.; Ruchala, J.; Fedorovych, D.V.; Ostapiv, R.D.; Sibirny, A.A. Modulation of the purine pathway for riboflavin production in flavinogenic recombinant strain of the yeast Candida famata. Biotechnol. J. 2020, 15, 1900468. [Google Scholar] [CrossRef]
- Tsyrulnyk, A.O.; Fedorovych, D.V.; Sobchuk, S.M.; Dmytruk, K.V.; Sibirny, A.A. Lactose inducible expression of transcription factor gene SEF1 increases riboflavin production in the yeast Candida famata. Mikrobiol. Zh. 2021, 83, 3–10. [Google Scholar] [CrossRef]
- Ruchala, J.; Andreieva, Y.A.; Tsyrulnyk, A.O.; Sobchuk, S.M.; Najdecka, A.; Wen, L.; Kang, Y.; Dmytruk, O.V.; Dmytruk, K.V.; Fedorovych, D.V.; et al. Cheese whey supports high riboflavin synthesis by the engineered strains of the flavinogenic yeast Candida famata. Microb. Cell Fact. 2022, 21, 161. [Google Scholar] [CrossRef] [PubMed]
- Blazhenko, O.V. Glutathione deficiency leads to riboflavin oversynthesis in the yeast Pichia guilliermondii. Curr. Microbiol. 2014, 69, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Prokopiv, T.M.; Fedorovych, D.V.; Boretsky, Y.R.; Sibirny, A.A. Oversynthesis of riboflavin in the yeast Pichia guilliermondii is accompanied by reduced catalase and superoxide dismutases activities. Curr. Microbiol. 2013, 66, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Stenchuk, N.N.; Kutsiaba, V.I.; Kshanovskaya, B.V.; Fedorovich, D.V. Effect of rib83 mutation on riboflavin biosynthesis and iron assimilation in Pichia guilliermondii. Microbiology 2001, 70, 647–651. [Google Scholar] [CrossRef]
- Suzuki, G.T.; Fleuri, L.; Macedo, G.A. Influence of nitrogen and carbon sources on riboflavin production by wild strain of Candida sp. Food Bioproc. Tech. 2012, 5, 466–473. [Google Scholar] [CrossRef]
- Monschau, N.; Sahm, H.; Stahmann, K.-P. Threonine aldolase overexpression plus threonine supplementation enhanced riboflavin production in Ashbya gossypii. Appl. Environ. Microbiol. 1998, 64, 4283–4290. [Google Scholar] [CrossRef]
- Burkholder, P.R. Synthesis of riboflavin by a yeast. Proc. Natl. Acad. Sci. USA 1943, 29, 166–172. [Google Scholar] [CrossRef]
- Chávez-Camarillo, G.M.; Santiago-Flores, U.M.; Mena-Vivanco, A.; Morales-Barrera, L.; Cortés-Acosta, E.; Cristiani-Urbina, E. Transient responses of Wickerhamia sp. yeast continuous cultures to qualitative changes in carbon source supply: Induction and catabolite repression of α-amylase synthesis. Ann. Microbiol. 2018, 68, 625–635. [Google Scholar] [CrossRef]
- Hernández-Montañez, Z.F.; Juárez-Montiel, M.; Velázquez-Ávila, M.; Cristiani-Urbina, E.; Hernández-Rodríguez, C.; Villa-Tanaca, L.; Chávez-Camarillo, G.M. Production and characterization of extracellular α-amylase produced by Wickerhamia sp. X-Fep. Appl. Biochem. Biotechnol. 2012, 167, 2117–2129. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, A.; Flores-Ortiz, C.M.; Chávez-Camarillo, G.M.; Cristiani-Urbina, E.; Morales-Barrera, L. Potential capacity of Candida wangnamkhiaoensis to produce oleic acid. Fermentation 2023, 9, 443. [Google Scholar] [CrossRef]
- Linares-Martínez, L. Producción y Caracterización Parcial de un Compuesto Fluorescente de Candida wangnamkhiaoensis. Bachelor’s Thesis, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico, 2019. [Google Scholar]
- Jiménez-Nava, R.A.; Zepeda-Vallejo, L.G.; Santoyo-Tepole, F.; Chávez-Camarillo, G.M.; Cristiani-Urbina, E. RP-HPLC separation and 1H NMR identification of a yellow fluorescent compound—Riboflavin (vitamin B2)—Produced by the yeast Hyphopichia wangnamkhiaoensis. Biomolecules 2023, 13, 1423. [Google Scholar] [CrossRef]
- Cruz-Victoria, J.C.; Netzahuatl-Muñoz, A.R.; Cristiani-Urbina, E. Long short-term memory and bidirectional long short-term memory modeling and prediction of hexavalent and total chromium removal capacity kinetics of Cupressus lusitanica bark. Sustainability 2024, 16, 2874. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, S.A.; Suneja, P. Studies on the physicochemical parameter’s optimization for indole-3-acetic acid production by Pantoea agglomerans CPHN2 using one factor at a time (OFAT) and response surface methodology (RSM). Environ. Sustain. 2022, 6, 35–44. [Google Scholar] [CrossRef]
- Joy, S.; Rahman, P.K.S.M.; Khare, S.K.; Sharma, S. Production and characterization of glycolipid biosurfactant from Achromobacter sp. (PS1) isolate using one-factor-at-a-time (OFAT) approach with feasible utilization of ammonia-soaked lignocellulosic pretreated residues. Bioprocess Biosyst. Eng. 2019, 42, 1301–1315. [Google Scholar] [CrossRef]
- Czitrom, V. One-factor-at-a-time versus designed experiments. Am. Stat. 1999, 53, 126–131. [Google Scholar] [CrossRef]
- Limtong, S.; Kaewwichian, R.; Jindamorakot, S.; Yongmanitchai, W.; Nakase, T. Candida wangnamkhiaoensis sp. nov., an anamorphic yeast species in the Hyphopichia clade isolated in Thailand. Antonie Van Leeuwenhoek 2012, 102, 23–28. [Google Scholar] [CrossRef]
- Sailwal, M.; Mishra, P.; Bhaskar, T.; Pandey, R.; Ghosh, D. Time-resolved transcriptomic profile of oleaginous yeast Rhodotorula mucilaginosa during lipid and carotenoids accumulation on glycerol. Bioresour. Technol. 2023, 384, 129379. [Google Scholar] [CrossRef]
- Goodwin, T.W.; McEvoy, D. Studies on the biosynthesis of riboflavin. 5. General factors controlling flavinogenesis in the yeast Candida flareri. Biochem. J. 1959, 71, 742–748. [Google Scholar] [CrossRef]
- Suzuki, G.T.; Macedo, J.A.; Macedo, G.A. Medium composition influence on biotin and riboflavin production by newly isolated Candida sp. Braz. J. Microbiol. 2011, 42, 1093–1100. [Google Scholar] [CrossRef]
- Abbas, C.A.; Sibirny, A.A. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol. Mol. Biol. Rev. 2011, 75, 321–360. [Google Scholar] [CrossRef] [PubMed]
- Masi, A.; Mach, R.L.; Mach-Aigner, A.R. The pentose phosphate pathway in industrially relevant fungi: Crucial insights for bioprocessing. Appl. Microbiol. Biotechnol. 2012, 105, 4017–4031. [Google Scholar] [CrossRef]
- Zhang, Y.; Morar, M.; Ealick, S.E. Structural biology of the purine biosynthetic pathway. Cell. Mol. Life Sci. 2008, 65, 3699–3724. [Google Scholar] [CrossRef]
- Hove-Jensen, B.; Andersen, K.R.; Kilstrup, M.; Martinussen, J.; Switzer, R.L.; Willemoës, M. Phosphoribosyl diphosphate (PRPP): Biosynthesis, enzymology, utilization, and metabolic significance. Microbiol. Mol. Biol. Rev. 2017, 81, e00040-16. [Google Scholar] [CrossRef] [PubMed]
- Yarrow, D. Methods for the isolation, maintenance and identification of yeasts. In The Yeasts, 4th ed.; Kurtzman, C.P., Fell, J.W., Eds.; Elsevier: Amsterdam, The Netherlands, 1998; pp. 77–100. [Google Scholar] [CrossRef]
- Wickerham, L.J. A critical evaluation of the nitrogen assimilation test commonly used in the classification of yeasts. J. Bacteriol. 1946, 52, 293–301. [Google Scholar] [CrossRef]
- Ai, Y.; Luo, T.; Yu, Y.; Zhou, J.; Lu, H. Downregulation of ammonium uptake improves the growth and tolerance of Kluyveromyces marxianus at high temperature. Microbiologyopen 2022, 11, e1290. [Google Scholar] [CrossRef] [PubMed]
- Reitzer, L. Biosynthesis of glutamate, aspartate, asparagine, L-alanine, and D-alanine. EcoSal Plus 2004, 1, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- McNeil, J.B.; McIntosh, E.M.; Taylor, B.V.; Zhang, F.R.; Tang, S.; Bognar, A.L. Cloning and molecular characterization of three genes, including two genes encoding serine hydroxymethyltransferases, whose inactivation is required to render yeast auxotrophic for glycine. J. Biol. Chem. 1994, 269, 9155–9165. [Google Scholar] [CrossRef]
- Ulane, R.; Ogur, M. Genetic and physiological control of serine and glycine biosynthesis in Saccharomyces. J. Bacteriol. 1972, 109, 34–43. [Google Scholar] [CrossRef]
- Peña, A.; Pardo, J.P.; Ramírez, J. Early metabolic effects and mechanism of ammonium transport in yeast. Arch. Biochem. Biophys. 1987, 253, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Voronovsky, A.; Abbas, C.A.; Fayura, L.R.; Kshanovska, B.V.; Dmytruk, K.V.; Sybirna, K.A.; Sibirny, A.A. Development of a transformation system for the flavinogenic yeast Candida famata. FEMS Yeast Res. 2002, 2, 381–388. [Google Scholar] [CrossRef]
- Mock, D.M. Biotin. In Handbook of Vitamins, 5th ed.; Zempleni, J., Suttie, J.W., Gregory, J.F., III, Stover, P.J., Eds.; CRC Press: Boca Raton, FL, USA, 2013; pp. 397–420. [Google Scholar]
- Tong, L. Structure and function of biotin-dependent carboxylases. Cell. Mol. Life Sci. 2013, 70, 863–891. [Google Scholar] [CrossRef]
- Moat, A.G.; Lichstein, H.C. The role of biotin in carbohydrate metabolism of Saccharomyces cerevisiae. Arch. Biochem. Biophys. 1954, 48, 300–309. [Google Scholar] [CrossRef]
- Moat, A.G.; Wilkins, C.N.; Friedman, H. A role for biotin in purine biosynthesis. J. Biol. Chem. 1956, 223, 985–991. [Google Scholar] [CrossRef]
- Goodwin, T.W.; Pendlington, S. Studies on the biosynthesis of riboflavin. Nitrogen metabolism and flavinogenesis in Eremothecium ashbyii. Biochem. J. 1954, 57, 631–641. [Google Scholar] [CrossRef]
- MacLaren, J.A. The effects of certain purines and pyrimidines upon the production of riboflavin by Eremothecium asbyii. J. Bacteriol. 1952, 63, 233–241. [Google Scholar] [CrossRef]
- Özbaş, T.; Kutsal, T. Effects of growth factors on riboflavin production by Ashbya gossypii. Enzyme Microb. Technol. 1991, 13, 594–596. [Google Scholar] [CrossRef]
- Kalingan, A.E.; Krishnan, M.R.V. Agro industrial by-products as flavinogenic stimulators for riboflavin production. Bioprocess Eng. 1997, 17, 87. [Google Scholar] [CrossRef]
- Demain, A.L. Riboflavin oversynthesis. Annu. Rev. Microbiol. 1972, 26, 369–388. [Google Scholar] [CrossRef]
- Averianova, L.A.; Balabanova, L.A.; Son, O.M.; Podvolotskaya, A.B.; Tekutyeva, L.A. Production of vitamin B2 (riboflavin) by microorganisms: An overview. Front. Bioeng. Biotechnol. 2020, 8, 570828. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Nava, R.A. Influencia de los Factores Nutricionales Sobre la Producción de un Compuesto Fluorescente por Candida wangnamkhiaoensis en un Reactor Neumático. Master’s Thesis, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico, 2020. [Google Scholar]
- Schwechheimer, S.K.; Becker, J.; Peyriga, L.; Portais, J.-C.; Wittmann, C. Metabolic flux analysis in Ashbya gossypii using 13C-labeled yeast extract: Industrial riboflavin production under complex nutrient conditions. Microb. Cell Fact. 2018, 17, 162. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, T.W.; Horton, A.A. Studies in flavinogenesis. 6. The role of threonine in riboflavin biosynthesis in Eremothecium ashbyii. Biochem. J. 1960, 75, 53–57. [Google Scholar] [CrossRef]
- Goodwin, T.W.; Jones, O.T.G. Studies on the biosynthesis of riboflavin. 3. The utilization of 14C-labelled serine for riboflavin biosynthesis by Eremothecium ashbyii. Biochem. J. 1956, 64, 9–13. [Google Scholar] [CrossRef]
- Schlösser, T.; Aguiar, T.Q.; Oliveira, R.; Domingues, L. Growth stress triggers riboflavin overproduction in Ashbya gossypii. Appl. Microbiol. Biotechnol. 2007, 76, 569–578. [Google Scholar] [CrossRef] [PubMed]
- McNeil, J.B.; Flynn, J.; Tsao, N.; Monschau, N.; Stahmann, K.; Haynes, R.H.; McIntosh, E.M.; Pearlman, R.E. Glycine metabolism in Candida albicans: Characterization of the serine hydroxymethyltransferase (SHM1, SHM2) and threonine aldolase (GLY1) genes. Yeast 2000, 16, 167–175. [Google Scholar] [CrossRef]
- Ogawa, H.; Gomi, T.; Fujioka, M. Serine hydroxymethyltransferase and threonine aldolase: Are they identical? Int. J. Biochem. Cell Biol. 2000, 32, 289–301. [Google Scholar] [CrossRef]
- Kurtzman, C.P.; Fell, J.W.; Boekhout, T.; Robert, V. Methods for isolation, phenotypic characterization and maintenance of yeasts. In The Yeasts, 5th ed.; Kurtzman, C.P., Fell, J.W., Boekhout, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 1, pp. 87–110. [Google Scholar] [CrossRef]
- Casta ñeda-Agulló, M. Studies on the biosynthesis of extracellular proteases by bacteria. I. Serratia marcescens, synthetic and gelatin media. J. Gen. Physiol. 1956, 39, 369–375. [Google Scholar] [CrossRef]
- Kantarci, N.; Borak, F.; Ulgen, K.O. Bubble column reactors. Process Biochem. 2005, 40, 2263–2283. [Google Scholar] [CrossRef]
- Uyar, B.; Ali, M.D.; Uyar, G.E.O. Design parameters comparison of bubble column, airlift and stirred tank photobioreactors for microalgae production. Bioprocess Biosyst. Eng. 2024, 47, 195–209. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Witham, F.H.; Blaydes, D.F.; Deviln, R.M. Experiments in Plant Physiology; Van Nostrand Reinhold Co.: New York, NY, USA, 1971; pp. 16–18. [Google Scholar]
- Bondioli, P.; Della Bella, L. An alternative spectrophotometric method for the determination of free glycerol in biodiesel. Eur. J. Lipid Sci. Technol. 2005, 107, 153–157. [Google Scholar] [CrossRef]
ΔXmax (g/L) | μmax (1/h) | Rxmax (g/L·h) | E (%) | P (mg/L) | Rpmax (mg/L·h) | |
---|---|---|---|---|---|---|
Positive control (YNB) | 2.91 ± 0.21 | 0.16 ± 0.02 | 0.15 ± 0.01 | 99.29 ± 0.19 | 8.88 ± 0.42 | 0.37 ± 0.08 |
Negative control (YNB-VF) | 2.15 ± 0.23 | 0.12 ± 0.03 | 0.07 ± 0.01 | 99.55 ± 0.10 | 2.28 ± 0.16 | 0.07 ± 0.01 |
Biotin | 2.61 ± 0.21 | 0.17 ± 0.01 | 0.13 ± 0.01 | 98.92 ± 0.10 | 9.62 ± 0.49 | 0.36 ± 0.001 |
Calcium pantothenate | 2.80 ± 0.35 | 0.14 ± 0.01 | 0.14 ± 0.01 | 99.51 ± 0.01 | 0.91 ± 0.08 | 0.03 ± 0.001 |
Folic acid | 2.86 ± 0.25 | 0.17 ± 0.02 | 0.14 ± 0.01 | 98.40 ± 0.09 | 2.70 ± 0.33 | 0.11 ± 0.01 |
Inositol | 3.24 ± 0.20 | 0.16 ± 0.01 | 0.12 ± 0.01 | 99.65 ± 0.01 | 1.93 ± 0.08 | 0.05 ± 0.001 |
Niacin | 2.24 ± 0.26 | 0.09 ± 0.01 | 0.10 ± 0.03 | 99.89 ± 0.01 | 3.62 ± 0.36 | 0.10 ± 0.02 |
p-Aminobenzoic acid | 2.63 ± 0.26 | 0.17 ± 0.01 | 0.14 ± 0.01 | 98.48 ± 0.01 | 5.32 ± 0.24 | 0.19 ± 0.01 |
Pyridoxine hydrochloride | 2.18 ± 0.08 | 0.05 ± 0.01 | 0.05 ± 0.01 | 99.74 ± 0.01 | 0.65 ± 0.16 | 0.003 ± 0.01 |
Thiamine hydrochloride | 2.48 ± 0.35 | 0.17 ± 0.06 | 0.09 ± 0.01 | 99.74 ± 0.02 | 2.75 ± 0.38 | 0.10 ± 0.01 |
Component | YNB | YNB-w/o-N | YNB-VF | |
---|---|---|---|---|
Amount per Liter | ||||
Carbon source | Glucose | 0 g | 0 g | 10 g |
Nitrogen source | Ammonium sulfate | 5 g | 0 g | 5 g |
Amino acids | L-histidine monohydrocloride | 10 mg | 0 mg | 10 mg |
DL-methionine | 20 mg | 0 mg | 20 mg | |
DL-tryptophan | 20 mg | 0 mg | 20 mg | |
Vitamins | Biotin | 20 μg | 20 μg | 0 μg |
Calcium pantothenate | 2000 μg | 2000 μg | 0 μg | |
Folic acid | 2 μg | 2 μg | 0 μg | |
Inositol | 10,000 μg | 10,000 μg | 0 μg | |
Niacin | 400 μg | 400 μg | 0 μg | |
p-Aminobenzoic acid | 200 μg | 200 μg | 0 μg | |
Pyridoxine hydrochloride | 400 μg | 400 μg | 0 μg | |
Riboflavin | 200 μg | 200 μg | 0 μg | |
Thiamine hydrochloride | 400 μg | 400 μg | 0 μg | |
Trace elements | Boric acid | 500 μg | 500 μg | 500 μg |
Copper sulfate | 40 μg | 40 μg | 40 μg | |
Potassium iodide | 100 μg | 100 μg | 100 μg | |
Manganese sulfate | 400 μg | 400 μg | 400 μg | |
Ferric chloride | 400 μg | 400 μg | 400 μg | |
Sodium molybdate | 200 μg | 200 μg | 200 μg | |
Zinc sulfate | 400 μg | 400 μg | 400 μg | |
Salts | Monobasic potassium phosphate | 0.85 g | 0.85 g | 0.85 g |
Dibasic potassium phosphate | 0.15 g | 0.15 g | 0.15 g | |
Magnesium sulfate | 0.5 g | 0.5 g | 0.5 g | |
Sodium chloride | 0.1 g | 0.1 g | 0.1 g | |
Calcium chloride | 0.1 g | 0.1 g | 0.1 g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Nava, R.A.; Chávez-Camarillo, G.M.; Cristiani-Urbina, E. Kinetics of Riboflavin Production by Hyphopichia wangnamkhiaoensis under Varying Nutritional Conditions. Int. J. Mol. Sci. 2024, 25, 9430. https://doi.org/10.3390/ijms25179430
Jiménez-Nava RA, Chávez-Camarillo GM, Cristiani-Urbina E. Kinetics of Riboflavin Production by Hyphopichia wangnamkhiaoensis under Varying Nutritional Conditions. International Journal of Molecular Sciences. 2024; 25(17):9430. https://doi.org/10.3390/ijms25179430
Chicago/Turabian StyleJiménez-Nava, Raziel Arturo, Griselda Ma. Chávez-Camarillo, and Eliseo Cristiani-Urbina. 2024. "Kinetics of Riboflavin Production by Hyphopichia wangnamkhiaoensis under Varying Nutritional Conditions" International Journal of Molecular Sciences 25, no. 17: 9430. https://doi.org/10.3390/ijms25179430
APA StyleJiménez-Nava, R. A., Chávez-Camarillo, G. M., & Cristiani-Urbina, E. (2024). Kinetics of Riboflavin Production by Hyphopichia wangnamkhiaoensis under Varying Nutritional Conditions. International Journal of Molecular Sciences, 25(17), 9430. https://doi.org/10.3390/ijms25179430