Functions and Clinical Applications of Extracellular Vesicles in TH2 Cell-Mediated Airway Inflammatory Diseases: A Review
Abstract
:1. Introduction
2. The Pathogenesis of T2AI Diseases
2.1. T2I Occurs via Interactions among the Epithelial Cells, Dendritic Cells, and T-Cells
2.2. TH2 Cells Trigger Adaptive Immune Responses by Interacting with B-Cells
2.3. T2I Is Initiated by Innate Immunity Activation by TH2 and B-Cells
3. EVs
3.1. The Biogenesis of EVs
3.2. The Classification of EVs
3.3. The Detection and Analysis of EVs
4. The Applications of EVs for Various T2AI Diseases
4.1. The Application of EVs for CRS
4.2. The Application of EVs for AR
No. | EV Donor | Used EVs | EV Isolation Methods | EV Identification Methods | Subjects | Results/Effects | Ref. |
---|---|---|---|---|---|---|---|
1 | Mucus | Exosomes/sEVs | Ultracentrifugation | Not available | Patients with CRSwNP vs. Control | CST-2 (CST-SA) ↑ | [54] |
2 | Mucus | Exosomes/sEVs | Centrifugation (1500× g for 30 min, 12,000× g for 45 min) Ultracentrifugation (110,000× g for 2 h) Filtration with 0.22-µm filter Centrifugation (110,000× g for 70 min) | Not available | Patients with CRSwNP vs. Control | SerpinB2, SerpinE1, SerpinF2, SerpinG1 ↑ | [57] |
3 | Mucus | Exosomes/sEVs | Centrifugation (1500× g for 30 min, 12,000× g for 45 min) Ultracentrifugation (110,000× g for 2 h) Filtration with 0.22-µm filter Centrifugation (110,000× g for 70 min) | Not available | Patients with CRSwNP vs. Control | PAPP-A ↑ | [58] |
4 | Plasma | Exosomes/sEVs | Centrifugation (5000× g for 20 min) Filtration with 0.45-µm filter Size exclusion column | NTA (100 nm) WB (CD9, CD63, TSG101, ALIX) TEM (40–160 nm) | Patients with CRSwNP vs. Control | miR-677, miR-1037, miR-79 ↑ miR-192, miR-1022, miR-4 ↓ | [59] |
5 | Serum | Exosomes/sEVs | PS affinity method | TEM (CD9) NTA (<200 nm) | Patients with CRSwNP vs. CRSsNP | GAL10, EPO ↑ | [61] |
6 | Epithelial cell | Exosomes/sEVs | Centrifugation (1000× g for 10 min, 16,500× g for 30 min) Ultracentrifugation (100,000× g for 2 h) | NTA TEM WB (CD9, TSG101) | Patients with CRSwNP vs. Control EV treatment after vs. before into normal hNEC | ITGB5, EMC4, L1CAM, TALDO1 ↑ TOR4A, SPRR3, SLC1A1 ↓ Rate of proliferation ↓ | [64] |
No. | EV Donor | Used EVs | EV Isolation Methods | EV Identification Methods | Subjects | Results/Effects | Ref. |
---|---|---|---|---|---|---|---|
1 | Mucus | Exosomes/sEVs | Centrifugation (3000× g for 15 min, 10,000× g for 30 min, 50,000× g for 1 h, 100,000× g for 1 h) | Bead-based flow cytometry (MHCII, CD63) | AR patients vs. Control | miR-30-5p, 199b-3p, and 203 ↑ miR-28-3p, 874, and 875-5p ↓ | [68] |
2 | Nasal mucus | Exosomes/sEVs | Centrifugation (12,000× g for 45 min at 4 °C) Supernatant centrifugation (110,000× g for 2 h) Filtration with 0.22-μm filter Centrifugation (110,000× g for 70 min) | TEM, NTA (10–210 nm), WB (CD9, CD63, ALIX) | AR patients vs. Control | miR-146a-5p ↓ | [69] |
3 | Mucus/Epithelial cell | Exosomes/sEVs | Centrifugation (12,000× g for 45 min) Ultracentrifugation (110,000× g for 2 h) Filtration with a 0.22-μm filter Centrifugation (110,000× g for 70 min) | TEM, WB (CD63, CD81) | AR patients vs. Control OVA treatment vs. non-treatment in RPMI-2650 AR patient EVs vs. Control EVs co-incubated with CD4+ T-cell | LncGAS5 ↑ IFN-γ, T-bet ↓ in CD4+ T-cells IL-4, GATA3 ↑ in CD4+ T-cells | [70] |
4 | Plasma | Unknown | Ultracentrifugation | NTA, TEM, WB (CD9, CD63, CD81, ALIX, TSG101) | AR patients vs. Control | Der p1 ↑ | [75] |
5 | MSCs | sEVs | Centrifugation (2000× g for 20 min) Anion-exchange chromatography Ultracentrifugation (300× g for 5 min, 2000× g for 20 min, 12,000× g for 30 min, 110,000× g for 70 min) | Flow cytometry (CD9, CD63, CD81), ELISA (CD63), WB (CD9, CD63, CD81, ALIX, TSG101) Protein concentration, NTA, TEM | EV treatment after vs. before using ILC2s from patients with AR PBMCs | IL-4, IL-5, and IL-13 ↓ IL-1α, IL-1β, IL-6, and IL-1RN ↑ ILC2 function ↓ | [77] |
6 | MSCs | sEVs | Centrifugation (2000× g for 20 min) Protein concentration | NTA (85–284 nm) TEM (<150 nm) WB (CD9, CD63, ALIX, TSG101) | EV treatment after vs. before using imDCs EV-treated DCs vs. Control DCs co-cultured with T-cells from patients with AR PBMCs | CD11c, HLA-DR, CD40, CD80, and CD86 ↓ IL-4 and IL-13 ↓ in T-cells IL-10 ↑ in T-cells Treg expansion ↑ | [79] |
7 | Hypoxic-MSCs | Hypoxic-MSC-derived EVs | Ultracentrifugation (100,000× g for 90 min) | TEM, NTA, WB (CD63, CD9, TSG101) | Treatment with hypoxic EVs vs. normal EVs of AR mice EV treatment after vs. before using imDCs | VEGF ↑ in hypoxic EVs IL-4, IL-10, mucosa thickness, and inflammation ↓ in nasal mucosa CD40, CD80, and CD83 ↓ | [81] |
8 | hADSCs | Unknown | Medium Centrifugation (300× g for 15 min, 4000× g for 15 min, 10,000× g for 30 min) Ultracentrifugation (130,000× g for 90 min) | TEM, NTA (100 nm), WB (CD63, CD81, HSP70) | EV treatment after vs. before in AR mice | Nasal symptoms and inflammatory cell infiltration ↓ IgE, IL-4, and IFN-γ ↓ in serum Ratio of TH1/TH2 ↑ | [82] |
4.3. The Application of EVs for Asthma
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Samitas, K.; Carter, A.; Kariyawasam, H.H.; Xanthou, G. Upper and Lower Airway Remodelling Mechanisms in Asthma, Allergic Rhinitis and Chronic Rhinosinusitis: The One Airway Concept Revisited. Allergy 2018, 73, 993–1002. [Google Scholar] [CrossRef] [PubMed]
- Fokkens, W.J.; Lund, V.J.; Hopkins, C.; Hellings, P.W.; Kern, R.; Reitsma, S.; Toppila-Salmi, S.; Bernal-Sprekelsen, M.; Alobid, J.M.I.; Anselmo-Lima Terezinha, W.; et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology 2020, 58 (Suppl. S29), 1–464. [Google Scholar] [CrossRef] [PubMed]
- Alnahas, S.; Abouammoh, N.; Althagafi, W.; Abd-Ellatif, E.E. Prevalence, Severity, and Risk Factors of Allergic Rhinitis among Schoolchildren in Saudi Arabia: A National Cross-Sectional Study, 2019. World Allergy Organ. J. 2023, 16, 100824. [Google Scholar] [CrossRef] [PubMed]
- Reddel, H.K.; Bacharier, L.B.; Bateman, E.D.; Brightling, C.E.; Brusselle, G.G.; Buhl, R.; Cruz, A.A.; Duijts, L.; Drazen, J.M.; FitzGerald, J.M.; et al. Global Initiative for Asthma Strategy 2021: Executive Summary and Rationale for Key Changes. Am. J. Respir. Crit. Care Med. 2022, 205, 17–35. [Google Scholar] [CrossRef]
- Feng, C.H.; Miller, M.D.; Simon, R.A. The United Allergic Airway: Connections between Allergic Rhinitis, Asthma, And Chronic Sinusitis. Am. J. Rhinol. Allergy 2012, 26, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Hekking, P.P.; Amelink, M.; Wener, R.R.; Bouvy, M.L.; Bel, E.H. Comorbidities in Difficult-to-Control Asthma. J. Allergy Clin. Immunol. Pract. 2018, 6, 108–113. [Google Scholar] [CrossRef]
- Pinart, M.; Benet, M.; Annesi-Maesano, I.; von Berg, A.; Berdel, D.; Carlsen, K.C.L.; Carlsen, K.H.; Bindslev-Jensen, C.; Eller, E.; Fantini, M.P.; et al. Comorbidity of Eczema, Rhinitis, and Asthma in IgE-Sensitised and Non-IgE-Sensitised Children in MeDALL: A Population-Based Cohort Study. Lancet Respir. Med. 2014, 2, 131–140. [Google Scholar] [CrossRef]
- Heffler, E.; Pizzimenti, S.; Guida, G.; Bucca, C.; Rolla, G. Prevalence of Over-/Misdiagnosis of Asthma in Patients Referred to an Allergy Clinic. J. Asthma 2015, 52, 931–934. [Google Scholar] [CrossRef]
- Jaruvongvanich, V.; Mongkolpathumrat, P.; Chantaphakul, H.; Klaewsongkram, J. Extranasal Symptoms of Allergic Rhinitis Are Difficult to Treat and Affect Quality of Life. Allergol. Int. 2016, 65, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Shehzad, A.; Islam, S.U.; Shahzad, R.; Khan, S.; Lee, Y.S. Extracellular Vesicles in Cancer Diagnostics and Therapeutics. Pharmacol. Ther. 2021, 223, 107806. [Google Scholar] [CrossRef]
- Czerwaty, K.; Dżaman, K.; Miechowski, W. Application of Extracellular Vesicles in Allergic Rhinitis: A Systematic Review. Int. J. Mol. Sci. 2022, 24, 367. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Keum, B.; Kwak, S.; Byun, J.; Shin, J.M.; Kim, T.H. Therapeutic Applications of Extracellular Vesicles in Inflammatory Bowel Disease. Int. J. Mol. Sci. 2024, 25, 745. [Google Scholar] [CrossRef] [PubMed]
- van Niel, G.; Carter, D.R.F.; Clayton, A.; Lambert, D.W.; Raposo, G.; Vader, P. Challenges and Directions in Studying Cell–Cell Communication by Extracellular Vesicles. Nat. Rev. Mol. Cell Biol. 2022, 23, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Carnino, J.M.; Miyawaki, S.; Rampam, S. The Role of Extracellular Vesicles in Diseases of the Ear, Nose, and Throat. Med. Sci. 2022, 11, 6. [Google Scholar] [CrossRef]
- Hewitt, R.J.; Lloyd, C.M. Regulation of Immune Responses by the Airway Epithelial Cell Landscape. Nat. Rev. Immunol. 2021, 21, 347–362. [Google Scholar] [CrossRef]
- Stanfield, C.L. Principles of Human Physiology; Pearson: San Antonio, TX, USA, 2012; ISBN 0321897714. [Google Scholar]
- Bousquet, J.; Anto, J.M.; Bachert, C.; Baiardini, I.; Bosnic-Anticevich, S.; Walter Canonica, G.; Melén, E.; Palomares, O.; Scadding, G.K.; Togias, A.; et al. Allergic Rhinitis. Nat. Rev. Dis. Primers 2020, 6, 95. [Google Scholar] [CrossRef] [PubMed]
- Holgate, S.T.; Wenzel, S.; Postma, D.S.; Weiss, S.T.; Renz, H.; Sly, P.D. Asthma. Nat. Rev. Dis. Primers 2015, 1, 15025. [Google Scholar] [CrossRef]
- Roan, F.; Obata-Ninomiya, K.; Ziegler, S.F. Epithelial Cell–Derived Cytokines: More than Just Signaling the Alarm. J. Clin. Investig. 2019, 129, 1441–1451. [Google Scholar] [CrossRef] [PubMed]
- Théry, C.; Amigorena, S. The Cell Biology of Antigen Presentation in Dendritic Cells. Curr. Opin. Immunol. 2001, 13, 45–51. [Google Scholar] [CrossRef]
- Kapsenberg, M.L. Dendritic-Cell Control of Pathogen-Driven T-Cell Polarization. Nat. Rev. Immunol. 2003, 3, 984–993. [Google Scholar] [CrossRef]
- Lambrecht, B.N.; Hammad, H. Biology of Lung Dendritic Cells at the Origin of Asthma. Immunity 2009, 31, 412–424. [Google Scholar] [CrossRef] [PubMed]
- Holgate, S.T. Innate and Adaptive Immune Responses in Asthma. Nat. Med. 2012, 18, 673–683. [Google Scholar] [CrossRef]
- Gurram, R.K.; Zhu, J. Orchestration between ILC2s and Th2 Cells in Shaping Type 2 Immune Responses. Cell. Mol. Immunol. 2019, 16, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Kemeny, D.M. The Role of the T Follicular Helper Cells in Allergic Disease. Cell. Mol. Immunol. 2012, 9, 386–389. [Google Scholar] [CrossRef] [PubMed]
- Klein, U.; Dalla-Favera, R. Germinal Centres: Role in B-Cell Physiology and Malignancy. Nat. Rev. Immunol. 2008, 8, 22–33. [Google Scholar] [CrossRef]
- Bachert, C.; Marple, B.; Schlosser, R.J.; Hopkins, C.; Schleimer, R.P.; Lambrecht, B.N.; Bröker, B.M.; Laidlaw, T.; Song, W.J. Adult Chronic Rhinosinusitis. Nat. Rev. Dis. Primers 2020, 6, 86. [Google Scholar] [CrossRef]
- Simon, H.U.; Yousefi, S.; Schranz, C.; Schapowal, A.; Bachert, C.; Blaser, K. Direct Demonstration of Delayed Eosinophil Apoptosis as a Mechanism Causing Tissue Eosinophilia. J. Immunol. 1997, 158, 3902–3908. [Google Scholar] [CrossRef] [PubMed]
- Takafuji, S.; Ohtoshi, T.; Takizawa, H.; Tadokoro, K.; Ito, K. Eosinophil Degranulation in the Presence of Bronchial Epithelial Cells. Effect of Cytokines and Role of Adhesion. J. Immunol. 1996, 156, 3980–3985. [Google Scholar] [CrossRef]
- Modena, B.D.; Dazy, K.; White, A.A. Emerging Concepts: Mast Cell Involvement in Allergic Diseases. Transl. Res. 2016, 174, 98–121. [Google Scholar] [CrossRef] [PubMed]
- Karpman, D.; Ståhl, A.L.; Arvidsson, I. Extracellular Vesicles in Renal Disease. Nat. Rev. Nephrol. 2017, 13, 545–562. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Hill, A.F. Therapeutically Harnessing Extracellular Vesicles. Nat. Rev. Drug Discov. 2022, 21, 379–399. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Li, L.; Fan, R.; Wang, X.; Chen, X.; Xu, Y. Extracellular Vesicles: An Emerging Regenerative Treatment for Oral Disease. Front. Cell Dev. Biol. 2021, 9, 669011. [Google Scholar] [CrossRef] [PubMed]
- Gilmore, W.J.; Bitto, N.J.; Kaparakis-Liaskos, M. Apoptotic Bodies: Mechanism of Formation, Isolation and Functional Relevance. In New Frontiers: Extracellular Vesicles; Springer: Cham, Switzerland, 2021; Volume 97, ISBN 9783030671709. [Google Scholar]
- Piccin, A.; Murphy, W.G.; Smith, O.P. Circulating Microparticles: Pathophysiology and Clinical Implications. Blood Rev. 2007, 21, 157–171. [Google Scholar] [CrossRef] [PubMed]
- Huttner, W.B.; Zimmerberg, J. Implications of Lipid Microdomains for Membrane Curvature, Budding and Fission. Curr. Opin. Cell Biol. 2001, 13, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Wollert, T.; Hurley, J.H. Molecular Mechanism of Multivesicular Body Biogenesis by ESCRT Complexes. Nature 2010, 464, 864–869. [Google Scholar] [CrossRef] [PubMed]
- Larios, J.; Mercier, V.; Roux, A.; Gruenberg, J. ALIX- and ESCRT-III-Dependent Sorting of Tetraspanins to Exosomes. J. Cell Biol. 2020, 219, e201904113. [Google Scholar] [CrossRef] [PubMed]
- Verderio, C.; Gabrielli, M.; Giussani, P. Role of Sphingolipids in the Biogenesis and Biological Activity of Extracellular Vesicles. J. Lipid Res. 2018, 59, 1325–1340. [Google Scholar] [CrossRef] [PubMed]
- Andreu, Z.; Yáñez-Mó, M. Tetraspanins in Extracellular Vesicle Formation and Function. Front. Immunol. 2014, 5, 442. [Google Scholar] [CrossRef]
- Johnstone, R.M.; Adam, M.; Hammond, J.R.; Orr, L.; Turbide, C. Vesicle Formation during Reticulocyte Maturation. Association of Plasma Membrane Activities with Released Vesicles (Exosomes). J. Biol. Chem. 1987, 262, 9412–9420. [Google Scholar] [CrossRef]
- Ng, S.C.; Ananthakrishnan, A.N. New approaches along the IBD course: Diet, tight control and stem cells. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 82–84. [Google Scholar] [CrossRef]
- Tancini, B.; Buratta, S.; Sagini, K.; Costanzi, E.; Delo, F.; Urbanelli, L.; Emiliani, C. Insight into the Role of Extracellular Vesicles in Lysosomal Storage Disorders. Genes 2019, 10, 510. [Google Scholar] [CrossRef] [PubMed]
- Alexander, M.; Hu, R.; Runtsch, M.C.; Kagele, D.A.; Mosbruger, T.L.; Tolmachova, T.; Seabra, M.C.; Round, J.L.; Ward, D.M.; O’Connell, R.M. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat. Commun. 2015, 6, 7321. [Google Scholar] [CrossRef] [PubMed]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [PubMed]
- Qian, K.; Fu, W.; Li, T.; Zhao, J.; Lei, C.; Hu, S. The roles of small extracellular vesicles in cancer and immune regulation and translational potential in cancer therapy. J. Exp. Clin. Cancer Res. 2022, 41, 286. [Google Scholar] [CrossRef]
- Buzas, E.I. The roles of extracellular vesicles in the immune system. Nat. Rev. Immunol. 2023, 23, 236–250. [Google Scholar] [CrossRef]
- Schleimer, R.P. Immunopathogenesis of Chronic Rhinosinusitis and Nasal Polyposis. Annu. Rev. Pathol. 2017, 12, 331–357. [Google Scholar] [CrossRef]
- Promsopa, C.; Kansara, S.; Citardi, M.J.; Fakhri, S.; Porter, P.; Luong, A. Prevalence of Confirmed Asthma Varies in Chronic Rhinosinusitis Subtypes. Int. Forum Allergy Rhinol. 2016, 6, 373–377. [Google Scholar] [CrossRef]
- Kato, A.; Schleimer, R.P.; Bleier, B.S. Mechanisms and Pathogenesis of Chronic Rhinosinusitis. J. Allergy Clin. Immunol. 2022, 149, 1491–1503. [Google Scholar] [CrossRef]
- Nakayama, T.; Yoshikawa, M.; Asaka, D.; Okushi, T.; Matsuwaki, Y.; Otori, N.; Hama, T.; Moriyama, H. Mucosal Eosinophilia and Recurrence of Nasal Polyps—New Classification of Chronic Rhinosinusitis. Rhinology 2011, 49, 392–396. [Google Scholar] [CrossRef]
- Stevens, W.W.; Peters, A.T.; Tan, B.K.; Klingler, A.I.; Poposki, J.A.; Hulse, K.E.; Grammer, L.C.; Welch, K.C.; Smith, S.S.; Conley, D.B.; et al. Associations between Inflammatory Endotypes and Clinical Presentations in Chronic Rhinosinusitis. J. Allergy Clin. Immunol. Pract. 2019, 7, 2812–2820.e3. [Google Scholar] [CrossRef]
- Lin, Y.T.; Lin, C.F.; Liao, C.K.; Yeh, T.H. Comprehensive Evaluation of Type 2 Endotype and Clinical Features in Patients with Chronic Rhinosinusitis with Nasal Polyps in Taiwan: A Cross-Sectional Study. Eur. Arch. Otorhinolaryngol. 2023, 280, 5379–5389. [Google Scholar] [CrossRef] [PubMed]
- Miyake, M.M.; Workman, A.D.; Nocera, A.L.; Wu, D.; Mueller, S.K.; Finn, K.; Amiji, M.M.; Bleier, B.S. Discriminant Analysis Followed by Unsupervised Cluster Analysis Including Exosomal Cystatins Predict Presence of Chronic Rhinosinusitis, Phenotype, and Disease Severity. Int. Forum Allergy Rhinol. 2019, 9, 1069–1076. [Google Scholar] [CrossRef]
- Kato, Y.; Takabayashi, T.; Sakashita, M.; Imoto, Y.; Tokunaga, T.; Ninomiya, T.; Morikawa, T.; Yoshida, K.; Noguchi, E.; Fujieda, S. Expression and Functional Analysis of CST1 in Intractable Nasal Polyps. Am. J. Respir. Cell Mol. Biol. 2018, 59, 448–457. [Google Scholar] [CrossRef]
- Kato, T.; Imatani, T.; Minaguchi, K.; Saitoh, E.; Okuda, K. Salivary Cystatins Induce Interleukin-6 Expression via Cell Surface Molecules in Human Gingival Fibroblasts. Mol. Immunol. 2002, 39, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Mueller, S.K.; Nocera, A.L.; Dillon, S.T.; Libermann, T.A.; Wendler, O.; Bleier, B.S. Tissue and Exosomal Serine Protease Inhibitors Are Significantly Overexpressed in Chronic Rhinosinusitis with Nasal Polyps. Am. J. Rhinol. Allergy 2019, 33, 359–368. [Google Scholar] [CrossRef]
- Mueller, S.K.; Nocera, A.L.; Workman, A.; Libermann, T.; Dillon, S.T.; Stegmann, A.; Wurm, J.; Iro, H.; Wendler, O.; Bleier, B.S. Significant Polyomic and Functional Upregulation of the PAPP-A/IGFBP-4/5/IGF-1 Axis in Chronic Rhinosinusitis with Nasal Polyps. Int. Forum Allergy Rhinol. 2020, 10, 546–555. [Google Scholar] [CrossRef]
- He, S.; Wu, J.; Han, D.; Li, Y.; Wang, T.; Wei, H.; Pan, Y.; Zang, H. Differential Expression Profile of Plasma Exosomal MicroRNAs in Chronic Rhinosinusitis with Nasal Polyps. Exp. Biol. Med. 2022, 247, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.Y.; Kingston, E.R.; Kleaveland, B.; Lin, D.H.; Stubna, M.W.; Bartel, D.P. The ZSWIM8 Ubiquitin Ligase Mediates Target-Directed MicroRNA Degradation. Science 2020, 370, eabc9359. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, H.; Takeda, Y.; Shirai, Y.; Yamamoto, M.; Nakatsubo, D.; Amiya, S.; Enomoto, T.; Hara, R.; Adachi, Y.; Edahiro, R.; et al. Galectin-10 in Serum Extracellular Vesicles Reflects Asthma Pathophysiology. J. Allergy Clin. Immunol. 2024, 153, 1268–1281. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.T.; Stowell, S.R. The Role of Galectins in Immunity and Infection. Nat. Rev. Immunol. 2023, 23, 479–494. [Google Scholar] [CrossRef]
- Ye, L.; Wang, H.; Li, H.; Liu, H.; Lv, T.; Song, Y.; Zhang, F. Eosinophil Peroxidase Over-Expression Predicts the Clinical Outcome of Patients with Primary Lung Adenocarcinoma. J. Cancer 2019, 10, 1032–1038. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Tan, K.S.; Guan, W.J.; Jiang, L.J.; Deng, J.; Gao, W.X.; Lee, Y.M.; Xu, Z.F.; Luo, X.; Liu, C.; et al. Proteomics Profiling of Epithelium-Derived Exosomes from Nasal Polyps Revealed Signaling Functions Affecting Cellular Proliferation. Respir. Med. 2020, 162, 105871. [Google Scholar] [CrossRef]
- Bousquet, P.J.; Leynaert, B.; Neukirch, F.; Sunyer, J.; Janson, C.M.; Anto, J.; Jarvis, D.; Burney, P. Geographical Distribution of Atopic Rhinitis in the European Community Respiratory Health Survey I. Allergy 2008, 63, 1301–1309. [Google Scholar] [CrossRef]
- Vandenplas, O.; Vinnikov, D.; Blanc, P.D.; Agache, I.; Bachert, C.; Bewick, M.; Cardell, L.O.; Cullinan, P.; Demoly, P.; Descatha, A.; et al. Impact of Rhinitis on Work Productivity: A Systematic Review. J. Allergy Clin. Immunol. Pract. 2018, 6, 1274–1286.e9. [Google Scholar] [CrossRef]
- Devillier, P.; Bousquet, J.; Salvator, H.; Naline, E.; Grassin-Delyle, S.; de Beaumont, O. In Allergic Rhinitis, Work, Classroom and Activity Impairments Are Weakly Related to Other Outcome Measures. Clin. Exp. Allergy 2016, 46, 1456–1464. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Yang, G.; Zhang, R.; Xu, G.; Zhang, L.; Wen, W.; Lu, J.; Liu, J.; Yu, Y. Altered MicroRNA Expression Profiles of Extracellular Vesicles in Nasal Mucus from Patients with Allergic Rhinitis. Allergy Asthma Immunol. Res. 2015, 7, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, Y.; Han, X. ESP-B4 Promotes Nasal Epithelial Cell-Derived Extracellular Vesicles Containing MiR-146a-5p to Modulate Smad3/GATA-3 Thus Relieving Allergic Rhinitis: ESP-B4/MiR-146a-5p in AR. Phytomedicine 2023, 108, 154516. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Wang, X.; Wang, Y.; Zhao, Y. Exosomal Long Non-coding RNA GAS5 Suppresses Th1 Differentiation and Promotes Th2 Differentiation via Downregulating EZH2 and T-Bet in Allergic Rhinitis. Mol. Immunol. 2020, 118, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Mattick, J.S.; Amaral, P.P.; Carninci, P.; Carpenter, S.; Chang, H.Y.; Chen, L.L.; Chen, R.; Dean, C.; Dinger, M.E.; Fitzgerald, K.A.; et al. Long Non-coding RNAs: Definitions, Functions, Challenges and Recommendations. Nat. Rev. Mol. Cell Biol. 2023, 24, 430–447. [Google Scholar] [CrossRef]
- Mowel, W.K.; Kotzin, J.J.; McCright, S.J.; Neal, V.D.; Henao-Mejia, J. Control of Immune Cell Homeostasis and Function by LncRNAs. Trends Immunol. 2018, 39, 55–69. [Google Scholar] [CrossRef]
- Miossec, P.; Van den Berg, W.T. Th1/Th2 Cytokine Balance in Arthritis. Arthritis Rheum. 1997, 40, 2105–2115. [Google Scholar] [CrossRef]
- Busse, W.W.; Lemanske, R.F.J.R. Asthma. N. Engl. J. Med. 2001, 344, 350–362. [Google Scholar] [CrossRef]
- Fang, S.B.; Zhou, Z.R.; Peng, Y.Q.; Liu, X.Q.; He, B.X.; Chen, D.H.; Chen, D.; Fu, Q.L. Plasma EVs Display Antigen-Presenting Characteristics in Patients with Allergic Rhinitis and Promote Differentiation of Th2 Cells. Front. Immunol. 2021, 12, 710372. [Google Scholar] [CrossRef]
- Ogi, K.; Ramezanpour, M.; Liu, S.; Ferdoush Tuli, J.; Bennett, C.; Suzuki, M.; Fujieda, S.; Psaltis, A.J.; Wormald, P.J.; Vreugde, S. Der p 1 Disrupts the Epithelial Barrier and Induces IL-6 Production in Patients With House Dust Mite Allergic Rhinitis. Front. Allergy 2021, 2, 692049. [Google Scholar] [CrossRef]
- Fang, S.B.; Zhang, H.Y.; Wang, C.; He, B.X.; Liu, X.Q.; Meng, X.C.; Peng, Y.Q.; Xu, Z.B.; Fan, X.L.; Wu, Z.J.; et al. Small Extracellular Vesicles Derived from Human Mesenchymal Stromal Cells Prevent Group 2 Innate Lymphoid Cell-Dominant Allergic Airway Inflammation through Delivery of MiR-146a-5p. J. Extracell. Vesicles 2020, 9, 1723260. [Google Scholar] [CrossRef] [PubMed]
- Lyu, B.; Wei, Z.; Jiang, L.; Ma, C.; Yang, G.; Han, S. MicroRNA-146a negatively regulates IL-33 in activated group 2 innate lymphoid cells by inhibiting IRAK1 and TRAF6. Genes Immun. 2022, 21, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.Q.; Wu, Z.C.; Xu, Z.B.; Fang, S.B.; Chen, D.H.; Zhang, H.Y.; Liu, X.Q.; He, B.X.; Chen, D.; Akdis, C.A.; et al. Mesenchymal Stromal Cells-Derived Small Extracellular Vesicles Modulate DC Function to Suppress Th2 Responses via IL-10 in Patients with Allergic Rhinitis. Eur. J. Immunol. 2022, 52, 1129–1140. [Google Scholar] [CrossRef]
- Chapoval, S.; Dasgupta, P.; Dorsey, N.J.; Keegan, A.D. Regulation of the T Helper Cell Type 2 (Th2)/T Regulatory Cell (Treg) Balance by IL-4 and STAT6. J. Leukoc. Biol. 2010, 87, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Huang, Q.M.; Liu, Y.; Zhou, J.; Tang, W.R.; Wang, X.Y.; Wang, L.F.; Zhang, Z.H.; Tan, H.L.; Guan, X.H.; et al. Long-Term Hypoxic HUCMSCs-Derived Extracellular Vesicles Alleviates Allergic Rhinitis through Triggering Immunotolerance of Their VEGF-Mediated Inhibition of Dendritic Cells Maturation. Int. Immunopharmacol. 2023, 124, 110875. [Google Scholar] [CrossRef]
- Yang, W.; Pan, Z.; Zhang, J.; Wang, L.; Lai, J.; Zhou, S.; Zhang, Z.; Fan, K.; Deng, D.; Gao, Z.; et al. Extracellular Vesicles from Adipose Stem Cells Ameliorate Allergic Rhinitis in Mice by Immunomodulatory. Front. Immunol. 2023, 14, 1302336. [Google Scholar] [CrossRef]
- Stern, J.; Pier, J.; Litonjua, A.A. Asthma Epidemiology and Risk Factors. Semin. Immunopathol. 2020, 42, 5–15. [Google Scholar] [CrossRef]
- Oppenheimer, J.; Hoyte, F.C.L.; Phipatanakul, W.; Silver, J.; Howarth, P.; Lugogo, N.L. Allergic and Eosinophilic Asthma in the Era of Biomarkers and Biologics: Similarities, Differences and Misconceptions. Ann. Allergy Asthma Immunol. 2022, 129, 169–180. [Google Scholar] [CrossRef]
- Kulshreshtha, A.; Ahmad, T.; Agrawal, A.; Ghosh, B. Proinflammatory Role of Epithelial Cell-Derived Exosomes in Allergic Airway Inflammation. J. Allergy Clin. Immunol. 2013, 131, 1194–1203.e14. [Google Scholar] [CrossRef] [PubMed]
- Bartel, S.; La Grutta, S.; Cilluffo, G.; Perconti, G.; Bongiovanni, A.; Giallongo, A.; Behrends, J.; Kruppa, J.; Hermann, S.; Chiang, D.; et al. Human Airway Epithelial Extracellular Vesicle MiRNA Signature Is Altered upon Asthma Development. Allergy 2020, 75, 346–356. [Google Scholar] [CrossRef]
- Schindler, V.E.M.; Alhamdan, F.; Preußer, C.; Hintz, L.; Alashkar Alhamwe, B.; Nist, A.; Stiewe, T.; Pogge von Strandmann, E.; Potaczek, D.P.; Thölken, C.; et al. Side-Directed Release of Differential Extracellular Vesicle-Associated MicroRNA Profiles from Bronchial Epithelial Cells of Healthy and Asthmatic Subjects. Biomedicines 2022, 10, 622. [Google Scholar] [CrossRef]
- Zheng, R.; Du, M.; Tian, M.; Zhu, Z.; Wei, C.; Chu, H.; Gan, C.; Liang, J.; Xue, R.; Gao, F.; et al. Fine Particulate Matter Induces Childhood Asthma Attacks via Extracellular Vesicle-Packaged Let-7i-5p-Mediated Modulation of the MAPK Signaling Pathway. Adv. Sci. 2022, 9, e2102460. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Wang, Y.; Zheng, T.; Pu, Y.; Ma, Y.; Qi, X.; Zhang, W.; Xue, F.; Shan, Z.; Liu, J.; et al. Hypoxic HUCMSC-Derived Extracellular Vesicles Attenuate Allergic Airway Inflammation and Airway Remodeling in Chronic Asthma Mice. Stem Cell Res. Ther. 2021, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Mun, S.J.; Kang, S.A.; Park, H.K.; Yu, H.S.; Cho, K.S.; Roh, H.J. Intranasally Administered Extracellular Vesicles from Adipose Stem Cells Have Immunomodulatory Effects in a Mouse Model of Asthma. Stem Cells Int. 2021, 2021, 6686625. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Yang, H.; Peng, X.; Lin, L.; Wang, J.; Lin, K.; Cui, Z.; Li, J.; Xiao, H.; Liang, Y.; et al. Mast Cell Exosomes Can Suppress Allergic Reactions by Binding to IgE. J. Allergy Clin. Immunol. 2018, 141, 788–791. [Google Scholar] [CrossRef]
- Zou, Y.; Zhou, Q.; Zhang, Y. MicroRNA-21 Released from Mast Cells-Derived Extracellular Vesicles Drives Asthma in Mice by Potentiating Airway Inflammation and Oxidative Stress. Am. J. Transl. Res. 2021, 13, 7475–7491. [Google Scholar] [PubMed]
- Sangaphunchai, P.; Todd, I.; Fairclough, L.C. Extracellular vesicles and asthma: A review of the literature. Clin. Exp. Allergy 2020, 50, 291–307. [Google Scholar] [CrossRef] [PubMed]
- Rezaie, J.; Feghhi, M.; Etemadi, T. A review on exosomes application in clinical trials: Perspective, questions, and challenges. Cell Commun. Signal. 2022, 20, 145. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.W.A.; Chan, L.K.W.; Hung, L.C.; Phoebe, L.K.W.; Park, Y.; Yi, K.-H. Clinical Applications of Exosomes: A Critical Review. Int. J. Mol. Sci. 2024, 25, 7794. [Google Scholar] [CrossRef] [PubMed]
No. | Donor | Used EVs | EV Isolation Methods | EV Identification Methods | Subjects | Results Effects | Ref. |
---|---|---|---|---|---|---|---|
1 | Healthy hBECs (BEAS-2B) | Exosomes/sEVs | Centrifugation Ultracentrifugation | Bead-based assay (HSP70, CD63) WB (CD63, TSG101, ALIX, RAB5B, RAB27A) | IL-13 treatment after vs. before | Exosome secretion ↑ | [85] |
2 | Healthy primary hBECs | Exosomes/sEVs | Basal/apical medium with ExoQuick-TC kit | NTA (5–1000 nm), TEM, WB (CD63, CD9, ALIX), SEC (10 kDa, 0.2 µm) | IL-13 treatment after vs. before | miR-34a ↓ in basal EVs miR-92b ↓ in basal EVs miR-210 ↓ in apical EVs | [86] |
3 | Primary hBECs | Exosomes/sEVs | Basal/apical medium centrifugation (500× g for 10 min, 2000× g for 20 min, 10,000× g for 30 min) Filtration with 0.22-µm filter, ExoEasy kit | NanoFCM (50–250 nm), Bead-based flow cytometry (CD9, CD63, CD81) | Patients with asthma vs. Control | miR-9 ↑ in apical EVs let-7, miR-9, and miR-10 ↑ in basal EVs | [87] |
4 | Healthy hBECs plasma | Exosomes/sEVs | Culture of hBECs with ExoQuick TC Kit ExoQuick Plasma Prep with Thrombin Kit | TEM, NanoFCM, WB (CD63, TSG101, ALIX) | PM2.5 treatment after vs. before Patients with asthma vs. Control | let-7i-5p ↑ | [88] |
5 | Serum | Exosomes/sEVs | Phosphatidylserine (PS) affinity method | TEM (CD9) NTA (<200 nm) | Patients with eA vs. Control | GAL10, EPO, MBP1, EDN, ALOX15 ↑ in EVs | [61] |
6 | hMSCs | sEVs | Centrifugation (2000× g for 20 min) Anion-exchange chromatography Ultracentrifugation (300× g for 5 min, 2000× g for 20 min, 12,000× g for 30 min, 110,000× g for 70 min) | Flow cytometry (CD9, CD63, CD81), ELISA (CD63), WB (CD9, CD63, CD81, ALIX, TSG101) Protein concentration, NTA, TEM | EV treatment after vs. before in asthmatic mice | miR-146a-5p ↑ in MSC-derived EVs Infiltration of inflammatory cells ↓ in peritracheal area and BALF IL-5 and IL-13 ↓ in BALF Epithelial goblet cells ↓ in lungs ILC2 and airway hyperresponsiveness ↓ in lungs | [77] |
7 | Hypoxic-hMSCs | Unknown | Ultracentrifugation (300× g for 10 min, 2000× g for 20 min, 100,000× g for 90 min) | TEM, WB (HSP70 TSG101), NTA (150–160 nm) | Hypoxic MSC vs. Normal MSC EV treatment after vs. before in asthmatic mice | miR-146a-5p ↑ in hypoxic MSC-EVs Total cells, eosinophils, and TH2 mediator ↓ in BALF Airway inflammation ↓ | [89] |
8 | Murine ADSCs | Unknown | Filtration with 0.45 and 0.22-µm filters Ultracentrifugation (100,000× g for 2 h) | TEM (100–400 nm), NTA (127 nm), WB (CD40 and CD81) | EV treatment after vs. before in asthmatic mice | Total IgE and IgG ↓ in serum Inflammatory cells, eosinophils, and IL-4 ↓ in BALF Eosinophilic Lung inflammation ↓ IL-4 ↓ lung draining lymph nodes Treg ↑ in lung draining lymph nodes | [90] |
9 | Murine BMMCs | Exosomes/sEVs | Centrifugation | TEM (50–80 nm), WB (FcεRI), Flow cytometry, Confocal microscopy | Exosome treatment after vs. before in asthmatic mice | Airway inflammation ↓ Airway hyperresponsiveness ↓ | [91] |
10 | Murine mast cell (MC/9) | Unknown | Centrifugation (300× g for 10 min, 20,000× g for 20 min) Filtration with a 0.2-µm filter Ultracentrifugation (100,000× g for 90 min) | TEM, NTA, WB (HSP70, CD9, TSG101) | EV treatment after vs. before in mouse epithelial cell line/asthmatic mice | MiR-21 ↑ in mouse mast cell-derived EVs/asthmatic Mice miR-21 ↑ after MC-EV treatment in mouse epithelial cells Antioxidant enzymes ↓/inflammatory cells ↑ in asthmatic mice | [92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheon, J.; Kim, B.; Lee, J.; Shin, J.; Kim, T.H. Functions and Clinical Applications of Extracellular Vesicles in TH2 Cell-Mediated Airway Inflammatory Diseases: A Review. Int. J. Mol. Sci. 2024, 25, 9455. https://doi.org/10.3390/ijms25179455
Cheon J, Kim B, Lee J, Shin J, Kim TH. Functions and Clinical Applications of Extracellular Vesicles in TH2 Cell-Mediated Airway Inflammatory Diseases: A Review. International Journal of Molecular Sciences. 2024; 25(17):9455. https://doi.org/10.3390/ijms25179455
Chicago/Turabian StyleCheon, Jaehwan, Byoungjae Kim, Juhyun Lee, Jaemin Shin, and Tae Hoon Kim. 2024. "Functions and Clinical Applications of Extracellular Vesicles in TH2 Cell-Mediated Airway Inflammatory Diseases: A Review" International Journal of Molecular Sciences 25, no. 17: 9455. https://doi.org/10.3390/ijms25179455
APA StyleCheon, J., Kim, B., Lee, J., Shin, J., & Kim, T. H. (2024). Functions and Clinical Applications of Extracellular Vesicles in TH2 Cell-Mediated Airway Inflammatory Diseases: A Review. International Journal of Molecular Sciences, 25(17), 9455. https://doi.org/10.3390/ijms25179455